Papers of the Year 2019

Total Page:16

File Type:pdf, Size:1020Kb

Papers of the Year 2019 www.shark-references.com Version 03.03.2020 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2019 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, University Museum of Bergen, Norway ISSN: 2195-6499 DOI: copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 03.03.2020 Abstract: This paper contains a collection of 808 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2019. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2019, list of descriptions of extinct and extant species from 2019, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide data information on the geographic and depth distribution of newly described species, i.e. the type specimens from the years 1990 to 2019 in a hot spot analysis. The subheader "biodiversity" comprising a complete list of all valid chimaeriform, selachian and batoid species, as well as a list of the top 20 most researched chondrichthyan species. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however, possible errors cannot entirely be excluded. Citation: Pollerspöck, J. & Straube, N. (2020), Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichtyes: Elasmobranchii, Holocephali) - Papers of the year 2019 -, www.shark-references.com, World Wide Web electronic publication, Version 01/2020; ISSN: 2195-6499 © Edited by: Jürgen Pollerspöck, Benediktinerring 34, D-94569 Stephansposching, Germany and Nicolas Straube, University Museum of Bergen, Norway Please support www.shark-references.com Please send us missing, not listed references! Please send us publications that are not incorporated so far (marked in red lettering)! 2 please inform us about missing papers: [email protected] www.shark-references.com Version 03.03.2020 Tabel of Contents Tabel of Contents ................................................................................................................................. 3 1. Extinct Chondrichthyes, Research Articles .................................................................................... 5 2. Extant Chondrichthyes, Research Articles .................................................................................... 13 3. Database Reports........................................................................................................................... 64 3.1 Statistics ...................................................................................................................................... 64 3.1.1 Newly described genera 2000 – 2019 ...................................................................................... 64 3.1.2 Newly described species 2000 – 2019 ..................................................................................... 66 3.1.3 Hot spots (types) ...................................................................................................................... 68 3.1.3.1 Hot spots (types): Summary .................................................................................................. 68 3.1.3.2 Hot spots (types): FAO areas - Map - ................................................................................... 69 3.1.3.3 Hot spots (types): FAO areas - number of types/specimens/species/FAO area ................... 70 3.1.3.4 Hot spots (types): FAO areas - number of types/FAO area .................................................. 72 3.1.3.5 Hot spots (types): FAO areas - number of newly described species/FAO area .................... 73 3.1.3.5 Hot spots (types): depth ........................................................................................................ 74 3.2 Descriptions of extinct genera/species ........................................................................................ 77 3.2.1 List of new extinct genera ........................................................................................................ 77 3.2.2 List of new extinct species ....................................................................................................... 78 3.2.3 Papers of new extinct genera/species ....................................................................................... 80 3.3 Descriptions of extant genera/species ......................................................................................... 98 3.3.1 List of new extant genera ......................................................................................................... 98 3.3.2 List of new extant species ........................................................................................................ 98 3.3.3 Biodiversity .............................................................................................................................. 99 3.3.3.1 Complete list of taxonomically valid shark species ............................................................ 100 3.3.3.2 "Top 20" most studied shark species .................................................................................. 122 3.3.3.3 Complete list of taxonomically valid ray and skate species ............................................... 124 3.3.3.4 "Top 20" most studied ray and skate species ...................................................................... 150 3.3.3.5 Complete list of taxonomically valid chimaeriform species ............................................... 