TPM/IPM Weekly Report for Arborists, Landscape Managers & Nursery Managers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Based on a Newly-Discovered Species
A peer-reviewed open-access journal MycoKeys 76: 1–16 (2020) doi: 10.3897/mycokeys.76.58628 RESEARCH ARTICLE https://mycokeys.pensoft.net Launched to accelerate biodiversity research The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species Xinhao Li1, Hai-Xia Wu1, Jinchen Li1, Hang Chen1, Wei Wang1 1 International Fungal Research and Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China Corresponding author: Hai-Xia Wu ([email protected], [email protected]) Academic editor: N. Wijayawardene | Received 15 September 2020 | Accepted 25 November 2020 | Published 17 December 2020 Citation: Li X, Wu H-X, Li J, Chen H, Wang W (2020) The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species. MycoKeys 76: 1–16. https://doi.org/10.3897/mycokeys.76.58628 Abstract During the field studies, aTranslucidithyrium -like taxon was collected in Xishuangbanna of Yunnan Province, during an investigation into the diversity of microfungi in the southwest of China. Morpho- logical observations and phylogenetic analysis of combined LSU and ITS sequences revealed that the new taxon is a member of the genus Translucidithyrium and it is distinct from other species. Therefore, Translucidithyrium chinense sp. nov. is introduced here. The Maximum Clade Credibility (MCC) tree from LSU rDNA of Translucidithyrium and related species indicated the divergence time of existing and new species of Translucidithyrium was crown age at 16 (4–33) Mya. Combining the estimated diver- gence time, paleoecology and plate tectonic movements with the corresponding geological time scale, we proposed a hypothesis that the speciation (estimated divergence time) of T. -
Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi. -
Molecular Systematics of the Marine Dothideomycetes
available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. -
Ecological Monitoring at Rare, 2020
Ecological Monitoring 2020 rare Charitable Research Reserve Prepared by: Jordan Wrobel Jenna Quinn 1 Acknowledgements Many thanks to Colleges and Institutes Canada (CICan) Career-Launcher Internships, funded by Natural Resource’s Canada’s Green Jobs- Science and Technology Internship Program, and Employment Ontario for providing essential funding for ecological monitoring at rare; without their support, this monitoring program and report would not have been possible. I would also like to thank rare staff for assistance with monitoring and support of intellectual and professional growth. Thank you to Caroline Reisiger and Sarah Cui for their much- appreciated assistance with fieldwork and to Dr. Justin Gaudon for your support with the statistical analyses. To rare’s committed volunteers: Jacqueline Haynes, Miriam Bauman, Emma Wegener, Hilary Irving, Bethany Wakefield, and Logan Mercier; thank you so much for your support with monitoring, these programs would not be as successful without you. I would like to thank all advocates of rare Charitable Research Reserve for helping to support rare’s vision and activities. The rare Charitable Research Reserve acknowledges and is grateful to all of the original stewards of the land in which rare resides, within the Haldimand Tract, spanning six miles on either side of the Grand River from source to mouth. Understanding that this land has been rich in diverse Indigenous presence since time immemorial, there are several Indigenous Nations that we would like to mention. We would like to honor and respect the sovereignty of both First Nations in our area: the Haudenosaunee Peoples of Six Nations of the Grand River and the Anishinaabe Peoples of Mississaugas of the New Credit First Nation. -
Forest Insect and Disease Conditions in Vermont 2015
