The Loma Prieta (Santa Cruz Mountains), California, Earthquake of 17 October 1989

Total Page:16

File Type:pdf, Size:1020Kb

The Loma Prieta (Santa Cruz Mountains), California, Earthquake of 17 October 1989 SPECIAL PUBLICATION 104 PHYSICAL SCIENCES | LIBRARY UC DA I CALIFORNIA DEPARTMENT OF CONSERVATION D Division of Mines and Geology ( THE RESOURCES AGENCY STATE OF CALIFORNIA DEPARTMENT OF CONSERVATION GORDON K. VAN VLECK GEORGE DEUKMEJIAN RANDALL M.WARD SECRETARY FOR RESOURCES GOVERNOR DIRECTOR DIVISION OF MINES AND GEOLOGY JAMES F. DAVIS STATE GEOLOGIST Cover Photo: View to the south of Hazel Dell Road, located in the Santa Cruz Mountains about 8.5 kilometers north of Watsonville. The large fissures in the road were caused by lateral spreading due to lique- faction of saturated sediments in Simas Lake and intense shaking associated with the fVL 7.1 Loma Prieta earthquake (note leaning telephone pole). Simas Lake, located just west of Hazel Dell Road, is a closed depression formed by recurring surface fault rupture along the San Andreas fault. Photo by W. A. Bryant, 10/18/89. irf . y//V THE LOMA PRIETA (SANTA CRUZ MOUNTAINS), CALIFORNIA, EARTHQUAKE OF 17 OCTOBER 1989 Edited by Stephen R. McNutt and Robert H. Sydnor Special Publication 104 1990 Department of Conservation Division of Mines and Geology 1416 Ninth Street, Room 1341 Sacramento, CA 95814 3 .- v«^ 1 '" ''* * * .' C3Mte* it Si J r- f %lti' i--' /J '-%J. #• 1 CONTENTS INTRODUCTION v Stephen R. McNult and Robert H. Sydnor SECTION I. The Earthquake \ Geologic and Tectonic Setting of the Epicentral Area of the Loma Prieta Earthquake, Santa Cruz Mountains, Central California 1 David L. Wagner Seismological Aspects of the 17 October 1989 Earthquake 1 Stephen R. McNutt and Tousson R. Toppozada SECTION II. Earthquake Effects Strong Ground Shaking from the Loma Prieta Earthquake of 17 October 1989 and Its Relation to Near Surface Geology in the Oakland Area 29 Anthony F. Shakal, Mark J. DeLisle, Michael S. Reichle, and Robert B. Darragh Preliminary Analysis of Processed Strong Motion Data from the Loma Prieta Earthquake 47 Michael S. Reichle, Robert B. Darragh, Moh-Jiann Huang, Tianqing Cao, Ute R. Vetter, and Anthony F. Shakal Landslide Features and Other Coseismic Fissures Triggered by the Loma Prieta Earthquake, Central Santa Cruz Mountains, California 59 Thomas E. Spittler, Edwin L. Harp, David K. Keefer, Raymond C. Wilson, and Robert H. Sydnor Coastal Bluff Landslides in Santa Cruz County Resulting from the Loma Prieta Earthquake of 17 October 1989 67 Robert H. Sydnor, Gary B. Griggs, Gerald E. Weber, Richard J. McCarthy, and Nathaniel Plant The Search for Fault Rupture and Significance of Ridgetop Fissures, Santa Cruz Mountains, California 83 Earl W. Hart, William A. Bryant, Christopher J. Wills, and Jerome A. Treiman Coseismic Bedding Plane Faults and Ground Fissures Associated with the Loma Prieta Earthquake of 17 October 1989 95 William R. Cotton, William L. Fowler, and Joan E. Van Velsor Earthquake Damage in Soquel Demonstration State Forest, Santa Cruz County 105 Trinda L. Bedrossian and Julie A. Sowma Representative Damage Photographs from the Loma Prieta Earthquake 1 13 David R. Montgomery SECTION III. Earthquake Response High-Altitude U-2 Photography for Post-Earthquake Disaster Assessment 121 Charles R. Real, Robert E. Yoha, and Fumio Kaneko Loma Prieta Earthquake Response Activitiesv; of the Division of Mines and Geology 127 Robert Streitz, Robert H. Sydnor, Allan G. Barrows, and Thomas E. Spittler Summary of Damage and Losses Caused by the Loma Prieta Earthquake ...... 