152 3.3.3.6 "Top 20" most studied chimaeriform species ..................................................................... 155 3.3.4 Papers of new extant genera/species ...................................................................................... 157 3.4 Parasitology ............................................................................................................................... 164 3.4.1 Research Articles ................................................................................................................... 164 3.4.2 Descriptions of new Parasites of Elasmobranchs (genera/species) ....................................... 168 3.4.2.1 List of new Parasites of Elasmobranchs (genera) ............................................................... 168 3.4.2.2 List of new Parasites of Elasmobranchs (species) .............................................................. 168 3.4.3 Papers of new parasites genera/species .................................................................................. 170 3.5 Distribution ............................................................................................................................... 183 3 please inform us about missing papers: [email protected] www.shark-references.com Version 03.03.2020 3.6 Reproduction ............................................................................................................................. 193 3.7 Diet ............................................................................................................................................ 197 3.8 Size ............................................................................................................................................ 202 3.9 Taxonomy ................................................................................................................................. 206 3.10 Conservation ........................................................................................................................... 208 4. Index (Genera only) .................................................................................................................... 216 4 please inform us about missing papers: [email protected] www.shark-references.com Version 03.03.2020 1. Extinct Chondrichthyes, Research Articles ADNET, S. & MOUANA, M. & CHARRUAULT, A.-L. & ESSID, E.M. & AMMAR, H.K. & MARZOUGUI, W. & MERZERAUD, G. & TABUCE, R. & VIANEY-LIAUD, M. & MARIVAUX, L. (2019) Teeth, fossil record and evolutionary history of the cowtail stingray Pastinachus Rüppell, 1829. Historical Biology, 31 (9): 1213-1222 https://dx.doi.org/10.1080/08912963.2018.1431779 AMADORI, M. & AMALFITANO, J. & GIUSBERTI, L. & FORNACIARI, E. & LUCIANI, V. & CARNEVALE, G. & KRIWET, J. (2019) First associated tooth set of a high-cusped Ptychodus (Chondrichthyes, Elasmobranchii) from the Upper Cretaceous of northeastern Italy, and resurrection of Ptychodus altior Agassiz, 1835. Cretaceous Research, 93: 330-345 https://dx.doi.org/10.1016/j.cretres.2018.10.002 AMALFITANO, J. & GIUSBERTI, L. & FORNACIARI, E. & VECCHIA, F.M.D. & LUCIANI, V. & KRIWET, J. & CARNEVALE, G. (2019) Large deadfalls of the ʻginsuʼ shark Cretoxyrhina mantelli (Agassiz, 1835) (Neoselachii, Lamniformes) from the Upper Cretaceous of northeastern Italy. Cretaceous Research, 98: 250- 275 https://dx.doi.org/10.1016/j.cretres.2019.02.003 BELL, P.R. & FANTI,
Recommended publications
  • A Fish Fauna from the Lowermost Bartonian of the Transylvanian Basin, Romania
    Palaeontologia Electronica palaeo-electronica.org A fish fauna from the lowermost Bartonian of the Transylvanian Basin, Romania Nicolae Trif, Vlad Codrea, and Viorel Arghiuș ABSTRACT A fish fauna newly discovered in the middle Eocene marine sediments cropping out near the village of Luna de Sus, Romania, completes the fossil record of the East- ern European region. Teeth belonging to 15 species of Chondrichthyes and two spe- cies of Actinopterygii are herein recorded from the lowermost Bartonian deposits. These Paleogene fish document a marine tropical environment of medium deep waters in the northwestern area of the Transylvanian Basin. The vertical distributions of extant equivalent taxa allow a sea depth estimation of 100 to 200 m. The warm climate is doc- umented by both the present faunal assemblage and previous palynological studies. It is important to note the presence of the scarcely known and poorly understood pycno- dont species Phacodus punctatus and of the oldest representative of Labridae from this Carpathian area. The diversity of the fauna was found to be average compared to some areas from Western Europe or North Africa, but it falls within the regional diver- sity range of the Eastern European localities. Nicolae Trif. Department of Geology, Faculty of Biology-Geology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084, Cluj-Napoca, Romania and Brukenthal National Museum, Natural History Museum, Sibiu, Romania, 1 Cetății St., Sibiu, 550160, Romania. [email protected] Vlad Codrea. Department of Geology, Faculty of Biology-Geology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084, Cluj-Napoca, Romania. [email protected] Viorel Arghiuș. Environmental Sciences Department, Faculty of Environmental Sciences and Engineering, Babeş-Bolyai University, 30 Fântânele St., 400294, Cluj-Napoca, Romania.
