UNIVERSITY of CALIFORNIA SAN DIEGO Novel Fluorescent Guanine
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF CALIFORNIA SAN DIEGO Novel Fluorescent Guanine Analogs as Guanine Deaminase Substrates and Inhibitors A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Chemistry by You Wu Committee in charge: Professor Yitzhak Tor, Chair Professor Seth Cohen Professor Emmanuel Theodorakis 2018 Copyright You Wu, 2018 All rights reserved. The Thesis of You Wu is approved, and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ Chair University of California San Diego 2018 iii Table of Content Signature Page...........................................................................................................................iii Table of Content........................................................................................................................iv List of Figures............................................................................................................................ v List of tables.............................................................................................................................vii List of Graphs..........................................................................................................................viii Acknowledgements................................................................................................................... ix Abstract...................................................................................................................................... x Main body...................................................................................................................................1 References................................................................................................................................ 53 iv List of Figures Figure 1. Crystal Structure of Guanine Deaminase with bound guanine in the active site........3 Figure 2. Reactions Catalyzed by Guanine Deaminase............................................................. 4 Figure 3. Enzymatic conversion of G, thG and tzG..................................................................... 5 Figure 4. Synthesis of thG and thX.............................................................................................. 6 Figure 5. Synthesis of tzG and tzX.............................................................................................. 7 Figure 6. Synthesis of nitrile precursor 2................................................................................... 8 Figure 7. X-ray crystal structures of thG, thX, tzG, tzX.............................................................. 14 Figure 8. 1H NMR of thG.........................................................................................................37 Figure 9. 13C NMR of thG.........................................................................................................37 Figure 10. 1H NMR of thX........................................................................................................38 Figure 11. 13C NMR of thX.......................................................................................................38 Figure 12. 1H NMR of tzG........................................................................................................39 Figure 13. 13C NMR of tzG.......................................................................................................39 Figure 14. 1H NMR of tzX........................................................................................................40 Figure 15. 13C NMR of tzX.......................................................................................................40 Figure 16. GDA-mediated tzG to tzX conversion at t = 0 s.......................................................45 Figure 17. GDA-mediated tzG to tzX conversion at t = 20 s.....................................................46 Figure 18. GDA-mediated tzG to tzX conversion at t = 40 s.....................................................47 Figure 19. GDA-mediated tzG to tzX conversion at t = 60 s.....................................................48 Figure 20. GDA-mediated tzG to tzX conversion at t = 80 s.....................................................49 Figure 21. GDA-mediated tzG to tzX conversion at t = 100 s...................................................50 v Figure 22. GDA-mediated tzG to tzX conversion at t = 200 s...................................................51 Figure 23. GDA-mediated tzG to tzX conversion at t = 500 s...................................................52 vi List of tables Table 1. Photophysical Properties of Guanine and Xanthine Analogues.................................16 Table 2. ET(30) experimental values for water/dioxane mixtures. .........................................21 Table 3. Crystal data and structure refinement for thG............................................................. 41 Table 4. Crystal data and structure refinement for thX............................................................. 42 Table 5. Crystal data and structure refinement for tzG............................................................. 43 Table 6. Crystal data and structure refinement for tzX............................................................. 40 vii List of Graphs Graph 1. Emission and Absorbance spectrum for in water and dioxane................................. 16 Graph 2. Stokes shift correlation versus solvent polarity........................................................ 17 Graph 3. Optical density difference versus.............................................................................. 18 Graph 4. Absorption and emission traces at different pH........................................................ 21 Graph 5. Absorption and emission traces in water, dioxane and mixture................................22 Graph 6. Normalized absorbance intensity from HPLC versus reaction time.........................24 Graph 7. Absorbance trance of standard.................................................................................. 26 Graph 8. Emission trance of srandard...................................................................................... 26 Graph 9. Steady state absorbance.............................................................................................26 Graph 10. Absorbance spectrum of reagent and product......................................................... 27 Graph 11. Emission spectrum of reagent and product............................................................. 27 Graph 12. Kinetic absorbance spectrum of the enzymatic conversion of GDA with G.......... 29 Graph 13. Kinetic emission spectrum of the enzymatic conversion of GDA with thG............ 29 Graph 14. Kinetic emission spectrum of the enzymatic conversion of GDA with tzG............ 30 Graph 15. GDA-mediated deamination analysis by HPLC..................................................... 32 Graph 16. Trend line equations for the substrate consumption and product formation...........32 Graph 17. GDA-mediated deamination analysis for thG to thX by HPLC................................33 Graph 18. GDA-mediated deamination analysis of G to X in the mixture of GDA and thG... 34 Graph 19. Trend line for the substrate consumptionand product formation for G to X in the mixture of GDA and thG...........................................................................................................34 viii Acknowledgements I would like to thank Professor Yitzhak Tor for providing the insight and resources for the project, teaching me to proactively think and analyze questions, encouraging me to be a better researcher. I would like to thank Andrea Fin for providing the xanthine analogues used throughout this project and teaching me how to use appropriate techniques for research. I would like to thank Paul Ludford for helping me solve the problems and overcome difficulties I meet during the project. I would like to thank all visiting members and all lab members of the Tor lab for providing advice and always supporting me. ix ABSTRACT OF THE THESIS Novel Fluorescent Guanine Analogs as Guanine deaminase substrates/inhibitors by You Wu Master of Science in Chemistry University of California San Diego, 2018 Professor Yitzhak Tor, Chair Two fluorescent guanine analogues (thG, tzG) derived from thieno[3,4-d]-pyrimidine and isothiazole[4,3-d]-pyrimidine, respectively were synthesized and analyzed for their isomorphism and isofunction as the natural occurring guanine. Photophysical analysis demonstrated the promoted properties, such as visible emission, high quantum yield, sensitivity to polarity and pH, while the enzymatic conversion illustrated the highly isofunctional of tzG as guanine through its rapid reactivity with guanine deaminase (GDA) as the native substrate, which makes tzG be a good surrogate to help monitor the activity of GDA and assist the research for this significant enzyme in neuronal recovery. x 1. Introduction GDA is the abbreviation of guanine deaminase which can convert guanine to xanthine through a hydrolytic deamination.[1- 3] It is an important metalloenzyme due to its correlations with neuronal recovery.[4] First, the conversion from guanine to xanthine is necessary for forming the dendritic spines and consequently