And Pan-Genome Content on Rhodobacteraceae Chromosomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome-Scale Data Suggest Reclassifications in the Leisingera
ORIGINAL RESEARCH ARTICLE published: 11 August 2014 doi: 10.3389/fmicb.2014.00416 Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov. Sven Breider 1†, Carmen Scheuner 2†, Peter Schumann 2, Anne Fiebig 2, Jörn Petersen 2, Silke Pradella 2, Hans-Peter Klenk 2, Thorsten Brinkhoff 1 and Markus Göker 2* 1 Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany 2 Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany Edited by: Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria) Martin G. Klotz, University of North genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. Carolina at Charlotte, USA We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF Reviewed by: mass-spectrometry analysis and a re-assessment of the phenotypic data from the Martin G. Klotz, University of North Carolina at Charlotte, USA literature to settle this matter, aiming at a reclassification of the two genera. Neither Aharon Oren, The Hebrew Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. University of Jerusalem, Israel Rather, smaller monophyletic assemblages emerged, which were phenotypically more *Correspondence: homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the Markus Göker, Department of type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the Microorganisms, Leibniz Institute DSMZ - German Collection of reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter Microorganisms and Cell Cultures, arcticus gen. -
Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera
Microbiol. Cult. Coll. June 2003. p. 13 ─ 21 Vol. 19, No. 1 Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera Koei Hamana1)*,Azusa Sakamoto1),Satomi Tachiyanagi1), Eri Terauchi1)and Mariko Takeuchi2) 1)Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39 ─ 15 Showa-machi 3 ─ chome, Maebashi, Gunma 371 ─ 8514, Japan 2)Institute for Fermentation, Osaka, 17 ─ 85, Juso-honmachi 2 ─ chome, Yodogawa-ku, Osaka, 532 ─ 8686, Japan Cellular polyamines of 41 newly validated or reclassified alpha proteobacteria belonging to 20 genera were analyzed by HPLC. Acetic acid bacteria belonging to the new genus Asaia and the genera Gluconobacter, Gluconacetobacter, Acetobacter and Acidomonas of the alpha ─ 1 sub- group ubiquitously contained spermidine as the major polyamine. Aerobic bacteriochlorophyll a ─ containing Acidisphaera, Craurococcus and Paracraurococcus(alpha ─ 1)and Roseibium (alpha-2)contained spermidine and lacked homospermidine. New Rhizobium species, including some species transferred from the genera Agrobacterium and Allorhizobium, and new Sinorhizobium and Mesorhizobium species of the alpha ─ 2 subgroup contained homospermidine as a major polyamine. Homospermidine was the major polyamine in the genera Oligotropha, Carbophilus, Zavarzinia, Blastobacter, Starkeya and Rhodoblastus of the alpha ─ 2 subgroup. Rhodobaca bogoriensis of the alpha ─ 3 subgroup contained spermidine. Within the alpha ─ 4 sub- group, the genus Sphingomonas has been divided into four clusters, and species of the emended Sphingomonas(cluster I)contained homospermidine whereas those of the three newly described genera Sphingobium, Novosphingobium and Sphingopyxis(corresponding to clusters II, III and IV of the former Sphingomonas)ubiquitously contained spermidine. -
<I>Euprymna Scolopes</I>
University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-10-2009 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes Brian Shawn Wong Won University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cell Biology Commons, Molecular Biology Commons, and the Other Animal Sciences Commons Recommended Citation Wong Won, Brian Shawn, "Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes" (2009). Honors Scholar Theses. 67. https://opencommons.uconn.edu/srhonors_theses/67 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes . Author: Brian Shawn Wong Won Advisor: Spencer V. Nyholm Ph.D. University of Connecticut Honors Program Date submitted: 05/11/09 1 Abstract The subject of our study is the Hawaiian bobtail squid, Euprymna scolopes , which is known for its model symbiotic relationship with the bioluminescent bacterium, Vibrio fischeri . The interactions between E. scolopes and V. fischeri provide an exemplary model of the biochemical and molecular dynamics of symbiosis since both members can be cultivated separately and V. fischeri can be genetically modified 1. However, in a laboratory setting, the mortality of embryonic E. scolopes can be a recurrent problem. In many of these fatalities, the egg cases display a pink-hued biofilm, and rosy pigmentation has also been noted in the deaths of several adult squid. To identify the microbial components of this biofilm, we cloned and sequenced the 16s ribosomal DNA gene from pink, culture-grown isolates from infected egg cases and adult tissues. -