FOREST INSECT AND DISEASE CONDITIONS IN VERMONT 2015 AGENCY OF NATURAL RESOURCES DEPARTMENT OF FORESTS, PARKS & RECREATION MONTPELIER - VERMONT 05620-3801 STATE OF VERMONT PETER SHUMLIN, GOVERNOR AGENCY OF NATURAL RESOURCES DEBORAH L. MARKOWITZ, SECRETARY DEPARTMENT OF FORESTS, PARKS & RECREATION Michael C. Snyder, Commissioner Steven J. Sinclair, Director of Forests http://www.vtfpr.org/ We gratefully acknowledge the financial and technical support provided by the USDA Forest Service, Northeastern Area State and Private Forestry that enables us to conduct the surveys and publish the results in this report. This document serves as the final report for fulfillment of the Cooperative Lands – Survey and Technical Assistance and Forest Health Monitoring programs. In accordance with federal law and U.S. Department of Agriculture policy, this institution is prohibited from discrimination on the basis of race, color, national origin, sex, age, or disability. This document is available upon request in large print, Braille or audio cassette. FOREST INSECT AND DISEASE CONDITIONS IN VERMONT CALENDAR YEAR 2015 PREPARED BY: Barbara Schultz, Trish Hanson, Sandra Wilmot, Joshua Halman, Kathy Decker, Tess Greaves AGENCY OF NATURAL RESOURCES DEPARTMENT OF FORESTS, PARKS & RECREATION STATE OF VERMONT – DEPARTMENT OF FORESTS, PARKS & RECREATION FOREST RESOURCE PROTECTION PERSONNEL Barbara Schultz Kathy Decker Elizabeth Spinney Forest Health Program Manager Plant Pathologist/Invasive Plant Program Invasive Plant Coordinator Dept. of Forests, Parks & Recreation Manager/District Manager 111 West Street 100 Mineral Street, Suite 304 Dept. of Forests, Parks & Recreation Essex Junction, VT 05452-4695 Springfield, VT 05156-3168 1229 Portland St., Suite 201 Work Phone: 802-477-2134 Cell Phone: 802-777-2082 St. -
The List Below Illustrates the Types of Pathogens/Problems Found on Plants Submitted to the Plant Diagnostic Lab in 2015
The list below illustrates the types of pathogens/problems found on plants submitted to the plant diagnostic lab in 2015. The general format of the list shows the common name for the disease, followed by the scientific name of the pathogen, followed by a number in parentheses that indicates the number of times this problem was diagnosed in the lab. Apple (Malus x domestica) Abiotic (Potassium deficiency suspected) (1) Alternaria blotch (Alternaria mali) (1) Bitter rot (Colletotrichum sp.) (1) Burrknot (genetic) (1) Cedar apple rust (Gymnosporangium juniperi-virgianae) (1) Cedar apple rust resistance reaction (Gymnosporangium juniperi-virgianae) (2) Flyspeck (Schizothyrium pomi) (1) Leaf spot (Gloeosporium sp.) (1) Leaf spot (Pseudocercospora sp.) (1) Arborvitae (Thuja sp.) Arborvitae Needle blight (Phyllosticta thujae) (2) Needle blight (Passalora sp.) (2) Needle blight (Pestalotiopsis sp.) (2) Needle blight suspected (various fungi) (1) Root rot (Phytophthora sp.) (1) Root rot (Phaeolus schweinitzii) (1) Arborvitae (Thuja sp. ‘Green Giant’) Abiotic (1) Sphaeropsis canker (Sphaeropsis sp.)- opportunistic pathogen (1) Wood boring insect (1) Ash (Fraxinus sp.) Anthracnose (Plagiostoma fraxini) (1) Sapstain (Fusarium sp. suspected) (1) Scale insects (1) Sooty mold (fungus) (2) Aucuba (Aucuba japonica) Anthracnose stem blight (Colletotrichum sp.) (2) Azalea (Rhododendron sp.) Abiotic (high soil pH) (2) Abiotic (oedema) (1) Abiotic (winter burn) (2) Armillaria root rot (Armillaria sp.) (1) Cercospora leaf spot suspected (Cercospora sp.) (1) Leaf blight (Pestalotiopsis sp.) (1) Phomopsis canker (Phomopsis sp.) (2) Root rot (Phytophthora sp.) (1) Secondary fungus (Seiridium sp.) (1) Whiteflies suspected (1) Banana, Japanese (Musa basjoo) Root rot (Pythium sp.) (1) Bamboo (Bambusa sp.) Leaf spot (Colletotrichum sp.) (1) Bean, Green (Phaseolus vulgaris) Abiotic (anoxia) (1) Abiotic (herbicide suspected) (1) Ashy stem blight (Macrophomina phaseolina) (1) Phyllosticta leaf spot (Boeremia exigua var. -
Evolution of Lifestyles in Capnodiales
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 95: 381–414 (2020). Evolution of lifestyles in Capnodiales J. Abdollahzadeh1*, J.Z. Groenewald2, M.P.A. Coetzee3, M.J. Wingfield3, and P.W. Crous2,3,4* 1Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran; 2Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, Utrecht, 3508 AD, the Netherlands; 3Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; 4Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands *Correspondence: J. Abdollahzadeh, [email protected]; P.W. Crous, [email protected] Abstract: The Capnodiales, which includes fungi known as the sooty moulds, represents the second largest order in Dothideomycetes, encompassing morphologically and ecologically diverse fungi with different lifestyles and modes of nutrition. They include saprobes, plant and human pathogens, mycoparasites, rock-inhabiting fungi (RIF), lichenised, epi-, ecto- and endophytes. The aim of this study was to elucidate the lifestyles and evolutionary patterns of the Capnodiales as well as to reconsider their phylogeny by including numerous new collections of sooty moulds, and using four nuclear loci, LSU, ITS, TEF-1α and RPB2. Based on the phylogenetic results, combined with morphology and ecology, Capnodiales s. lat. is shown to be polyphyletic, representing seven different orders. The sooty moulds are restricted to Capnodiales s. str., while Mycosphaerellales is resurrected, and five new orders including Cladosporiales, Comminutisporales, Neophaeothecales, Phaeothecales and Racodiales are introduced. Four families, three genera, 21 species and five combinations are introduced as new. -