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Reassessment of Historical Sections from the Paleogene Marine Margin of the Congo Basin Reveals an Almost Complete Absence of Danian Deposits
    Geoscience Frontiers 10 (2019) 1039e1063 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research Paper Reassessment of historical sections from the Paleogene marine margin of the Congo Basin reveals an almost complete absence of Danian deposits Floréal Solé a,*, Corentin Noiret b, Delphine Desmares c, Sylvain Adnet d, Louis Taverne a, Thierry De Putter e, Florias Mees e, Johan Yans b, Thomas Steeman f, Stephen Louwye f, Annelise Folie g, Nancy J. Stevens h, Gregg F. Gunnell i,1, Daniel Baudet e, Nicole Kitambala Yaya j, Thierry Smith a a Royal Belgian Institute of Natural Sciences (RBINS), Operational Directorate Earth and History of Life, Rue Vautier 29, 1000, Brussels, Belgium b University of Namur (UNamur), Department of Geology, Rue de Bruxelles 61, 5000, Namur, Belgium c Sorbonne Université, UPMC Paris 06, UMR 7207 (CR2P), MNHN-UPMC e CNRS, 75005, Paris, France d UMR 5554 e Institut des Sciences de l’Evolution, Université Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France e Royal Museum for Central Africa (RMCA), Geodynamics and Mineral Resources, Leuvensesteenweg 13, 3080, Tervuren, Belgium f Ghent University (UGent), Department of Geology, Krijgslaan 281/S8, 9000, Ghent, Belgium g Royal Belgian Institute of Natural Sciences (RBINS), Heritage Scientific Survey, Rue Vautier 29, 1000, Brussels, Belgium h Ohio University, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Irvine Hall 228, Athens, OH, USA i Duke University Lemur Center, Division of Fossil Primates (DFP), 1013 Broad Street, Durham, NC 27705, USA j Centre de Recherches Géologiques et Minières (CRGM), 44, av.
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Evidence for Host-Specific Clades of Tetraphyllidean
    International Journal for Parasitology 29 (1999) 1465±1476 Evidence for host-speci®c clades of tetraphyllidean tapeworms (Platyhelminthes: Eucestoda) revealed by analysis of 18S ssrDNAp P.D. Olson a, b,*, T.R. Ruhnke c, J. Sanney c, T. Hudson c aThe Natural History Museum, Department of Zoology, Division of Parasitic Worms, Cromwell Road, London SW7 5BD, UK bUniversity of Connecticut, Ecology and Evolutionary Biology, U-43, 75 No. Eagleville Road, Storrs, CT 06269-3043, USA cWest Virginia State College, Department of Biology, Institute, WV 25112-1000, USA Received 12 April 1999; received in revised form 22 June 1999; accepted 22 June 1999 Abstract Sequence data from the V4 and V7±V9 variable regions of the 18S small subunit ribosomal DNA (ssrDNA) gene were used to examine relationships among 26 tetraphyllidean and two lecanicephalidean taxa. Newly collected specimens of 21 of the tetraphyllidean species were used to generate ssrDNA sequences that were combined with sequences previously available, including those of two diphyllidean taxa used for outgroup rooting. The sequences were aligned by eye according to secondary structural motifs of the conserved core of the molecule. Of the 1520 sites in the alignment, 874 (58%) were excluded from analysis due to alignment gaps and lack of positional homology as inferred by manual inspection. Genetic variability of the ssrDNA gene regions compared was greater than would be expected, based on the present taxonomy of the ingroup species, and the genetic divergences among tetraphyllidean `families' and genera were comparable to that among tapeworm orders. Phylogenetic hypotheses were generated by the methods of maximum parsimony and maximum likelihood (GTR + I + G nucleotide substitution model).