131 Stephen R. McNutt Lomai Prieta and EarthquakeEartl Preparedness ..o. 139 Richard A. Andrews in Digitized by the Internet Archive in 2012 with funding from University of California, Davis Libraries http://archive.org/details/lomaprietasantac104cali INTRODUCTION by Stephen R. McNutt and Robert H. Sydnor The Loma Prieta earthquake of 17 October 1989 did more to make people in California aware of earthquake hazards than any other single event of the last 18 years. The event killed 63 people, injured 3,757, left over 12,000 homeless, and caused over $5.9 billion in damage (California Office of Emergency Services, written communication, April 12, 1990). Damage occurred over a wide area (Figure 1) and included effects of strong shaking and various forms of ground failure including liquefaction. The earthquake has provided a wealth of new data, has prompted new legislation, and has refocused discussions on numerous topics related to hazards mitigation. A significant earthquake always provides an opportunity to learn, to respond, and to refocus hazard mitigation efforts. This Special Publication primarily documents actions of the California Department of Conservation's Division of Mines and Geology (DMG) to respond to and study the earthquake. The report contains a variety of information on seismological and geological features of the event. The intended readers are primarily other researchers and government agencies, but much of the information provided will also be useful to the media and the public. DMG ROLE AND ORGANIZATION DMG is the State geological survey, with a staff of 144 people and an annual budget of ap- - proximately $ 1 2 million. It has three primary functions: ( 1 ) Geologic Hazards Reduction to prevent loss of life and property from geologic phenomena including earthquakes, fault move- ments, volcanic eruptions, landslides, and erosion; (2) Mineral Resources Conservation - to promote the development, use and reclamation of land and mineral resources consistent with sound conservation practices; and (3) Basic Investigations - to establish and maintain a baseline of geological, geophysical, and seismological information. The organization consists of five main programs, four of which responded to the 17 October 1989 earthquake. The five are: (1) Environmental Protection; (2) Geologic Hazards Assessment; (3) Earthquake Engineering; (4) Geologic Information and Support; and (5) Mineral Resource Development (no response). Response consisted of collecting, compiling, analyzing, and interpret- ing a wide variety of data and communicating results to many levels of users. DMG has produced Special Publications and other books on significant earthquakes since the Kern County earthquake of 1952 (Oakeshott, 1955). The most recent such efforts were Special Publication 66 on the 1983 Coalinga earthquake (Bennett and Sherburne, 1983) and Special Publication 68 on the 1984 Morgan Hill earthquake (Bennett and Sherburne, 1984). DMG produces such reports when specific circumstances warrant the effort. CONTENTS OF THIS REPORT This report is a collection of 14 papers representing the efforts of 35 authors. Most of the papers are by DMG staff members and thus provide a record of DMG actions. The editorial phi- losophy was to allow each paper to stand alone and to include the appropriate and necessary papers so that the pertinent information was contained in one volume. The time frame of the publication (about 4 to 6 months after the earthquake) permitted the information contained to be more complete than initial reports that were prepared about one month after the event. Many results, however, cannot yet be regarded as definitive. 122° 30 122° 00' 121°30' Figure 1 . Mainshock epicenter of Loma Prieta earthquake and inferred fault rupture relative to areas of larger after- shocks, abundant ground cracks, and landslides and to limits of structural damage. Also shown are locations of major damaged structures and principal areas of ground cracks and liquefaction (source: Plafker and Galloway, 1989). VI This Special Publication is divided into EXPLANATION three sections. The first focuses on the earth- quake itself and its geologic seismologic D and Fault rupture of Loma Prieta earth- setting. The second section focuses on selected u 1 — quake-Arrows show relative horizon- 70 effects of the earthquake and study by several tal movement; small arrow and numeral show direction and amount DMG programs. Key contributions are those on of dip; U, upthrown side; strong ground motion, landslides, and fault D, downthrown side evaluation. The third section focuses on Fault -Dashed where approximately response