microorganisms Article Prophage Genomics and Ecology in the Family Rhodobacteraceae Kathryn Forcone 1, Felipe H. Coutinho 2, Giselle S. Cavalcanti 1 and Cynthia B. Silveira 1,3,* 1 Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, Miami, FL 33146, USA;
[email protected] (K.F.);
[email protected] (G.S.C.) 2 Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández de Elche, Aptdo. 18, Ctra. Alicante-Valencia, s/n, 03550 San Juan de Alicante, Spain;
[email protected] 3 Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA * Correspondence:
[email protected] Abstract: Roseobacters are globally abundant bacteria with critical roles in carbon and sulfur biogeo- chemical cycling. Here, we identified 173 new putative prophages in 79 genomes of Rhodobacteraceae. These prophages represented 1.3 ± 0.15% of the bacterial genomes and had no to low homology with reference and metagenome-assembled viral genomes from aquatic and terrestrial ecosystems. Among the newly identified putative prophages, 35% encoded auxiliary metabolic genes (AMGs), mostly involved in secondary metabolism, amino acid metabolism, and cofactor and vitamin production. The analysis of integration sites and gene homology showed that 22 of the putative prophages were actually gene transfer agents (GTAs) similar to a GTA of Rhodobacter capsulatus. Twenty-three percent of the predicted prophages were observed in the TARA Oceans viromes generated from free viral particles, suggesting that they represent active prophages capable of induction. The distribution of these prophages was significantly associated with latitude and temperature.