Triphosphates of Linear-Benzoguanosine, Linear-Benzoinosine, and Linear-Benzoxanthosine

Total Page:16

File Type:pdf, Size:1020Kb

Triphosphates of Linear-Benzoguanosine, Linear-Benzoinosine, and Linear-Benzoxanthosine Proc. Natl. Acad. Sci. USA Vol. 76, No. 9, pp. 4262-4264, September 1979 Biochemistry Synthesis of fluorescent nucleotide analogues: 5'-Mono-, di-, and triphosphates of linear-benzoguanosine, linear-benzoinosine, and linear-benzoxanthosine (phosphorylation/xanthine oxidase oxidation/quantum yield/lifetime/dimensional probes) NELSON J. LEONARD AND GENE E. KEYSER Roger Adams Laboratory, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801 Contributed by Nelson J. Leonard, May 29, 1979 ABSTRACT The fluorescent nucleotide analogues (the 5'- 0 mono-, di-, and triphosphates of lin-benzoguanosine, ftn-ben- 8 9 zoxanthosine, and Iin-benzoinosine) have been prepared for use 7 N 1 as dimensional probes of enzyme binding sites. They have HN N > quantum yields in aqueous solution of 0.39,0.55, and 0.04 and fluorescent lifetimes of 6, 9, and t1.5 nsec, respectively. Un- H2N*J'N 3 Benzoinosine 5'-monophosphate is a substrate for xanthine 5 4 1 oxidase (xanthine:oxygen oxidoreductase, EC 1.2.3.2), providing R lin-benzoxanthosine 5'-monophosphate, and lin-benzoinosine 5'-diphosphate is a substrate for polynucleotide phosphorylase (polyribonucleotide:orthophosphate nucleotidyltransferase, EC 2.7.7.8), giving poly(lin-benzoinosinic acid). The benzologues of the purine diphosphates are substrates for pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40), which is I.N used to prepare the triphosphates. Fluorescent analogues or derivatives of adenine-containing O NN 'N nucleotides have been prepared to aid in the definition of en- H I H zyme binding sites and in the determination of interactions in 2 3 nucleic acids (1-6). Notably, the lin-benzoadenine series of analogues (lin = linear) (1-3) are unaltered at the typical loci of biological interactions, yet the terminal pyrimidine and imidazole rings are separated by an additional 2.4 A as a con- sequence of the formal insertion of a benzene ring. Accordingly, the members of the lin-benzoadenine series may serve as in- R= P 0 vestigative tools in view of their fluorescence properties and OH their potential for interaction in a wide range of biological systems (3). a, n = 1 Although fluorescent derivatives of guanine have been re- b, n = 2 ported, none to date possesses unaltered terminal rings and most c. n = 3 are modifications of guanine nuclei preexistent in the system under investigation. The naturally occurring Y bases (7), which are highly substituted guanosine derivatives found in tRNAs, MATERIALS AND METHODS have shown utility as fluorescent probes in connection with Ultraviolet absorption spectra were obtained on a Beckman conformational studies of tRNA (8, 9). Related heterocycles are Acta M VI spectrophotometer. Molecular fluorescence emission formed by reactions of the guanine nucleus with substituted and excitation spectra were measured on a Spex Fluorolog malondialdehydes (10, 11), glycidaldehyde (12), and chloroa- spectrofluorometer, with the quantum yield of 0.40 for lin- cetaldehyde (13). These modified analogues are subject to benzoadenosine triphosphate as a standard. A cross-correlation limited applicability in base-specific systems due to the external subnanosecond fluorometer interfaced with a Monroe 1880 alteration of the pyrimidine ring. We report here the prepa- programmable calculator was used to determine fluorescence ration of lin-benzoguanosine 5'-mono-, di-, and triphosphates lifetimes. The purity and identity of the nucleotides were es- (1), laterally extended versions of the natural nucleotides in tablished by combinations of chromatography and electro- which the substituted pyrimidine ring is not further modified. phoresis and by chemical and enzymatic transformations. These guanine ribotide analogues are strongly fluorescent, as Thin-layer chromatograms were run on EM silica gel f-254 are the corresponding xanthine ribotide analogues (2). The less plates, with isobutyric acid/concentrated ammonia/water, fluorescent lin-benzoinosine 5'-mono-, di-, and