and evaluation. located Special effort has gone into providing * Main shock epicenter many high quality figures and complete tables the publication. Area of aftershocks and abundant land- throughout This was done to mm slides make the volume useful as a reference work on the Loma Prieta earthquake and on related /////// Area of ground cracks possibly related to faulting geologic phenomena. For example, much of the information contained in the volume will be Approximate limit of major structural damage useful as background information when the next M> 7 earthquake strikes California. Approximate limit of landslides © Prominent area of liquefaction The choice of topics was made to highlight DMG activities and to provide balance. How- ® Damaged bridge ever, it was not possible to cover every aspect Damaged dam ® of the earthquake. For example, liquefaction Damaged two-story viaduct ® and several engineering aspects of the event have received only limited attention here. These Figure 1. Continued have received adequate attention elsewhere (e.g., Plafker and Galloway, 1989). GENERAL INFORMATION The Loma Prieta earthquake epicenter is located in the Laurel quadrangle, U.S. Geological Survey 7.5-Minute Series (Topographic), and immediately adjacent to the Loma Prieta quadrangle of the same series. The epicenter was located in the Forest of Nisene Marks State Park. The event occurred in the southern Santa Cruz Mountains, a physiographic feature which appears in most world atlases; Loma Prieta is the highest peak in these mountains and is located just a few kilometers from the epicenter. Under contract from the California Coastal Commission, the Division of Mines and Geology and the U. S. Geological Survey have cooperatively prepared a comprehensive set of seven regional geologic maps which cover the entire California continental margin at a scale of 1 :250,000. Map area 5, covering the Santa Cruz and Monterey Bay area, is scheduled to be published in mid- 1990; see Cockerham and others (1990) and McCulloch and Greene (1990). The new 1 :750,000-scale State Fault Activity Map (Jennings, 1991, in preparation) will delineate active faults in California using a five color classification scheme for recency of faulting.
Recommended publications
  • Impacts of Early Land-Use on Streams of the Santa Cruz Mountains: Implications for Coho Salmon Recovery
    Impacts of early land-use on streams of the Santa Cruz Mountains: implications for coho salmon recovery San Lorenzo Valley Museum collection Talk Outline • Role of San Lorenzo River in coho salmon recovery • History of 19th century land-use practices • How these disturbances impacted (and still impact) ecosystem function and salmon habitat Central California Coast ESU Lost Coast – Navarro Pt. Coho salmon Diversity Strata Navarro Pt. – Gualala Pt. Coastal San Francisco Bay Santa Cruz Mountains Watersheds with historical records of Coho Salmon Dependent populations Tunitas Independent populations San Gregorio Pescadero Gazos Waddell Scott San Vicente Laguna Soquel San Lorenzo Aptos Land-use activities: 1800-1905 Logging: the early years • Pit and whipsaw era (pre-1842) – spatially limited, low demand – impacts relatively minor • Water-powered mills (1842-1875) – Demand fueled by Gold Rush – Mills cut ~5,000 board ft per day = 10 whip sawyers – Annual cut 1860 = ~10 million board ft • Steam-powered mills (1876-1905) – Circular saws doubled rate to ~10,000 board ft/day x 3-10 saws – Year-round operation (not dependent on water) – Annual cut 1884 = ~34 million board ft – Exhausted timber supply Oxen team skidding log on corduroy road (Mendocino Co. ca 1851) Krisweb.com Oxen team hauling lumber at Oil Creek Mill San Lorenzo Valley Museum collection oldoregonphotos.com San Vicente Lumber Company (ca 1908): steam donkey & rail line Santa Cruz Museum of Art & History Loma Prieta Mill, Mill Pond, and Rail Line (ca 1888) Santa Cruz Museum of Art & History The Saw-Dust Nuisance “We have always maintained that lumberman dumping their refuse timber and saw-dust into the San Lorenzo River and its tributaries were committing a nuisance.