    [Show full text]
  • NPOA Sharks Booklet.Indd
    National Plan of Action for the Conservation and Management of Sharks (NPOA-Sharks) November 2013 South Africa Department of Agriculture, Forestry and Fisheries Private Bag X2, Rogge Bay, 8012 Tel: 021 402 3911 Fax: +27 21 402 3364 www.daff.gov.za Design and Layout: FNP Communications and Gerald van Tonder Photographs courtesy of: Department of Agriculture, Forestry and Fisheries (DAFF), Craig Smith, Charlene da Silva, Rob Tarr Foreword South Africa’s Exclusive Economic Zone is endowed with a rich variety of marine living South Africa is signatory to the Code of Conduct for Responsible Fisheries – voluntarily agreed to by members of the United Nations Food and Agriculture Organisation (FAO) – and, as such, is committed to the development and implementation of National Plans of Action (NPOAs) as adopted by the twenty-third session of the FAO Committee on Fisheries in February 1999 and endorsed by the FAO Council in June 1999. Seabirds – aimed at reducing incidental catch and promoting the conservation of seabirds Fisheries and now regularly conducts Ecological Risk Assessments for all the commercial practices. Acknowledging the importance of maintaining a healthy marine ecosystem and the possibility of major detrimental effects due to the disappearance of large predators, South from the list of harvestable species. In accordance with international recommendations, South Africa subsequently banned the landing of a number of susceptible shark species, including oceanic whitetip, silky, thresher and hammerhead sharks. improves monitoring efforts for foreign vessels discharging shark products in its ports. To ensure long-term sustainability of valuable, but biologically limited, shark resources The NPOA-Sharks presented here formalises and streamlines ongoing efforts to improve conservation and management of sharks caught in South African waters.
    [Show full text]
  • Morphological and Mitochondrial DNA Divergence Validates Blackmouth, Galeus Melastomus, and Atlantic Sawtail Catsharks, Galeus Atlanticus,Asseparatespecies
    Journal of Fish Biology (2007) 70 (Supplement C), 346–358 doi:10.1111/j.1095-8649.2007.01455.x, available online at http://www.blackwell-synergy.com Morphological and mitochondrial DNA divergence validates blackmouth, Galeus melastomus, and Atlantic sawtail catsharks, Galeus atlanticus,asseparatespecies R. CASTILHO*†, M. FREITAS*, G. SILVA*, J. FERNANDEZ-CARVALHO‡ AND R. COELHO‡ *Biodiversity and Conservation Group, CCMAR, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal and ‡Coastal Fisheries Research Group, CCMAR, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal (Received 30 August 2006, Accepted 17 January 2007) A total of 60 morphometric traits and nucleotide sequences of the entire mtDNA NADH dehydrogenase subunit 2 (ND2) gene [1047 base pair (bp)] in 23 individuals of blackmouth, Galeus melastomus, and 13 individuals of sawtail catsharks, Galeus atlanticus, caught in Southern Portugal, were examined to test the validity of these two taxa. These sharks closely resemble each other, have overlapping geographical ranges and are difficult to identify by morphological characters. Non-metric multidimensional scaling of morphometric variables indicates a clear separation between the two species, with 10 characters each contributing 2Á12–2Á45% of the total variability between species. Maximum likelihood, parsimony and neighbour-joining trees revealed two major mtDNA haplotype clades, corresponding to the two species, with an average corrected sequence divergence between them of 3Á39 Æ 0Á56%. Within species divergences between haplotypes averaged 0Á27 Æ 0Á18% in G. melastomus and 0Á12 Æ 0Á08% in G. atlanticus. A total of 35 diagnostic nucleotide site differences and four restriction fragment length polymorphism recognition sites in the ND2 gene can be used to distinguish the two species.