triphosphates (3) have also been prepared. Abbreviations: The prefix lin refers to the linear disposition of the three rings, as in 1; "benzo" in the trivial name refers to the additional ring The publication costs of this article were defrayed in part by page which, only when central, contains no nitrogen. This terminology is charge payment. This article must therefore be hereby marked "ad- in use for derivatives similarly related to all purines. The other parts vertisement" in accordance with 18 U. S. C. §1734 solely to indicate of the names follow accepted IUPAC-IUB nomenclature. TEAB, this fact. triethylammonium bicarbonate. 4262 Downloaded by guest on September 26, 2021 Biochemistry: Leonard and Keyser Proc. Natl. Acad. Sci. USA 76 (1979) 4263 56:1:43 (vol/vol) as solvent. Bio-Rad Dowex 50W-X8 and Sigma TEAB (pH 8.0) at which they were first eluted from a DEAE- DEAE-cellulose were used for ion-exchange chromatography. cellulose column (2.5 X 40 cm) were: la-3a, 0.12-0.15 M; All aqueous columns were maintained at 5-10°C. Electro- lb-3b, 0.20-0.25 M; and lc-3c, 0.30-0.35 M. phoresis was run on an LKB Servall with LKB Power Supply Poly(lin-benzoinosinic acid). The compound was prepared at lOOVand lOmA. in a reaction medium containing the following: lin-benzo-IDP Synthesis of lin-Benzo-GMP (la), lin-Benzo-XMP (2a), and (3b) (2 mM), MgCl2 (5 mM), Tris-HCl (100 mM, pH 8.0), 70 lin-Benzo-IMP (3a). The compounds were synthesized from units of polynucleotide phosphorylase (Micrococcus lysodeik- the corresponding ribosides (14) by the method of Imai et al. ticus, Sigma) (polyribonucleotide:orthophosphate nucleotid- (15), previously used in this laboratory to obtain lin-benzo-AMP yltransferase, EC 2.7.7.8), and guanylyl (3' 5')uridine (1 AM) (3). In a typical procedure, to a stirred suspension of lin-ben- in a total volume of 0.5 ml. The reaction mixture was incubated zoinosine (32 mg, 0.13 mmol) in m-cresol (2 ml) under argon at 370C for 48 hr and then extracted several times with chlo- at 00C was added pyrophosphoryl chloride (0.2 ml). Stirring roform/isoamyl alcohol, 3:1 (vol/vol). The aqueous layer was was continued at 00C for 4 hr, during which time a clear yellow applied to a column of Sephadex G-50 (2.0 X 100 cm) and solution was obtained. This solution was poured into ice water eluted with 10 mM TEAB (pH 8.0). The polymeric material (25 ml), thoroughly extracted three times with ether (50 ml), was excluded from the column just prior to the small protein and then added to 0.5 M aqueous triethylammonium bicar- fraction. Attempts to determine the molecular weight by gel bonate (TEAB) (100 ml). After removal of the solvent at re- electrophoresis resulted in precipitation of the polymer at and duced pressure at 0-5°C, methanol (50 ml, three times) was near the origin. Incubation of the polymeric material (0.5 A326) added and coevaporated at 0-5OC to decompose excess TEAB. with a mixture of micrococcal nuclease, snake venom phos- The white residue was dissolved in water (8 ml), applied to a phodiesterase, and alkaline phosphatase in Tris-HCl (pH 8.5) DEAE-cellulose column (2.5 X 40 cm), and eluted with a linear at 37°C for 30 min returned the fine structure to the long- gradient of 0.01 M (500 ml) to 0.25 M (500 ml) aqueous TEAB. wavelength bands. The hypochromicity at 326 nm exhibited Fractions containing the material (by A326) were reduced to by the polymeric material obtained under our experimental dryness at reduced pressure at 0-5°C and treated with meth- conditions was about 60%. anol as above. The clear glass obtained was dissolved in water RESULTS AND DISCUSSION (2 ml) and applied to a column of Li+ Dowex 5OW-X8 (200-400 Our experience with lin-benzoadenosine phosphate analogues mesh, 1 X 20cm). Elution with distilled water and evaporation has established the concept of using defined dimensional probes of fractions containing the material gave 42 mg of 3a (76%) as for enzyme active sites, aided by fluorescence methodology (3, clear plates. For 3a: UV 4Xjp72 (10mM phosphate) 326 (c 6300), 4, 17-19). We have prepared the benzologues (1-3) of the gu- 313 (6300), 298 (5600), 290 (sh). For la: UV X"'x72 (10 mM anosine, inosine, and xanthosine