    [Show full text]
  • New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement
    Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 974-1002, August 1994 New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement by Donald L. Wells and Kevin J. Coppersmith Abstract Source parameters for historical earthquakes worldwide are com­ piled to develop a series of empirical relationships among moment magnitude (M), surface rupture length, subsurface rupture length, downdip rupture width, rupture area, and maximum and average displacement per event. The resulting data base is a significant update of previous compilations and includes the ad­ ditional source parameters of seismic moment, moment magnitude, subsurface rupture length, downdip rupture width, and average surface displacement. Each source parameter is classified as reliable or unreliable, based on our evaluation of the accuracy of individual values. Only the reliable source parameters are used in the final analyses. In comparing source parameters, we note the fol­ lowing trends: (1) Generally, the length of rupture at the surface is equal to 75% of the subsurface rupture length; however, the ratio of surface rupture length to subsurface rupture length increases with magnitude; (2) the average surface dis­ placement per event is about one-half the maximum surface displacement per event; and (3) the average subsurface displacement on the fault plane is less than the maximum surface displacement but more than the average surface dis­ placement. Thus, for most earthquakes in this data base, slip on the fault plane at seismogenic depths is manifested by similar displacements at the surface. Log-linear regressions between earthquake magnitude and surface rupture length, subsurface rupture length, and rupture area are especially well correlated, show­ ing standard deviations of 0.25 to 0.35 magnitude units.
    [Show full text]
  • Field Guide to Neotectonics of the San Andreas Fault System, Santa Cruz Mountains, in Light of the 1989 Loma Prieta Earthquake
    Department of the Interior U.S. Geological Survey Field Guide to Neotectonics of the San Andreas Fault System, Santa Cruz Mountains, in Light of the 1989 Loma Prieta Earthquake | Q|s | Landslides (Quaternary) I yv I Vaqueros Sandstone (Oligocene) r-= I San Lorenzo Fm., Rices Mudstone I TSr I member (Eocene-Oligocene) IT- I Butano Sandstone, ' Pnil mudstone member (Eocene) Coseismic surface fractures, ..... dashed where discontinuous, dotted where projected or obscured ___ _ _ Contact, dashed where approximately located >"«»"'"" « « Fault, dotted where concealed V. 43? Strike and dip Strike and dip of of bedding overturned bedding i Vector Scale / (Horizontal Component of Displacement) OPEN-FILE REPORT 90-274 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government. Men to Park, California April 27, 1990 Department of the Interior U.S. Geological Survey Field Guide to Neotectonics of the San Andreas Fault System, Santa Cruz Mountains, in Light of the 1989 Loma Prieta Earthquake David P. Schwartz and Daniel J. Ponti, editors U. S. Geological Survey Menlo Park, CA 94025 with contributions by: Robert S. Anderson U.C. Santa Cruz, Santa Cruz, CA William R. Cotton William Cotton and Associates, Los Gatos, CA Kevin J. Coppersmith Geomatrix Consultants, San Francisco, CA Steven D. Ellen U. S. Geological Survey, Menlo Park, CA Edwin L. Harp U. S. Geological Survey, Menlo Park, CA Ralph A.
    [Show full text]
  • Mapping Ghost Towns in the Santa Cruz Mountains
    Humboldt State University Digital Commons @ Humboldt State University GSP Projects Student and Alumni Works Fall 12-2020 Mapping Ghost Towns in the Santa Cruz Mountains Sarah Christine Brewer Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/gspproject Part of the Archaeological Anthropology Commons, Geographic Information Sciences Commons, and the History Commons Recommended Citation Brewer, Sarah Christine, "Mapping Ghost Towns in the Santa Cruz Mountains" (2020). GSP Projects. 1. https://digitalcommons.humboldt.edu/gspproject/1 This Project is brought to you for free and open access by the Student and Alumni Works at Digital Commons @ Humboldt State University. It has been accepted for inclusion in GSP Projects by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. Mapping Ghost Towns in the Santa Cruz Mountains GSP 510 Final Project BY: SARAH BREWER DECEMBER 2020 Abstract This project identifies areas of archaeological sensitivity for historic resources related to the segment of the South Pacific Coast Railroad that spanned from Los Gatos to Glenwood in the steep terrain of the Santa Cruz Mountains in Central California. The rail line was only in use for 60 years (1880-1940) until the completion of a major highway drew travelers to greater automobile use. During the construction and operation of the rail line, small towns sprouted at the railroad stops, most of which were abandoned along with the rail line in 1940. Some of these towns are now inundated by reservoirs. This project maps the abandoned rail line and “ghost towns” by using ArcGIS Pro (version 2.5.1) to digitize the railway, wagon roads, and structures shown on a georeferenced topographic quadrangle created in 1919 (Marshall et al., 1919).