    [Show full text]
  • Chondrichthyes: Dasyatidae)
    1 Ichthyological Exploration of Freshwaters/IEF-1089/pp. 1-6 Published 16 February 2019 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:DFACCD8F-33A9-414C-A2EC-A6DA8FDE6BEF DOI: http://doi.org/10.23788/IEF-1089 Contemporary distribution records of the giant freshwater stingray Urogymnus polylepis in Borneo (Chondrichthyes: Dasyatidae) Yuanita Windusari*, Muhammad Iqbal**, Laila Hanum*, Hilda Zulkifli* and Indra Yustian* Stingrays (Dasyatidae) are found in marine (con- species entering, or occurring in freshwater. For tinental, insular shelves and uppermost slopes, example, Fluvitrygon oxyrhynchus and F. signifer one oceanic species), brackish and freshwater, and were only known from five or fewer major riverine are distributed across tropical to warm temperate systems (Compagno, 2016a-b; Last et al., 2016a), waters of the Atlantic, Indian and Pacific oceans though recent surveys yielded a single record of (Nelson et al., 2016). Only a small proportion of F. oxyrhynchus and ten records of F. signifier in the dasyatid rays occur in freshwater, and include Musi drainage, South Sumatra, indicating that obligate freshwater species (those found only in both species are more widely distributed than freshwater) and euryhaline species (those that previously expected (Iqbal et al., 2017, 2018). move between freshwater and saltwater) (Last et Particularly, the dasyatid fauna of Borneo al., 2016a). Recently, a total of 89 species of Dasy- includes the giant freshwater stingray Urogymnus atidae has been confirmed worldwide (Last et al., polylepis. The occurrence of U. polylepis in Borneo 2016a), including 14 species which are known to has been reported from Sabah and Sarawak in enter or live permanently in freshwater habitats of Malaysia and the Mahakam basin in Kaliman- Southeast Asia [Brevitrygon imbricata, Fluvitrygon tan of Indonesia (Monkolprasit & Roberts, 1990; kittipongi, F.
    [Show full text]
  • AAVP 1995 Annual Meeting Proceedings
    Joint Meeting of The American Society of Parasitologists & The American Association of Veterinary Parasitologists July 6 july 1 0, 1995 Pittsburgh, Pennsylvania 2 ! j THE AMERICAN SOCIETY - OF PARASITOLOGISTS - & THE AMERICAN ASSOCIATION OF VETERINARY PARASITOLOGISTS ACKNOWLEDGE THEFOLLO~GCO~ANlliS FOR THEIR FINANCIAL SUPPORT: CORPORATE EVENT SPONSOR: PFIZER ANIMAL HEALTH CORPORATE SPONSORS: BOEHRINGER INGELHEIM ANIMAL HEALTH, INC. MALUNCKRODT VETERINARY, INC. THE UPJOHN CO. MEETING SPONSORS: AMERICAN CYANAMID CO. CIBA ANIMAL HEALTH ELl LILLY & CO. FERMENT A ANIMAL HEALTH HILL'S PET NUTRITION, INC. HOECHST-ROUSSEL AGRI-VET CO. IDEXX LABORATORIES, INC. MIDWEST VETERINARY SERVICES, INC. PARA VAX, INC. PROFESSIONAL LABORATORIES & RESEARCH SERVICES RHONE MERIEUX, INC. SCHERING-PLOUGH ANIMAL HEALTH SOLVAY ANIMAL HEALTH, INC. SUMITOMO CHEMICAL, LTO. SYNBIOTICS CORP. TRS LABS, INC. - - I I '1---.. --J 3 Announcing a Joint Meeting of THE AMERICAN SOCIETY THE AMERICAN ASSOCIATION Of OF PARASITOLOGISTS VETERINARY PARASITOLOGISTS (70th Meeting) (40th Meeting) Pittsburgh, Pennsylvania july 6-1 0, 1995 INFORMATION & REGISTRATION Hyatt Regency Hotel, 112 Washington Place THURSDAY Regency foyer, 2nd Floor t July 6th Registration Begins, Noon-5:00 p.m. FRIDAY Regency foyer, 2nd Floor t July 7th 8:00 a.m.-5:00 p.m. SATURDAY Regency foyer, 2nd Floor july 8th 8:00 a.m.-5:00p.m. SUNDAY Regency foyer, 2nd Floor july 9th 8:00 a.m.-Noon t Items for the Auction may be delivered to this location before 3:00p.m. on Friday, july 7th. 4 WELCOME RECEPTION Thursday, july 6th 7:00-1 0:00 p.m. Grand Ballroom SOCIAl, MATCH THE FACES & AUCTION Friday, July 7th Preview: 6:30-7:30 p.m.