nucleotides to extend this phosphate) 335 (sh), 323 (5600), 288 (4100), 277 (5100). For 2a: concept and to provide additional fluorescent probes for the UV AX72 (10 mM phosphate) 324 (6300), 284 (4700), 270 study of the functional interactions of purine nuclei. The mono- (6900). The UV E values were obtained by alkaline phosphatase and diphosphate derivatives (la,b-3a,b) were prepared from hydrolysis to determined concentrations of the corresponding the nucleosides (14) by the procedure of Imai et al. (15) and nucleosides. Moffatt and Khorana (16) as modified in our laboratory (3, 4). Enzymatic Synthesis of lin-Benzo-XMP (2a). This ribonu- Enzymatic conversion of the diphosphates (lb-3b) to the tri- cleotide was prepared chemically (see above) and also by the phosphates (lc-3c) was accomplished with phosphoenolpy- enzymatic oxidation of 3a. To a solution of 50 mM aqueous ruvate and pyruvate kinase. The reaction was driven to com- TEAB (pH 8.0,9 ml, made by diluting 0.5 M aqueous TEAB) pletion by the use of lactate dehydrogenase, with NADH to was added a solution of lin-benzoinosine 5'-monophosphate (3a) consume the pyruvate formed in the reaction. Even though the (10 mg, 0.025 mmol) in 50 mM aqueous TEAB (0.9 ml, pH 8.0) enzymatic phosphorylation was slower than that of lin- and xanthine oxidase (xanthine:oxygen oxidoreductase; EC benzo-ADP (3), the outcome, >95% yield of corresponding 1.2.3.2) (Sigma, 2 units in 0.1 ml of 2.3 M aqueous ammonium triphosphate, was much better than the result of chemical sulfate).
Recommended publications
  • Bacillus Anthracis Edema Factor Substrate Specificity: Evidence for New Modes of Action
    Toxins 2012, 4, 505-535; doi:10.3390/toxins4070505 OPEN ACCESS toxins ISSN 2072–6651 www.mdpi.com/journal/toxins Review Bacillus anthracis Edema Factor Substrate Specificity: Evidence for New Modes of Action Martin Göttle 1,*, Stefan Dove 2 and Roland Seifert 3 1 Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA 2 Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany; E-Mail: [email protected] 3 Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-404-727-1678; Fax: +1-404-727-3157. Received: 23 April 2012; in revised form: 15 June 2012 / Accepted: 27 June 2012 / Published: 6 July 2012 Abstract: Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5′-triphosphate, uridine 5′-triphosphate and inosine 5′-triphosphate, in addition to adenosine 5′-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3′:5′-monophosphate, cyclic uridine 3′:5′-monophosphate and cyclic inosine 3′:5′-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
    [Show full text]
  • DNA DEAMINATION REPAIR ENZYMES in BACTERIAL and HUMAN SYSTEMS Rongjuan Mi Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2008 DNA DEAMINATION REPAIR ENZYMES IN BACTERIAL AND HUMAN SYSTEMS Rongjuan Mi Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Biochemistry Commons Recommended Citation Mi, Rongjuan, "DNA DEAMINATION REPAIR ENZYMES IN BACTERIAL AND HUMAN SYSTEMS" (2008). All Dissertations. 315. https://tigerprints.clemson.edu/all_dissertations/315 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. DNA DEAMINATION REPAIR ENZYMES IN BACTERIAL AND HUMAN SYSTEMS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Biochemistry by Rongjuan Mi December 2008 Accepted by: Dr. Weiguo Cao, Committee Chair Dr. Chin-Fu Chen Dr. James C. Morris Dr. Gary Powell ABSTRACT DNA repair enzymes and pathways are diverse and critical for living cells to maintain correct genetic information. Single-strand-selective monofunctional uracil DNA glycosylase (SMUG1) belongs to Family 3 of the uracil DNA glycosylase superfamily. We report that a bacterial SMUG1 ortholog in Geobacter metallireducens (Gme) and the human SMUG1 enzyme are not only uracil DNA glycosylases (UDG), but also xanthine DNA glycosylases (XDG). Mutations at M57 (M57L) and H210 (H210G, H210M, H210N) can cause substantial reductions in XDG and UDG activities. Increased selectivity is achieved in the A214R mutant of Gme SMUG1 and G60Y completely abolishes XDG and UDG activity. Most interestingly, a proline substitution at the G63 position switches the Gme SMUG1 enzyme to an exclusive uracil DNA glycosylase.