Cascading Effects of a Highly Specialized Beech-Aphid--Fungus
Cascading eVects of a highly specialized beech-aphid–fungus interaction on forest regeneration Susan C. Cook-Patton1, Lauren Maynard1, Nathan P. Lemoine2, Jessica Shue1 and John D. Parker1 1 Smithsonian Environmental Research Center, Edgewater, MD, United States 2 Florida International University, United States ABSTRACT Specialist herbivores are thought to often enhance or maintain plant diversity within ecosystems, because they prevent their host species from becoming competitively dominant. In contrast, specialist herbivores are not generally expected to have neg- ative impacts on non-hosts. However, we describe a cascade of indirect interactions whereby a specialist sooty mold (Scorias spongiosa) colonizes the honeydew from a specialist beech aphid (Grylloprociphilus imbricator), ultimately decreasing the survival of seedlings beneath American beech trees (Fagus grandifolia). A common garden experiment indicated that this mortality resulted from moldy honeydew impairing leaf function rather than from chemical or microbial changes to the soil. In addition, aphids consistently and repeatedly colonized the same large beech trees, suggesting that seedling-depauperate islands may form beneath these trees. Thus this highly specialized three-way beech-aphid–fungus interaction has the potential to negatively impact local forest regeneration via a cascade of indirect eVects. Subjects Biodiversity, Ecology, Entomology, Plant Science Keywords Seedling survival, Grylloprociphilus imbricator, Scorias spongiosa, Forest regeneration, Submitted 1 -
Jitjak, W., Sanoamuang, N. 2019. a Novel Fungus, Mycodomus
1 Asia-Pacific Journal of Science and Technology: Volume: 24. Issue: 03. Article ID.: APST-24-03-03. Research Article Asia-Pacific Journal of Science and Technology https://www.tci-thaijo.org/index.php/APST/index Published by the Research and Technology Transfer Affairs Division, Khon Kaen University, Thailand A novel fungus, Mycodomus formicartus associated with black ant, Dolichoderus thoracicus (Smith) on bamboo Wuttiwat Jitjak1 and Niwat Sanoamuang2, 3, * 1International College, Khon Kaen University, Khon Kaen, Thailand. 2Division of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand. 3Applied Taxonomic Research Center, Khon Kaen University, Khon Kaen, Thailand *Correspondent author: [email protected] Received 1 July 2018 Revised 7 June 2019 Accepted 10 June 2019 Abstract A fungus on a bamboo plant in Dan Sai district, Loei province, Thailand was collected for identification. Its appearance consisted of a grey-to-black matter with pores on the surface attached on a bamboo branch, and a population of black ants, Dolichoderus thoracicus (Smith) was associated with this fungus. Inside its fruiting body, there was a cavity functioning as a nest. With very dense hyphal mass, perithecia with periphyses were produced below the surface of the fruiting body. Asci contained 8 partascospores. The phylogenetic trees using three DNA regions, 18s rDNA, 28s rDNA and internal transcribed spacer suggested that it was in Dothideomycetes, Capnodiaceae but did not fit in any reported genus. Therefore, a new genus Mycodomus and species, Mycodomus formicartus were proposed and described. Keywords: Ant nest, Ant fungus, Black ant, Capnodiaceae, Perithecia 1. Introduction Fungal samples were observed to have gray-to-black lumps with pores on the surface on bamboo branches and collected for identification. -
Clinic-Report-2011.Pdf