The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment. -
Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter
GBE Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter Heike M. Freese1,*, Johannes Sikorski1, Boyke Bunk1,CarmenScheuner1, Jan P. Meier-Kolthoff1, Cathrin Spro¨er1,LoneGram2,andJo¨rgOvermann1,3 1Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany 2Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark 3Institute of Microbiology, University Braunschweig, Germany *Corresponding author: E-mail: [email protected]. Accepted: November 27, 2017 Data deposition: This project has been deposited at GenBank under the accessions CP010588 - CP010775, CP010784 - CP010791, CP010805 - CP010810, KY357362 - KY357447. Abstract The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. -
(Antarctica) Glacial, Basal, and Accretion Ice
CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa. -
Albirhodobacter Marinus Gen. Nov., Sp. Nov., a Member of the Family Rhodobacteriaceae Isolated from Sea Shore Water of Visakhapatnam, India
Author version: Antonie van Leeuwenhoek, vol.103; 2013; 347-355 Albirhodobacter marinus gen. nov., sp. nov., a member of the family Rhodobacteriaceae isolated from sea shore water of Visakhapatnam, India Nupur1, Bhumika, Vidya1., Srinivas, T. N. R2,3, Anil Kumar, P1* 1Microbial Type Culture Collection and Gene bank, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh - 160 036, INDIA 2National Institute of Oceanography (CSIR), Regional centre, P B No. 1913, Dr. Salim Ali Road, Kochi - 682018 (Kerala), INDIA Present Address: 3National Institute of Oceanography (CSIR), Regional centre, 176, Lawsons Bay Colony, Visakhapatnam - 530 017 (Andhra Pradesh), INDIA Address for correspondence* Dr. P. Anil Kumar Microbial Type Culture Collection and Gene bank Institute of Microbial Technology, Sector 39A, Chandigarh - 160 036, INDIA Email: [email protected] Phone: +91-172-6665170 1 Abstract A novel marine, Gram-negative, rod-shaped bacterium, designated strain N9T, was isolated from a water sample of the sea shore at Visakhapatnam, Andhra Pradesh (India). Strain N9T was found to be positive for oxidase and catalase activities. The fatty acids were found to be dominated by C16:0, C18:1 ω7c and summed in feature 3 (C16:1 ω7c and/or C16:1 ω6c). Strain N9T was determined to contain Q-10 as the major respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, two phospholipids and four unidentified lipids as polar lipids. The DNA G+C content of the strain N9T was found to be 63 mol%. 16S rRNA gene sequence analysis indicated that Rhodobacter sphaeroides, Rhodobacter johrii, Pseudorhodobacter ferrugineus, Rhodobacter azotoformans, Rhodobacter ovatus and Pseudorhodobacter aquimaris were the nearest phylogenetic neighbours, with pair-wise sequence similarities of 95.43, 95.36, 94.24, 95.31, 95.60 and 94.74 % respectively. -
Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae. -
Insights Into Mutualism Mechanism and Versatile Metabolism Of
www.nature.com/scientificreports OPEN Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 Received: 20 January 2016 Accepted: 29 February 2016 based on comparative genomics Published: 16 March 2016 and metabolomics studies Nan Jia1,2, Ming-Zhu Ding1,2, Jin Du1,2, Cai-Hui Pan1,2, Geng Tian3, Ji-Dong Lang3, Jian-Huo Fang3, Feng Gao1,2,4 & Ying-Jin Yuan1,2 Ketogulonicigenium vulgare has been widely used in vitamin C two steps fermentation and requires companion strain for optimal growth. However, the understanding of K. vulgare as well as its companion strain is still preliminary. Here, the complete genome of K. vulgare Hbe602 was deciphered to provide insight into the symbiosis mechanism and the versatile metabolism. K. vulgare contains the LuxR family proteins, chemokine proteins, flagellar structure proteins, peptides and transporters for symbiosis consortium. Besides, the growth state and metabolite variation of K. vulgare were observed when five carbohydrates (D-sorbitol, L-sorbose, D-glucose, D-fructose and D-mannitol) were used as carbon source. The growth increased by 40.72% and 62.97% respectively when K. vulgare was cultured on D-mannitol/D-sorbitol than on L-sorbose. The insufficient metabolism of carbohydrates, amino acids and vitamins is the main reason for the slow growth of K. vulgare. The combined analysis of genomics and metabolomics indicated that TCA cycle, amino acid and nucleotide metabolism were significantly up-regulated when K. vulgare was cultured on the D-mannitol/D-sorbitol, which facilitated the better growth. The present study would be helpful to further understand its metabolic structure and guide the engineering transformation. -
Isolation of Phaeobacter Sp. from Larvae of Atlantic Bonito