    [Show full text]
  • De Novo Nucleic Acids: a Review of Synthetic Alternatives to DNA and RNA That Could Act As † Bio-Information Storage Molecules
    life Review De Novo Nucleic Acids: A Review of Synthetic Alternatives to DNA and RNA That Could Act as y Bio-Information Storage Molecules Kevin G Devine 1 and Sohan Jheeta 2,* 1 School of Human Sciences, London Metropolitan University, 166-220 Holloway Rd, London N7 8BD, UK; [email protected] 2 Network of Researchers on the Chemical Evolution of Life (NoR CEL), Leeds LS7 3RB, UK * Correspondence: [email protected] This paper is dedicated to Professor Colin B Reese, Daniell Professor of Chemistry, Kings College London, y on the occasion of his 90th Birthday. Received: 17 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: Modern terran life uses several essential biopolymers like nucleic acids, proteins and polysaccharides. The nucleic acids, DNA and RNA are arguably life’s most important, acting as the stores and translators of genetic information contained in their base sequences, which ultimately manifest themselves in the amino acid sequences of proteins. But just what is it about their structures; an aromatic heterocyclic base appended to a (five-atom ring) sugar-phosphate backbone that enables them to carry out these functions with such high fidelity? In the past three decades, leading chemists have created in their laboratories synthetic analogues of nucleic acids which differ from their natural counterparts in three key areas as follows: (a) replacement of the phosphate moiety with an uncharged analogue, (b) replacement of the pentose sugars ribose and deoxyribose with alternative acyclic, pentose and hexose derivatives and, finally, (c) replacement of the two heterocyclic base pairs adenine/thymine and guanine/cytosine with non-standard analogues that obey the Watson–Crick pairing rules.
    [Show full text]
  • Endoq, Exoiii, and Family-4 UDG
    www.nature.com/scientificreports OPEN The mesophilic archaeon Methanosarcina acetivorans counteracts uracil in DNA with Received: 21 May 2018 Accepted: 25 September 2018 multiple enzymes: EndoQ, ExoIII, Published: xx xx xxxx and UDG Miyako Shiraishi 1,4,5,6, Sonoko Ishino1, Matthew Hefernan4, Isaac Cann2,3,4,5 & Yoshizumi Ishino1,4,5 Cytosine deamination into uracil is one of the most prevalent and pro-mutagenic forms of damage to DNA. Base excision repair is a well-known process of uracil removal in DNA, which is achieved by uracil DNA glycosylase (UDG) that is found in all three domains of life. However, other strategies for uracil removal seem to have been evolved in Archaea. Exonuclease III (ExoIII) from the euryarchaeon Methanothermobacter thermautotrophicus has been described to exhibit endonuclease activity toward uracil-containing DNA. Another uracil-acting protein, endonuclease Q (EndoQ), was recently identifed from the euryarchaeon Pyrococcus furiosus. Here, we describe the uracil-counteracting system in the mesophilic euryarchaeon Methanosarcina acetivorans through genomic sequence analyses and biochemical characterizations. Three enzymes, UDG, ExoIII, and EndoQ, from M. acetivorans exhibited uracil cleavage activities in DNA with a distinct range of substrate specifcities in vitro, and the transcripts for these three enzymes were detected in the M. acetivorans cells. Thus, this organism appears to conduct uracil repair using at least three distinct pathways. Distribution of the homologs of these uracil-targeting proteins in Archaea showed that this tendency is not restricted to M. acetivorans, but is prevalent and diverse in most Archaea. This work further underscores the importance of uracil- removal systems to maintain genome integrity in Archaea, including ‘UDG lacking’ organisms.