    [Show full text]
  • Washington State Seismic Mitigation Policy Gap Analysis
    Washington State Seismic Mitigation Policy Gap Analysis A Cross‐State Comparison Scott B. Miles, Ph.D. Brian D. Gouran, L.G. October, 2010 Prepared for Washington State Division of Emergency Management Resilience Institute Working Paper 2010_2 1 Washington State Gap Analysis; S. Miles & B. Gouran Resilience Institute Working Paper 2010_2 October, 2010 This document was prepared under an award from FEMA, Department of Homeland Security. Points of view or opinions expressed in this document are those of the authors and do not necessarily represent the official position or policies of FEMA or the US Department of Homeland Security. Washington State Gap Analysis; S. Miles & B. Gouran Resilience Institute Working Paper 2010_2 October, 2010 EXECUTIVE SUMMARY The purpose of this study is to understand how Washington State compares with other states with respect to state‐level seismic mitigation policies. This facilitates the identification of potential Washington State policy gaps that might be filled with policies similar to those of other states. This study was accomplished by compiling, synthesizing, and analyzing state‐level policies listed in the mitigation plan of 47 states (3 could not be obtained by the completion of the study). A catalog of describing each of the compiled policies – legislation or executive orders – was assembled. A spreadsheet database was created in order to synthesize, search, and analyze the policies. Quantitative analysis was conducted using a cross‐state analysis and two different computed indicators based on seismic risk and policy count. The cross‐state analysis facilitate a broad assessment of Washington State’s policy coverage given its seismic risk, as well as identification of policies from states with more seismic mitigation policies that Washington State.
    [Show full text]
  • Conifer Communities of the Santa Cruz Mountains and Interpretive
    UNIVERSITY OF CALIFORNIA, SANTA CRUZ CALIFORNIA CONIFERS: CONIFER COMMUNITIES OF THE SANTA CRUZ MOUNTAINS AND INTERPRETIVE SIGNAGE FOR THE UCSC ARBORETUM AND BOTANIC GARDEN A senior internship project in partial satisfaction of the requirements for the degree of BACHELOR OF ARTS in ENVIRONMENTAL STUDIES by Erika Lougee December 2019 ADVISOR(S): Karen Holl, Environmental Studies; Brett Hall, UCSC Arboretum ABSTRACT: There are 52 species of conifers native to the state of California, 14 of which are endemic to the state, far more than any other state or region of its size. There are eight species of coniferous trees native to the Santa Cruz Mountains, but most people can only name a few. For my senior internship I made a set of ten interpretive signs to be installed in front of California native conifers at the UCSC Arboretum and wrote an associated paper describing the coniferous forests of the Santa Cruz Mountains. Signs were made using the Arboretum’s laser engraver and contain identification and collection information, habitat, associated species, where to see local stands, and a fun fact or two. While the physical signs remain a more accessible, kid-friendly format, the paper, which will be available on the Arboretum website, will be more scientific with more detailed information. The paper will summarize information on each of the eight conifers native to the Santa Cruz Mountains including localized range, ecology, associated species, and topics pertaining to the species in current literature. KEYWORDS: Santa Cruz, California native plants, plant communities, vegetation types, conifers, gymnosperms, environmental interpretation, UCSC Arboretum and Botanic Garden I claim the copyright to this document but give permission for the Environmental Studies department at UCSC to share it with the UCSC community.
