Chapter F of the International Code of Nomenclature for Algae, Fungi, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Classification of Trametes
TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible. -
Hidden in Plain Sight—A New Species of Lichen Strigula Oleistrata March 2020 (Strigulaceae) from New Zealand
TRILEPIDEA Newsletter of the New Zealand Plant Conservation Network NO. 196 Hidden in Plain sight—a new species of lichen Strigula oleistrata March 2020 (Strigulaceae) from New Zealand. Deadline for next issue: Marley Ford ([email protected]); Dan J. Blanchon ([email protected]), Friday 19 April 2020 School of Environmental & Animal Sciences, Unitec Institute of Technology, Auckland; SUBMIT AN ARTICLE Peter J. de Lange ([email protected]), School of Environmental & Animal TO THE NEWSLETTER Sciences, Unitec Institute of Technology, Auckland Contributions are welcome New Zealand has a surprising diversity of Strigula. 25 species of the genus are found to the newsletter at any here out of the c.70 species recognised; representing over a third of the known species time. The closing date for articles for each issue is (Galloway 2007, Lücking 2008, Hyde et al. 2013). Most of these species are foliicolous, approximately the 15th of meaning that they live on the surfaces of leaves. However, a few species do colonise each month. rocks and bark (Galloway 2007). Articles may be edited and used in the newsletter and/ Between 2016 and 2017 the senior author undertook a third year, level 7 School of or on the website news page. Environmental & Animal Sciences self-directed paper studying Strigula novae- The Network will publish zelandiae at the Unitec Institute of Technology Herbarium (UNITEC). Strigula novae- almost any article about zelandiae is a foliicolous species that is sometimes known as ‘silver paint lichen’, because plants and plant conservation with a particular focus on the when dead the thallus imparts a silvery patterning on the leaves it has colonised. -
BLS Bulletin 111 Winter 2012.Pdf
1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S. -
Nannoplankton Taxonomy and the International Code of Nomenclature for Algae, Fungi, and Plants (ICN)
Proc. 14th INA Conf., Reston VA, USA (Guest Ed. J. Self-Trail) J. Nannoplankton Res. 35 (2), 2015, pp.141-154 © 2015 International Nannoplankton Association 141 ISSN 1210-8049 Printed by The Sheridan Press, USA Nannoplankton taxonomy and the International Code of Nomenclature for algae, fungi, and plants (ICN) Richard W. Jordan Department of Earth & Environmental Sciences, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan; [email protected] Manuscript received 2nd June, 2015; revised manuscript accepted 1st July, 2015 Abstract In 2012, the International Code of Nomenclature for algae, fungi, and plants was published, which has ramifications for nannoplankton workers. The main changes that are relevant to us are: 1) certain forms of electronic publication are now acceptable, 2) English instead of Latin may now be used in descriptions and diagnoses of extant organisms, and 3) the morphotaxon concept for fossil plants and algae has been abandoned. Furthermore, names of genera based on extant types now have priority over those based on fossil types. This may cause a potential problem in the future for at least four genera with fossil types: Cruciplacolithus and Reticulofenestra (nannoplankton) and Dictyocha and Stephanocha (silicoflagellates). Herein, some of the rules and recommendations are explained, with nannoplankton and silicoflagellate examples. Keywords nannoplankton, nannofossils, silicoflagellates, taxonomy, ICBN, ICN 1. Introduction name, all names for which it is the basionym Explanatory notes on the rules and recommendations of are similarly rejected, and none is to be used previous versions of the International Code of Botanical (see Rec. 50E.2). -
Ferns Robert H
Southern Illinois University Carbondale OpenSIUC Illustrated Flora of Illinois Southern Illinois University Press 10-1999 Ferns Robert H. Mohlenbrock Southern Illinois University Carbondale Follow this and additional works at: http://opensiuc.lib.siu.edu/siupress_flora_of_illinois Part of the Botany Commons Recommended Citation Mohlenbrock, Robert H., "Ferns" (1999). Illustrated Flora of Illinois. 