    [Show full text]
  • Natural Versus Artificial Creation of Base Pairs in DNA: Origin Of
    Natural versus Artificial Creation of Base Pairs in DNA: Origin of Nucleobases from the Perspectives of Unnatural Base Pair Studies † ‡ † ‡ ICHIRO HIRAO,*, , MICHIKO KIMOTO, , AND † RIE YAMASHIGE † RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, ‡ Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan, and TagCyx Biotechnologies, 1-6-126 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan RECEIVED ON OCTOBER 6, 2011 CONSPECTUS ince life began on Earth, the four types of bases (A, G, C, and S T(U)) that form two sets of base pairs have remained unchanged as the components of nucleic acids that replicate and transfer genetic information. Throughout evolution, except for the U to T modification, the four base structures have not changed. This constancy within the genetic code raises the question of how these complicated nucleotides were generated from the molecules in a primordial soup on the early Earth. At some prebiotic stage, the complementarity of base pairs might have accelerated the generation and accumulation of nucleotides or oligonucleotides. We have no clues whether one pair of nucleobases initially appeared on the early Earth during this process or a set of two base pairs appeared simultaneously. Recently, researchers have developed new artificial pairs of nucleobases (unnatural base pairs) that function alongside the natural base pairs. Some unnatural base pairs in duplex DNA can be efficiently and faithfully amplified in a polymerase chain reaction (PCR) using thermostable DNA polymerases. The addition of unnatural base pair systems could expand the genetic alphabet of DNA, thus providing a new mechanism for the generation novel biopolymers by the site-specific incorporation of functional components into nucleic acids and proteins.
    [Show full text]
  • Xanthine, Xanthosine and Its Nucleotides: Solution Structures Of
    Vol. 51 No. 2/2004 493–531 QUARTERLY Review Xanthine, xanthosine and its nucleotides: solution structures of neutral and ionic forms, and relevance to substrate proper- ties in various enzyme systems and metabolic pathways. Ewa Kulikowska1, Borys Kierdaszuk1 and David Shugar1,2½ 1Department of Biophysics, Institute of Experimental Physics, University of Warsaw, 93 Zwirki i Wigury, 02-089 Warszawa, and 2Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a A. Pawinskiego, 02-106 Warszawa, Poland Received: 09 May, 2004 Key words: xanthine, xanthosine, nucleotides, acid/base properties, prototropic tautomerism, base pairing, enzyme reactions, metabolic pathways, G proteins, caffeine biosynthesis The 6-oxopurine xanthine (Xan, neutral form 2,6-diketopurine) differs from the cor- responding 6-oxopurines guanine (Gua) and hypoxanthine (Hyp) in that, at physio- logical pH, it consists of a . 1:1 equilibrium mixture of the neutral and monoanionic forms, the latter due to ionization of N(3)-H, in striking contrast to dissociation of the N(1)-H in both Gua and Hyp at higher pH. In xanthosine (Xao) and its nucleotides the xanthine ring is predominantly, or exclusively, a similar monoanion at physiological pH. The foregoing has, somewhat surprisingly, been widely overlooked in studies on the properties of these compounds in various enzyme systems and metabolic path- ways, including, amongst others, xanthine oxidase, purine phosphoribosyltrans- ferases, IMP dehydrogenases, purine nucleoside phosphorylases, nucleoside hydro- lases, the enzymes involved in the biosynthesis of caffeine, the development of xanthine nucleotide-directed G proteins, the pharmacological properties of alkyl- xanthines. We here review the acid/base properties of xanthine, its nucleosides and .Supported by the Polish Ministry of Science and Informatics (KBN, grant No.