    [Show full text]
  • Earthquake Losses to Single-Family Dwellings: California Experience
    Earthquake Losses to Single-Family Dwellings: California Experience U.S. GEOLOGICAL SURVEY BULLETIN 1939-A Prepared in cooperation with the State of California Department of Insurance /§ L ---. =. i wt. 9<m III Cover: Damage caused by the 1933 Long Bench California, earthquake. Photograph by Harold Er^le, 1933. Chapter A Earthquake Losses to Single-Family Dwellings: California Experience By KARL V. STEINBRUGGE and ST. ALGERMISSEN Prepared in cooperation with the State of California Department of Insurance U.S. GEOLOGICAL SURVEY BULLETIN 1939 ESTIMATION OF EARTHQUAKE LOSSES TO HOUSING IN CALIFORNIA DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. UNITED STATES GOVERNMENT PRINTING OFFICE: 1990 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Catalog-in-Publication Data Steinbrugge, Karl V. Earthquake losses to single-family dwellings. (U.S. Geological Survey bulletin ; 1939-A) (Estimation of earthquake losses to housing in California) "Prepared in cooperation with the State of California Department of Insurance." Includes bibliographical references. Supt. of Docs, no.: I 19.3:1939-A 1. Insurance, Earthquake California. 2. Earthquakes California. I. Algermissen, Sylvester Theodore, 1932- . II. California. Dept. of Insurance. III. Title. IV. Series. V. Series:
    [Show full text]
  • Preliminary Isoseismal Map for the Santa Cruz (Loma Prieta), California, Earthquake of October 18,1989 UTC
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary isoseismal map for the Santa Cruz (Loma Prieta), California, earthquake of October 18,1989 UTC Open-File Report 90-18 by Carl W. Stover, B. Glen Reagor, Francis W. Baldwin, and Lindie R. Brewer National Earthquake Information Center U.S. Geological Survey Denver, Colorado This report has not been reviewed for conformity with U.S. Geological Survey editorial stan­ dards and stratigraphic nomenclature. Introduction The Santa Cruz (Loma Prieta) earthquake, occurred on October 18, 1989 UTC (October 17, 1989 PST). This major earthquake was felt over a contiguous land area of approximately 170,000 km2; this includes most of central California and a portion of western Nevada (fig. 1). The hypocen- ter parameters computed by the U.S. Geological Survey (USGS) are: Origin time: 00 04 15.2 UTC Location: 37.036°N., 121.883°W. Depth: 19km Magnitude: 6.6mb,7.1Ms. The University of California, Berkeley assigned the earthquake a local magnitude of 7.0ML. The earthquake caused at least 62 deaths, 3,757 injuries, and over $6 billion in property damage (Plafker and Galloway, 1989). The earthquake was the most damaging in the San Francisco Bay area since April 18,1906. A major arterial traffic link, the double-decked San Francisco-Oakland Bay Bridge, was closed because a single fifty foot span of the upper deck collapsed onto the lower deck. In addition, the approaches to the bridge were damaged in Oakland and in San Francisco. Other se­ vere earthquake damage was mapped at San Francisco, Oakland, Los Gatos, Santa Cruz, Hollister, Watsonville, Moss Landing, and in the smaller communities in the Santa Cruz Mountains.
    [Show full text]
  • Draft Minority Report to “Improving Natural Gas Safety in Earthquakes”
    Draft Minority Report to “Improving natural gas safety in earthquakes,” Prepared by Carl L. Strand For the ASCE-25 Task Committee on Earthquake Safety Issues for Gas Systems and the California Seismic Safety Commission July 10, 2002 I appreciate the opportunity of serving as a Member of the ASCE-25 Task Committee on Earthquake Safety Issues for Gas Systems. Ours was a consensus committee in the sense that efforts were made to achieve a consensus among the members on the wording of the Committee’s reports, which include a 1-page insert for the Seismic Safety Commission’s (SSC’s) “Homeowners’ guide to earthquake safety,” and a 40—50 page report. However, as is often the case with consensus committees, there was considerable disagreement on many of the issues that were raised. It is traditional in such cases for those in the minority to express their disagreements in a minority report, which is published at the end of the report that was approved by the majority. The Forward to this minority report—submitted as a letter to the SSC on June 26, 2002—summarizes my deep concerns about the majority report and the insert to the homeowners’ guide. This is a first draft of the minority report. It is my intention to revise it following the Hearing on July 11th, which will give me an opportunity to correct any errors, incorporate any additional comments raised during the Hearing that I believe should be included, and consider any suggestions that are made that might improve the document. If the majority report is revised, I may find it appropriate to delete certain sections of the minority report.