3. http://opensiuc.lib.siu.edu/siupress_flora_of_illinois/3 This Book is brought to you for free and open access by the Southern Illinois University Press at OpenSIUC. It has been accepted for inclusion in Illustrated Flora of Illinois by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. THE ILLUSTRATED FLORA OF ILLINOIS ROBERT H. MOHLENBROCK, General Editor THE ILLUSTRATED FLORA OF ILLINOIS s Second Edition Robert H. Mohlenbrock SOUTHERN ILLINOIS UNIVERSITY PRESS Carbondale and Edwardsville COPYRIGHT© 1967 by Southern Illinois University Press SECOND EDITION COPYRIGHT © 1999 by the Board of Trustees, Southern Illinois University All rights reserved Printed in the United States of America 02 01 00 99 4 3 2 1 Library of Congress Cataloging-in-Publication Data Mohlenbrock, Robert H., 1931- Ferns I Robert H. Mohlenbrock. - 2nd ed. p. em.- (The illustrated flora of Illinois) Includes bibliographical references and index. 1. Ferns-Illinois-Identification. 2. Ferns-Illinois-Pictorial works. 3. Ferns-Illinois-Geographical distribution-Maps. 4. Botanical illustration. I. Title. II. Series. QK525.5.I4M6 1999 587'.3'09773-dc21 99-17308 ISBN 0-8093-2255-2 (cloth: alk. paper) CIP The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984.§ This book is dedicated to Miss E. -
Distribution of Foliicolous Lichen Strigula and Genetic Structure of S. Multiformis on Jeju Island, South Korea
microorganisms Article Distribution of Foliicolous Lichen Strigula and Genetic Structure of S. multiformis on Jeju Island, South Korea Seung-Yoon Oh 1 , Jung-Jae Woo 1,2 and Jae-Seoun Hur 1,* 1 Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea; [email protected] (S.-Y.O.); [email protected] (J.-J.W.) 2 Division of Forest Biodiversity, Korea National Arboretum, 415 Gwangneungsumok-ro, Pocheon 11186, Korea * Correspondence: [email protected]; Tel.: +82-61-750-3383 Received: 3 August 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: Strigula is a pantropic foliicolous lichen living on the leaf surfaces of evergreen broadleaf plants. In South Korea, Strigula is the only genus of foliicolous lichen recorded from Jeju Island. Several Strigula species have been recorded, but the ecology of Strigula in South Korea has been largely unexplored. This study examined the distribution and genetic structure of Strigula on Jeju Island. The distribution was surveyed and the influence of environmental factors (e.g., elevation, forest availability, and bioclimate) on the distribution was analyzed using a species distribution modeling analysis. In addition, the genetic variations and differentiation of Strigula multiformis populations were analyzed using two nuclear ribosomal regions. The distribution of Strigula was largely restricted to a small portion of forest on Jeju Island, and the forest availability was the most important factor in the prediction of potential habitats. The genetic diversity and differentiation of the S. multiformis population were found to be high and were divided according to geography. On the other hand, geographic and environmental distance did not explain the population differentiation. -
Polypore Diversity in North America with an Annotated Checklist
Mycol Progress (2016) 15:771–790 DOI 10.1007/s11557-016-1207-7 ORIGINAL ARTICLE Polypore diversity in North America with an annotated checklist Li-Wei Zhou1 & Karen K. Nakasone2 & Harold H. Burdsall Jr.2 & James Ginns3 & Josef Vlasák4 & Otto Miettinen5 & Viacheslav Spirin5 & Tuomo Niemelä 5 & Hai-Sheng Yuan1 & Shuang-Hui He6 & Bao-Kai Cui6 & Jia-Hui Xing6 & Yu-Cheng Dai6 Received: 20 May 2016 /Accepted: 9 June 2016 /Published online: 30 June 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Profound changes to the taxonomy and classifica- 11 orders, while six other species from three genera have tion of polypores have occurred since the advent of molecular uncertain taxonomic position at the order level. Three orders, phylogenetics in the 1990s. The last major monograph of viz. Polyporales, Hymenochaetales and Russulales, accom- North American polypores was published by Gilbertson and modate most of polypore species (93.7 %) and genera Ryvarden in 1986–1987. In the intervening 30 years, new (88.8 %). We hope that this updated checklist will inspire species, new combinations, and new records of polypores future studies in the polypore mycota of North America and were reported from North America. As a result, an updated contribute to the diversity and systematics of polypores checklist of North American polypores is needed to reflect the worldwide. polypore diversity in there. We recognize 492 species of polypores from 146 genera in North America. Of these, 232 Keywords Basidiomycota . Phylogeny . Taxonomy . species are unchanged from Gilbertson and Ryvarden’smono- Wood-decaying fungus graph, and 175 species required name or authority changes. -