    [Show full text]
  • Accumulation of Xanthosine by Auxotrophic Mutants of Bacillus Subtilis ??
    [Agr. Biol. Chem., Vol. 30, No. 6, p. 605•`610, 1966] Accumulation of Xanthosine by Auxotrophic Mutants of Bacillus subtilis_??_ By Masao FUJIMOTO, Kazuo UCHIDA, Morio SUZUKI and Hiroshi YOSHINO Microbial Laboratory of Yamasa Shoyu Co., Ltd., Choshi Received January 8, 1966 Several guanineless mutants derived from Bacillus subtilis JAM 1145 were found to accumulate xanthosine in the culture broth. Further mutation of the guanineless mutants to adenine dependence led to remarkable increase in the accumulation of xanthosine. One of the guanine-adenine doubleless mutants, strain Gu-Ad-3-35, accumulated 8.9g of xanthosine per liter. Xanthosine was isolated in a crystalline form from the culture broth by a procedure involving charcoal treatment and ion-exchange chromatography. INTRODUCTION and with the isolation of pure xanthosine Magasanik and Brook1) first identified a from the culture broth. product of metabolism of a guanineless mutant MATERIALS AND METHODS of Aerobacter aerogenes as xanthosine, and Naka- Microorganism. Bacillus subtilis IAM 1145** was yama et al.2) developed a complex medium used as the starting strain for the artificial mutation. in which a large amount of xanthosine is Induction of mutation and isolation of mutants. produced by this mutant. Misawa et al.3) Spores from 12-days' culture of Bacillus subtilis IAM and Demain et al.4) reported the accumula 1145 on a nutrient agar slant were washed twice tion of xanthosine-5'-monophosphate by auxo with distilled water and then suspended in 0.85% trophic mutants of Micrococcus glutamicus and sodium chloride solution. The suspension containing coryneform bacterium, respectively. 106 to 107 spores per ml was exposed to ultraviolet In the course of our investigations on pro light (Toshiba sterilizing lamp, 15W, 300mA) at the duction of nucleic acid-related compounds by distance of 30cm, for 7 minutes.
    [Show full text]
  • The Application of Inosine 5 -Monophosphate Dehydrogenase
    pharmaceuticals Article 0 The Application of Inosine 5 -Monophosphate Dehydrogenase Activity Determination in Peripheral Blood Mononuclear Cells for Monitoring Mycophenolate Mofetil Therapy in Children with Nephrotic Syndrome Joanna Sobiak 1,* , Alicja Jó´zwiak 1, Honorata Wzi˛etek 1, Jacek Zachwieja 2 and Danuta Ostalska-Nowicka 2 1 Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Pozna´n,Poland; [email protected] (A.J.); [email protected] (H.W.) 2 Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, 60-572 Pozna´n,Poland; [email protected] (J.Z.); [email protected] (D.O.-N.) * Correspondence: [email protected]; Tel.: +48-61854-6435 Received: 15 July 2020; Accepted: 16 August 2020; Published: 18 August 2020 Abstract: In pediatric nephrotic syndrome, recommended mycophenolic acid (MPA) pharmacokinetics are higher than those for transplant recipients. In MPAtherapeutic monitoring, inosine-50-monophosphate dehydrogenase (IMPDH) activity may be useful. Wemodified the method established for renal transplant recipients and determined IMPDH activity in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and children (4–16 years) with nephrotic syndrome treated with mycophenolate mofetil (MMF). From children, four blood samples were collected, and MPA concentrations were also determined. IMPDH activity was calculated using xanthosine monophosphate (XMP) normalized with adenosine monophosphate (AMP), both determined with the HPLC-UV method. The modified method was accurate, precise, and linear for AMP and XMP within 0.50–50.0 µmoL/L. Mean IMPDH activity in volunteers was 45.97 6.24 µmoL s 1 moL 1 AMP, whereas for children, the values were variable ± · − · − and amounted to 39.23 27.40 µmoL s 1 moL 1 AMP and 17.97 15.24 µmoL s 1 moL 1 AMP ± · − · − ± · − · − before the next MMF dose and 1 h afterward, respectively.