    [Show full text]
  • Teeth Penetration Force of the Tiger Shark Galeocerdo Cuvier and Sandbar Shark Carcharhinus Plumbeus
    Journal of Fish Biology (2017) 91, 460–472 doi:10.1111/jfb.13351, available online at wileyonlinelibrary.com Teeth penetration force of the tiger shark Galeocerdo cuvier and sandbar shark Carcharhinus plumbeus J. N. Bergman*†‡, M. J. Lajeunesse* and P. J. Motta* *University of South Florida, Department of Integrative Biology, 4202 East Fowler Avenue, Tampa, FL 33620, U.S.A. and †Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, 100 Eighth Avenue S.E., Saint Petersburg, FL 33701, U.S.A. (Received 16 February 2017, Accepted 15 May 2017) This study examined the minimum force required of functional teeth and replacement teeth in the tiger shark Galeocerdo cuvier and the sandbar shark Carcharhinus plumbeus to penetrate the scales and muscle of sheepshead Archosargus probatocephalus and pigfish Orthopristis chrysoptera. Penetra- tion force ranged from 7·7–41·9and3·2–26·3 N to penetrate A. probatocephalus and O. chrysoptera, respectively. Replacement teeth required significantly less force to penetrate O. chrysoptera for both shark species, most probably due to microscopic wear of the tooth surfaces supporting the theory shark teeth are replaced regularly to ensure sharp teeth that are efficient for prey capture. © 2017 The Fisheries Society of the British Isles Key words: biomechanics; bite force; Elasmobranchii; teleost; tooth morphology. INTRODUCTION Research on the functional morphology of feeding in sharks has typically focused on the kinematics and mechanics of cranial movement (Ferry-Graham, 1998; Wilga et al., 2001; Motta, 2004; Huber et al., 2005; Motta et al., 2008), often neglecting to integrate the function of teeth (but see Ramsay & Wilga, 2007; Dean et al., 2008; Whitenack et al., 2011).
    [Show full text]
  • Australian Museum Scientific Publications
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Whitley, Gilbert P., 1934. Studies in ichthyology. No. 8. Records of the Australian Museum 19(2): 153–163. [26 March 1934]. doi:10.3853/j.0067-1975.19.1934.695 ISSN 0067-1975 Published by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://publications.australianmuseum.net.au 6 College Street, Sydney NSW 2010, Australia STUDIES IN ICHTHYOLOGY. No. 8. ¥ By GILBERT P. WHITLEY, Ichthyologist, The Australian Mnseum,Museum, Sydney. (Figures(FigUN1S 1-3.) Family SCYLI01UIlNIDl£.SOYLXORBINIDAl:. Genus AulohalaelllfusAulohala.elUru$ (Fowler, 1934). Orthotype.-Catulus labiosus Waite. Nasal valves separated from each other and from the mouth. No cirrus. Upper labial fold long; lower labial fold extending along lower jaw nearly to symphysis. First dorsal fin'fin situated behind the level of the ventrals. Anal fin opposite the second dorsal; length of base of anal more than its distance from the caudal. No enlarged denticles above caUdalcaudal fin and no dorsal tubercles. Body with scattered dark spots and a few light ones; cross-bands obscure. Aulohalaelurus labiosus (W aite). :FigureFigure 1. AulohalaelurU8Aulohalaeluruslabiasus labio8118 (Waite). Holotype. G. P. Whitley'Vhitley del.deL Catulus labiosus Waite, Rec. Austr. Mus., vi, 2, S8pt.Sf)pt. 15, 1905, p. 57, fig. 23. Fremantle, Western Australia. HolotypeinRolotype in Western Australian MuseUm.Museum. Scyliorhinus maculatus Regan, Ann. Mag. Nat. Hist., (8) i, 1908,1908,.p. .p. 462. Ref. to Waite only, as Gunther's record is probablypro bably based on an Atelomycterus. Not Squalus maculatus Bloch and Schneider 1801, preocc. by Bonaterre,Bonaterre, 1788. Scyliorhinus maculatum McCulloch, Zool.
    [Show full text]