The Herb Society of America, Inc. Style Manual
The Herb Society of America, Inc. Style Manual 2020 Revision 11-4-19 Final Draft Approved May 2020 The Herb Society of America (The Society or HSA) actively works to disseminate knowledge about herbs. The Society has developed its own style guide, based on such major references as The Chicago Manual of Style: The Essential Guide for Writers, Editors, and Publishers and Council of Science Editors (CSE), Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers. This manual presents a concise format of the accepted usage of terms that are often found in all official HSA publications. This guide is not intended to be an exhaustive reference for HSA authors, but it is hoped the information here will answer most questions for those writing for HSA publications. The general editorial rules that apply today favor fewer of many things than applied in the past. That means punctuation only when necessary to avoid misreading, and capitalization in many fewer instances than in the past. In addition, we request that authors use active voice rather than passive voice. If you have questions which are not answered by this guide, please contact HSA Headquarters at 440-256-0514. Authors submitting articles for a specific publication, e.g., The Herbarist, newsletters, or the blog, should consult the Guidelines for Authors under the submissions tab on the publications section of the website. 2 GENERAL FORMATTING GUIDELINES For consistency and ease of editing and processing, HSA requests that authors format their contributions utilizing the guidelines below. While manuscripts submitted to The Herbarist or lengthy herbal essential guides will benefit from all the guidelines, book reviews, newsletter articles, and brief notes may not use the entire list. -
Checklist of the Vascular Plants of Finland. Suomen Putkilokasvien Luettelo
Symbols / Merkit spontaneous / alkuperäinen ● old, resident vanha, vakinainen × old, formerly resident, possibly extinct vanha, aiemmin vakinainen, mahdollisesti hävinnyt + old, formerly resident, extinct vanha, aiemmin vakinainen, hävinnyt ■ new, resident uusi, vakinainen ▲ new, ephemeral uusi, satunnainen ▼ new, ephemeral (no records since 1980) uusi, satunnainen (ei havaintoja v. 1979 jälkeen) alien, old / muinaistulokas ● resident vakinainen × formerly resident, possibly extinct aiemmin vakinainen, mahdollisesti hävinnyt aiemmin vakinainen, hävinnyt (ei havaintoja v. 1979 formerly resident, extinct (no records since 1980) + jälkeen) alien, new / tulokas, uusi resident vakinainen ephemeral satunnainen ephemeral (no records since 1980) satunnainen (ei havaintoja v. 1979 jälkeen) uncertain or not evaluated / epävarma tai ei arvioitu taksonin määritys ja/tai esiintyminen luonnossa ? identification and/or occurrence in the wild uncertain epävarmaa . status not evaluated statusta ei arvioitu of cultivated origin / viljelyperäinen 1 to a moderate extent, spreading in the wild jossain määrin, leviää luonnossa 2 largely, spreading in the wild laajalti, leviää luonnossa 3 completely, spreading in the wild täysin, leviää luonnossa cultivated plants occurring as soil or/and garden re- viljelykasvit, joita tavataan maa- tai puutarhajäte- fuse immigrants at landfills, rubbish dumps and other kasoilta jätemaalueilla, kaatopaikoilla ja vastaavilla M similar places, perhaps surviving for a long time but paikoilla ehkä pitkäänkin säilyvinä mutta -
Polyporus Ciliatus
© Demetrio Merino Alcántara [email protected] Condiciones de uso Polyporus ciliatus Fr., Observ. mycol. (Havniae) 1: 123 (1815) Polyporaceae, Polyporales, Incertae sedis, Agaricomycetes, Agaricomycotina, Basidiomycota, Fungi ≡ Boletus nummulariformis L. Marchand, Bijdr. Natuurk. Wetensch. 1: 145 (1826) = Boletus substrictus Bolton, Hist. fung. Halifax, App. (Huddersfield): 170 (1792) [1791] = Favolus brasiliensis var. guarapiensis (Speg.) Rick, in Rambo (Ed.), Iheringia, Sér. Bot. 7: 264 (1960) ≡ Lentinus ciliatus (Fr.) Zmitr., International Journal of Medicinal Mushrooms (Redding) 12(1): 88 (2010) ≡ Leucoporus brumalis var. ciliatus (Fr.) Quél., Enchir. fung. (Paris): 165 (1886) ≡ Leucoporus ciliatus (Fr.) Quél., Enchir. fung. (Paris): 165 (1886) ≡ Polyporellus ciliatus (Fr.) P. Karst., Meddn Soc. Fauna Flora fenn. 5: 37 (1879) = Polyporus brumalis var. expansus Velen., České Houby 4-5: 670 (1922) ≡ Polyporus ciliatus Fr., Observ. mycol. (Havniae) 1: 123 (1815) f. ciliatus ≡ Polyporus ciliatus Fr., Observ. mycol. (Havniae) 1: 123 (1815) var. ciliatus ≡ Polyporus ciliatus var. granulosus Velen., Novitates Mycologicae Novissimae: 88 (1947) ≡ Polyporus ciliatus var. minor Velen., Novitates Mycologicae: 160 (1939) ≡ Polyporus ciliatus var. tropicus Dörfelt, Kiet & A. Berg bis, Feddes Repert. 