    [Show full text]
  • Regulation of Cyclic Nucleotide Concentrations in Photoreceptors
    Proc. Nat. Acad. Sci. USA Vol. 70. No. 12, Part II, pp. 3820-3824, December 1973 Regulation of Cyclic Nucleotide Concentrations in Photoreceptors: An ATP-Dependent Stimulation of Cyclic Nucleotide Phosphodiesterase by Light (cyclic AMP/cyclic GMP/adenylate cyclase/rhodopsin/retinal rods) NAOMASA MIKI, JAMES J. KEIRNS, FREDERICK R. MARCUS, JENNY FREEMAN, AND MARK W. BITENSKY Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, Connecticut 06510 Communicated by Lewis Thomas, August 20, 1973 ABSTRACT Regulation of cyclic nucleotide concentra- in photoreceptor organelles as a function of illumination. The tions in rod outer segments (Ranapipiens) has been further examined. The present studies show that illumination sensitivity of phosphodiesterase to an ATP-dependent light- markedly diminishes the concentration of cyclic nucleo- generated activator appears unique to the photoreceptor sys- tides in suspensions of photoreceptor membranes, but the tem. The present paper describes some properties of this locus of regulation is cyclic nucleotide phosphodiesterase light-sensitive phosphodiesterase and explains properties (EC 3.1.4.c) (light-stimulated) and not adenylate cyclase. previously attributed to photoreceptor cyclase. Furthermore, There is a marked disproportionality between bleaching of rhodopsin and stimulation of phosphodiesterase. it examines some possible mechanisms of phosphodiesterase Bleaching only 0.6% of the rhodopsin produces half the activation by light and ATP, including the involvement of stimulation produced by bleaching 100% of the rhodopsin. calcium or a protein kinase. The process of activation of phosphodiesterase by light is in two steps, a light-dependent step followed by an ATP- MATERIALS AND METHODS dependent step. Illumination (in the absence of ATP) pro- duces a trypsin-resistant, heat-labile, macromolecular All dark procedures (dissection, dark assay, etc.) were done stimulator.
    [Show full text]
  • Studies on the Coordinate Activity and Lability of Orotidylate
    Studies on the coordinate activity and lability of orotidylate phosphoribosyltransferase and decarboxylase in human erythrocytes, and the effects of allopurinol administration Richard M. Fox, … , Margaret H. Wood, William J. O'Sullivan J Clin Invest. 1971;50(5):1050-1060. https://doi.org/10.1172/JCI106576. Research Article A coordinate relationship between the activities of two sequential enzymes in the de novo pyrimidine biosynthetic pathway has been demonstrated in human red cells. The two enzymes, orotidylate phosphoribosyltransferase and decarboxylase are responsible for the conversion of orotic acid to uridine-5′-monophosphate. Fractionation of red cells, on the basis of increase of specific gravity with cell age, has revealed that these two enzymes have a marked but equal degree of lability in the ageing red cell. It is postulated that orotidylate phosphoribosyltransferase and decarboxylase form an enzyme- enzyme complex, and that the sequential deficiency of these two enzymes in hereditary orotic aciduria may reflect a structural abnormality in this complex. In patients receiving allopurinol, the activities of both enzymes are coordinately increased, and this increase appears to be due, at least in part, to stabilization of both orotidylate phosphoribosyltransferase and decarboxylase in the ageing red cell. Allopurinol ribonucleotide is an in vitro inhibitor of orotidine-5′-monophosphate decarboxylase and requires the enzyme hypoxanthineguanine phosphoribosyltransferase for its synthesis. However, the administration of allopurinol to patients lacking this enzyme results in orotidinuria and these patients have elevated orotidylate phosphoribosyltransferase and decarboxylase activities in their erythrocytes. Evidence is presented that the chief metabolite of allopurinol, oxipurinol, with a 2,4-diketo pyrimidine ring is capable of acting as an analogue of orotic acid.