TheThe PlantPlant DiseaseDisease ClinicClinic andand Weed Identification Lab Weed Identification Lab AnnualAnnual ReportReport 20112011 Department of Plant Pathology, Physiology, and Weed Science Virginia Polytechnic Institute and State University Blacksburg, Virginia The Plant Disease Clinic and Weed Identification Laboratory 2011 Annual Report Table of Contents Acknowledgements ................................................................................................................................................... 2 Introduction ................................................................................................................................................................ 3 Some Highlights from 2011 ........................................................................................................................................ 4 Plant Disease Clinic Summaries Monthly Submission Report ............................................................................................................................... 10 Crop Category Report ........................................................................................................................................ 11 Diagnostic Category Report ............................................................................................................................... 12 Samples by Diagnostic Category ....................................................................................................................... 13 Plant Pathogens, Other Assistance -
Phylogeny of Rock-Inhabiting Fungi Related to Dothideomycetes
available online at www.studiesinmycology.org StudieS in Mycology 64: 123–133. 2009. doi:10.3114/sim.2009.64.06 Phylogeny of rock-inhabiting fungi related to Dothideomycetes C. Ruibal1*, C. Gueidan2, L. Selbmann3, A.A. Gorbushina4, P.W. Crous2, J.Z. Groenewald2, L. Muggia5, M. Grube5, D. Isola3, C.L. Schoch6, J.T. Staley7, F. Lutzoni8, G.S. de Hoog2 1Departamento de Ingeniería y Ciencia de los Materiales, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; 2CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, Netherlands; 3DECOS, Università degli Studi della Tuscia, Largo dell’Università, Viterbo, Italy; 4Free University of Berlin and Federal Institute for Materials Research and Testing (BAM), Department IV “Materials and Environment”, Unter den Eichen 87, 12205 Berlin, Germany; 5Institute für Pflanzenwissenschaften, Karl-Franzens-Universität Graz, Holteigasse 6, A-8010 Graz, Austria; 6NCBI/NLM/NIH, 45 Center Drive, Bethesda MD 20892, U.S.A.; 7Department of Microbiology, University of Washington, Box 357242, Seattle WA 98195, U.S.A.; 8Department of Biology, Duke University, Box 90338, Durham NC 27708, U.S.A. *Correspondence: Constantino Ruibal, [email protected] Abstract: The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of main groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored. -
Horticultural, Landscape, and Ornamental Crops
Section F Pests common to Douglas-fir, Horticultural, True Fir, Pine and Spruce Christmas tree (Common pests)—Conifer Landscape, and aphid Cinara occidentalis and Cinara abietis Ornamental Crops Pest description and crop damage C. abietis are large, dark aphids typically feeding on upper stems and tended by ants. May distort stems. C. occidentalis feed at the base of needles on 1 year IMPORTANT NOTICE REGARDING THE USE and older foliage, often in the lower portion of the tree and may be OF CHLORPYRIFOS: quite damaging. The State of Oregon has adopted new restrictive rules on See table: the use of chlorpyrifos-containing products in Oregon. Hosts and Symptoms of Major Aphid and Adelgid Pests of Please refer to Oregon Department of Agriculture Christmas Trees Permanent Chlorpyrifos Rule at https://www.oregon.gov/oda/programs/Pesticides/ Management—cultural control RegulatoryIssues/Documents/Documents/2020/ C. abietis is easily spotted and often controlled by squishing ChlorpyrifosRule.pdf colonies by hand or spot spraying. Minor outbreaks of both species may be kept in check with beneficial insect predators or spot treatments. Management—chemical control ♦ azadirachtin (AzaDirect and others)—Some formulations are OMRI-listed for organic use. ♦ bifenthrin (OnyxPro, Sniper and others)—Restricted use pesticide. (Group 3) Christmas Tree Plantation Pests ♦ chlorpyrifos (Lorsban Advanced, Warhawk and others)— RESTRICTED USE IN OREGON. (Group 1) Chal Landgren and Franki Porter ♦ Chromobacterium subtsugae (Grandevo)—OMRI-listed for Latest revision—March 2021 organic use. ♦ cyantraniliprole (Mainspring GNL)—(Group 28) ♦ cyclaniliprole (Group 28) + flonicamid (Group 29)—Pradia In all cases, follow the instructions on the pesticide label. The PNW ♦ dinotefuran (Safari 20 SG)— (Group 4) Insect Management Handbook has no legal status, whereas the ♦ flupyradifurone (Altus)—(Group 4) pesticide label is a legal document.