115(1-2): 166 (2004) = Polyporus coerulescens Velen., České Houby 4-5: 672 (1922) = Polyporus guarapiensis Speg., Anal. Soc. cient. argent. 26(1): 6 (1888) = Polyporus saitoi Lloyd, Mycol. Writ. 7: 1269 (1924) = Polyporus ustalis Velen., České Houby 4-5: 671 (1922) = Polyporus zonatus Velen., České Houby 4-5: 671 (1922) Material estudiado: Francia, Aquitania, Osse en Aspe, Pierre St. Martin, 30TXN8663, 931 m, sobre tronco caído de Fagus sylvatica, 24-VI-2015, leg. Dianora Estrada y Demetrio Merino, JA-CUSSTA: 8431. Descripción macroscópica: Sombrero de 1-5 cm de diámetro, de convexo a aplanado, deprimido a ligeramente infundibuliforme en el centro, con el borde enrrollado. -
A Revised Family-Level Classification of the Polyporales (Basidiomycota)
fungal biology 121 (2017) 798e824 journal homepage: www.elsevier.com/locate/funbio A revised family-level classification of the Polyporales (Basidiomycota) Alfredo JUSTOa,*, Otto MIETTINENb, Dimitrios FLOUDASc, € Beatriz ORTIZ-SANTANAd, Elisabet SJOKVISTe, Daniel LINDNERd, d €b f Karen NAKASONE , Tuomo NIEMELA , Karl-Henrik LARSSON , Leif RYVARDENg, David S. HIBBETTa aDepartment of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA bBotanical Museum, University of Helsinki, PO Box 7, 00014, Helsinki, Finland cDepartment of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden dCenter for Forest Mycology Research, US Forest Service, Northern Research Station, One Gifford Pinchot Drive, Madison, 53726, WI, USA eScotland’s Rural College, Edinburgh Campus, King’s Buildings, West Mains Road, Edinburgh, EH9 3JG, UK fNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO 0318, Oslo, Norway gInstitute of Biological Sciences, University of Oslo, PO Box 1066, Blindern, N-0316, Oslo, Norway article info abstract Article history: Polyporales is strongly supported as a clade of Agaricomycetes, but the lack of a consensus Received 21 April 2017 higher-level classification within the group is a barrier to further taxonomic revision. We Accepted 30 May 2017 amplified nrLSU, nrITS, and rpb1 genes across the Polyporales, with a special focus on the Available online 16 June 2017 latter. We combined the new sequences with molecular data generated during the Poly- Corresponding Editor: PEET project and performed Maximum Likelihood and Bayesian phylogenetic analyses. Ursula Peintner Analyses of our final 3-gene dataset (292 Polyporales taxa) provide a phylogenetic overview of the order that we translate here into a formal family-level classification. -
A Taxonomic Information Model for Botanical Databases: the IOPI Model
TAXON 46 ϑ MAY 1997 283 A taxonomic information model for botanical databases: the IOPI Model Walter G. Berendsohn1 Summary Berendsohn, W. G.: A taxonomic information model for botanical databases: the IOPI Model. ϑ Taxon 46: 283-309. 1997. ϑ ISSN 0040-0262. A comprehensive information model for the recording of taxonomic data from literature and other sources is presented, which was devised for the Global Plant Checklist database project of the International Organisation of Plant Information (IOPI). The model is based on an approach using hierarchical decomposition of data areas into atomic data elements and ϑ in parallel ϑ abstraction into an entity relationship model. It encompasses taxa of all ranks, nothotaxa and hybrid formulae, "unnamed taxa", cultivars, full synonymy, misapplied names, basionyms, nomenclatural data, and differing taxonomic concepts (potential taxa) as well as alternative taxonomies to any extent desired. The model was developed together with related models using a CASE (Computer Aided Software Engineering) tool. It can help designers of biological information systems to avoid the widely made error of over-simplification of taxonomic data and the resulting loss in data accuracy and quality. Introduction Data models. ϑ A model is "a representation of something" (Homby, 1974). In the technical sense, a model is the medium to record the structure of an object in a more or less abstract way, following pre-defined and documented rules. The objecti- ve of applying modelling techniques is either to describe and document the structure of an existing object, or to prescribe the structure of one to be created. In both cases, the model can be used to test (physically, or, in most cases, intellectually) the functi- on of the object and to document it, for example for future maintenance.