    [Show full text]
  • Increased Production of Inosine and Guanosine by Means of Metabolic
    Ledesma-Amaro et al. Microbial Cell Factories (2015) 14:58 DOI 10.1186/s12934-015-0234-4 RESEARCH Open Access Increased production of inosine and guanosine by means of metabolic engineering of the purine pathway in Ashbya gossypii Rodrigo Ledesma-Amaro, Ruben M Buey and Jose Luis Revuelta* Abstract Background: Inosine and guanosine monophosphate nucleotides are convenient sources of the umami flavor, with attributed beneficial health effects that have renewed commercial interest in nucleotide fermentations. Accordingly, several bacterial strains that excrete high levels of inosine and guanosine nucleosides are currently used in the food industry for this purpose. Results: In the present study, we show that the filamentous fungus Ashbya gossypii, a natural riboflavin overproducer, excretes high amounts of inosine and guanosine nucleosides to the culture medium. Following a rational metabolic engineering approach of the de novo purine nucleotide biosynthetic pathway, we increased the excreted levels of inosine up to 27-fold. Conclusions: We generated Ashbya gossypii strains with improved production titers of inosine and guanosine. Our results point to Ashbya gossypii as the first eukaryotic microorganism representing a promising candidate, susceptible to further manipulation, for industrial nucleoside fermentation. Keywords: Nucleoside fermentation, Metabolic engineering, Purine biosynthesis, Ashbya gossypii Background excretion of the nucleosides to the culture medium, and Purine nucleotides are of significant economic interest further chemical or enzymatic phosphorylation [1]. In for the applied biotechnology industry because they are recent years, the significant enhancement of nucleoside used as foodstuff additives with flavouring, nutritional production through metabolic engineering approaches and pharmaceutical properties [1]. Inosine monopho- in different microorganisms proved that this production sphate (IMP) and guanosine monophosphate (GMP) process is the most efficient [6,7].
    [Show full text]
  • Some Properties of Uridine-Cytidine Kinase from a Human Malignant Lymphoma1
    [CANCER RESEARCH 39, 3102-3106, August 1979] 0008-5472/79/0039-0000$02.O0 Some Properties of Uridine-Cytidine Kinase from a Human Malignant Lymphoma1 Nahed K. Ahmed2and Arnold D. Welch Division of Biochemical and Clinical Pharmacology, St. Jude Children ‘sResearchHospital, Memphis, Tennessee38101 ABSTRACT partially purified from rat liver (4, 17), muninetumor cells (5, 6, 13), calf thymus (12), human neoplastic lymphoid cells (3), Unidine-cytidine kinase has been partially purified from a Ehrlich ascites tumor (21), Novikoff ascites rat tumor (17), and malignant human lymphoma, and some of its properties have also from Tetrahymena pyriformis (18). Urd-Cyd kinase cata been described. The apparent Michaelis constants for unidine lyzes the following reaction: and adenosine 5'-triphosphate are 7 x 1O@and 4 x i O@M, .. .. (Urd-Cyd)-kinase respectively. Maximal enzyme activity is observed between pH Urldine or cytldlne + NTP 6.5 and 8.5, and temperatures of incubation are observed uridine5'-monophosphateorcytidine5'-monophosphate+ NDP between 37 and 42°.The enzyme requires Mg2@for full enzy matic activity and exists in two isozymic forms, as indicated by where NTP is nucleoside tniphosphate, and NDP is nucleoside isoelectric focusing and column chromatography on Sepharose diphosphate. Previous partial purifications and the proper 6B. The roles of these two isozymes, i.e., the adult (I) and the ties of the enzyme have been reviewed (1, 2). The enzyme embryonic (II) forms, are not yet clear; conceivably, however, appears to require the nibofuranosyl moiety because 2'-deoxy they may have relevance to the problem of the development of nibonucleosides and certain arabinofuranosyl- and xylofura resistance to chemotherapeutic analogs that require unidine nosyl-containing nucleosides tested have not been phospho @ cytidine kinase for their ‘activation.― rylated (i 3, 18, 21).
    [Show full text]