microorganisms Article Isolation of Phaeobacter sp. from Larvae of Atlantic Bonito (Sarda sarda) in a Mesocosmos Unit, and Its Use for the Rearing of European Seabass Larvae (Dicentrarchus labrax L.) Pavlos Makridis 1,* , Fotini Kokou 2 , Christos Bournakas 1, Nikos Papandroulakis 3 and Elena Sarropoulou 3 1 Department of Biology, University of Patras, Rio 26504 Patras, Greece; [email protected] 2 Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University and Research, 6700AH Wageningen, The Netherlands; [email protected] 3 Biotechnology, and Aquaculture, Hellenic Center for Marine Research, Institute of Marine Biology, P.O. Box 2214, 71003 Heraklion Crete, Greece; [email protected] (N.P.); [email protected] (E.S.) * Correspondence: [email protected]; Tel.: +30-2610-969224 Abstract: The target of this study was to use indigenous probiotic bacteria in the rearing of seabass larvae. A Phaeobacter sp. strain isolated from bonito yolk-sac larvae (Sarda sarda) and identified by amplification of 16S rDNA showed in vitro inhibition against Vibrio anguillarum. This Phaeobacter sp. strain was used in the rearing of seabass larvae (Dicentrarchus labrax L.) in a large-scale trial. The survival of seabass after 60 days of rearing and the specific growth rate at the late exponential growth phase were significantly higher in the treatment receiving probiotics (p < 0.05). Microbial community richness as determined by denaturing gradient gel electrophoresis (DGGE) showed an increase in bacterial diversity with fish development. Changes associated with the administration of probiotics were observed 11 and 18 days after hatching but were not apparent after probiotic administration Citation: Makridis, P.; Kokou, F.; stopped. -
Phaeobacter Leonis Sp. Nov., an Alphaproteobacterium
International Journal of Systematic and Archimer Evolutionary Microbiology http://archimer.ifremer.fr September 2013, Volume 63, Pages 3301-3306 http://dx.doi.org/10.1099/ijs.0.046128-0 © 2013 IUMS Printed in Great Britain Phaeobacter leonis sp. nov., an alphaproteobacterium from is available on the publisher Web site Webpublisher the on available is Mediterranean Sea sediments Frédéric Gaboyer1,2,3, Brian J. Tindall4, Maria-Cristina Ciobanu1,2,3, Frédérique Duthoit1,2,3, Marc Le Romancer1,2,3 and Karine Alain1,2,3 authenticated version authenticated - 1 Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) – UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France 2 CNRS, IUEM – UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France 3 Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France 4 DSMZ – Deutsche Sammlung von Mikroorganismem und Zellkulturen Gmbh. Inhoffenstr. 7bN D-38124 Braunschweig. Germany *: Corresponding author : Frédéric Gaboyer, email address : [email protected] owing peer review. The definitive publisherdefinitive The review. owing peer Abstract: A novel Gram-stain-negative, strictly aerobic, heterotrophic bacterium, designated 306T, was isolated from near-surface (109 cm below the sea floor) sediments of the Gulf of Lions, in the Mediterranean Sea. Strain 306T grew at temperatures between 4 and 32 °C (optimum 17–22 °C), from pH 6.5 to 9.0 (optimum 8.0–9.0) and between 0.5 and 6.0 % (w/v) NaCl (optimum 2.0 %). -
Strain-Level Diversity Drives Alternative Community Types in Millimeter Scale
bioRxiv preprint doi: https://doi.org/10.1101/280271; this version posted March 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Strain-level diversity drives alternative community types in millime- ter scale granular biofilms Gabriel E. Leventhal,1 Carles Boix,1 Urs Kuechler,2 Tim N. Enke,1,2 Elzbieta Sliwerska,2 Christof Holliger,3 Otto X. Cordero1,2,y 1 Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, U.S.A.; 2 Dept. of Environmental System Sciences, ETH Zurich, Zurich, Switzerland; 3 Laboratory for Environmental Biotechnology, École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzer- land [email protected] Keywords: Microbial communities; Strain diversity; Alternative states, Activated granular sludge; Accumulibac- ter; EBPR; Co-evolution; Microbial communities are often highly diverse in their composition, both at the level of coarse-grained taxa such as genera as well as at the level of strains within species. This variability can be driven by both extrinsic factors like temperature, pH, etc., as well as by intrinsic ones, such as demographic fluctuations or ecologi- cal interactions. The relative contributions of these factors and the taxonomic level at which they influence community structure remain poorly understood, in part because of the difficulty of identifying true com- munity replicates assembled under the same environmental parameters. Here, we address this problem using an activated granular sludge reactor in which millimeter scale biofilm granules represent true com- munity replicates whose differences in composition are expected to be driven primarily by biotic factors.