    [Show full text]
  • A History of British Seismology
    Bull Earthquake Eng (2013) 11:715–861 DOI 10.1007/s10518-013-9444-5 ORIGINAL RESEARCH PAPER A history of British seismology R. M. W. Musson Received: 14 March 2013 / Accepted: 21 March 2013 / Published online: 9 May 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The work of John Milne, the centenary of whose death is marked in 2013, has had a large impact in the development in global seismology. On his return from Japan to England in 1895, he established for the first time a global earthquake recording network, centred on his observatory at Shide, Isle of Wight. His composite bulletins, the “Shide Circulars” developed, in the twentieth century, into the world earthquake bulletins of the International Seismolog- ical Summary and eventually the International Seismological Centre, which continues to publish the definitive earthquake parameters of world earthquakes on a monthly basis. In fact, seismology has a long tradition in Britain, stretching back to early investigations by members of the Royal Society after 1660. Investigations in Scotland in the early 1840s led to a number of firsts, including the first network of instruments, the first seismic bulletin, and indeed, the first use of the word “seismometer”, from which words like “seismology” are a back-formation. This paper will present a chronological survey of the development of seismology in the British Isles, from the first written observations of local earthquakes in the seventh century, and the first theoretical writing on earthquakes in the twelfth century, up to the monitoring of earthquakes in Britain in the present day.
    [Show full text]
  • The Research Results Described in the Following Summaries Were Submitted by the Investigators on May 10, 1984 and Cover the 6-Mo
    The research results described in the following summaries were submitted by the investigators on May 10, 1984 and cover the 6-months period from October 1, 1983 through May 1, 1984. These reports include both work performed under contracts administered by the Geological Survey and work by members of the Geological Survey. The report summaries are grouped into the three major elements of the National Earthquake Hazards Reduction Program. Open File Report No. 84-628 This report has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. Parts of it were prepared under contract to the U.S. Geological Survey and the opinions and conclusions expressed herein do not necessarily represent those of the USGS. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. The data and interpretations in these progress reports may be reevaluated by the investigators upon completion of the research. Readers who wish to cite findings described herein should confirm their accuracy with the author. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY SUMMARIES OF TECHNICAL REPORTS, VOLUME XVIII Prepared by Participants in NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM Compiled by Muriel L. Jacobson Thelraa R. Rodriguez CONTENTS Earthquake Hazards Reduction Program Page I. Recent Tectonics and Earthquake Potential (T) Determine the tectonic framework and earthquake potential of U.S. seismogenic zones with significant hazard potential. Objective T-1. Regional seismic monitoring........................ 1 Objective T-2. Source zone characteristics Identify and map active crustal faults, using geophysical and geological data to interpret the structure and geometry of seismogenic zones.
    [Show full text]
  • Ore Bin / Oregon Geology Magazine / Journal
    The ORE BIN Volume 25, No.4 April, 1963 INVESTIGATIONS OF THE EARTHQUAKE OF NOVEMBER 5, 1962, NORTH OF PORTLAND By P. Dehlingerl, R. G. Bowen2, E. F. Chiburis1, and W. H. Westphal3 Introduction Earthquakes are one of the most destructive of the earth·s natural phenom­ ena. The larger earthquakes provide the bulk of our information about the interior of the earth, smaller quakes much of the information on nearby crustal and subcrustal structures. Seismograms {recordings} of the November 5, 1962, Portland earthquake and later shocks in the Northwest written at different seismic stations are being analyzed to provide information on these earthquakes and on the local crustal structures in the Northwest. These analyses concern locating earthquake epicenters and determination of their origin times, depths of foci, mechanisms of faulting at the source, and the nature and configuration of the crust and subcrustal material. The Portland earthquake was the largest shock to occur in Oregon since the recent installations of the several new seismic stations in the Pa­ cific Northwest. Although damage resulting from this shock was minor, as indicated in a preliminary report (Dehlinger and Berg, 1962), the shock is of considerable seismological importance. Because it was large enough to be recorded at the newly installed as well as at many of the older seismic stations, and because its epicentral location was known approximately from the felt area and from on-site recordings of aftershocks, this earthquake has provided the first significant data to be used for constructing travel-time curves for Oregon. The seismograms also provided data for a better under­ standing of the source mechanism associated with the Portland shock.
    [Show full text]