Narrowband LTE in Machine to Machine Satellite Communication

Total Page:16

File Type:pdf, Size:1020Kb

Narrowband LTE in Machine to Machine Satellite Communication Narrowband LTE in Machine to Machine Satellite Communication Petri Niemelä School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 28.5.2018 Thesis supervisor and advisor: Assistant Prof. Jaan Praks aalto university abstract of the school of electrical engineering master’s thesis Author: Petri Niemelä Title: Narrowband LTE in Machine to Machine Satellite Communication Date: 28.5.2018 Language: English Number of pages: 7+60 Department of Electrical Engineering and Automation Professorship: Control, Robotics and Autonomous Systems Supervisor and advisor: Assistant Prof. Jaan Praks Recent trends to wireless Machine-to-Machine (M2M) communication and Internet of Things (IoT) have created a new demand for more efficient low-throughput wireless data connections. Beside the traditional wireless standards, focused on high bandwidth data transfer, has emerged a new generation of Low Power Wide Area Networks (LPWAN) which targets for less power demanding low-throughput devices requiring inexpensive data connections. Recently released NB-IoT (Narrowband IoT) specification extends the existing 4G/LTE standard allowing easily accessible LPWAN cellular connectivity for IoT devices. Narrower bandwidth and lower data rates combined to a simplified air interface make it less resource demanding while still benefiting from the widely spread LTE technology and infrastructure. Applications, such as wide scale sensor or asset tracking networks, can benefit from a global scale network coverage and easily available low-cost user equipment which could be made possible by new narrowband IoT satellite networks. In this thesis, the NB-IoT specification and its applicability for satellite commu- nication is discussed. Primarily, LTE and NB-IoT standards are designed only for terrestrial use. Their utilization in Earth-to-space communication raises new challenges, such as timing and frequency synchronization requirements when uti- lizing Orthogonal Frequency Signal Multiplexing (OFDM) techniques. Many of these challenges can be overcome by specification adaptations and other existing techniques making minimal changes to the standard and allowing extension of the terrestrial cellular networks to global satellite access. Keywords: Machine Type Communication, Internet of Things, Cellular IoT, NB-IoT, LTE, Satellite Communication aalto-yliopisto diplomityön sähkötekniikan korkeakoulu tiivistelmä Tekijä: Petri Niemelä Työn nimi: Kapeankaistan LTE koneiden välisessä satelliittitietoliikenteessä Päivämäärä: 28.5.2018 Kieli: Englanti Sivumäärä: 7+60 Sähkötekniikan ja automaation laitos Professuuri: Säätötekniikka, robotiikka ja autonomiset järjestelmät Työn valvoja ja ohjaaja: Apulaisprof. Jaan Praks Viimeaikaiset kehitystrendit koneiden välisessä kommunikaatiossa (Machine to Machine Communication, M2M) ja esineiden Internet (Internet of Things, IoT) -sovelluksissa ovat luoneet perinteisteisten nopean tiedonsiirron langattomien standardien ohelle uuden sukupolven LPWAN (Low Power Wide Area Networks) -tekniikoita, jotka ovat tarkoitettu pienitehoisille tiedonsiirtoa tarvitseville sovel- luksille. Viimeaikoina yleistynyt NB-IoT standardi laajentaa 4G/LTE standardia mah- dollistaen entistä matalamman virrankulutuksen matkapuhelinyhteydet IoT laitteissa. Kapeampi lähetyskaista ja hitaampi tiedonsiirtonopeus yhdistettynä yksinkertaisempaan ilmarajapintaan mahdollistaa pienemmät resurssivaatimukset saman aikaan hyötyen laajalti levinneistä LTE teknologioista ja olemassa olevasta infrastruktuurista. Useissa sovelluskohteissa, kuten suurissa sensoriverkoissa, voitaisiin hyötyä merkittävästi globaalista kattavuudesta yhdistettynä edullisiin helposti saataviin päätelaitteisiin. Tässä työssä käsitellään NB-IoT standardia ja sen soveltuvuutta satellittitieto- liikenteeseen. LTE ja NB-IoT ovat kehitty maanpääliseen tietoliikenteeseen ja niiden hyödyntäminen avaruuden ja maan välisessä kommunikaatiossa aiheuttaa uusia haasteita esimerkiksi aika- ja taajuussynkronisaatiossa ja OFDM (Orthogo- nal Frequency Signal Multiplexing) -tekniikan hyödyntämisessä. Nämä haasteet voidaan ratkaista soveltamalla spesifikaatiota sekä muilla jo olemassa olevilla tek- niikoilla tehden mahdollisimman vähän muutoksia alkuperäiseen standardiin, ja täten sallien maanpäälisten IoT verkkojen laajenemisen avaruuteen. Avainsanat: Koneiden välinen kommunikaatio, Esineiden Internet, Cellular IoT, NB-IoT, LTE, Satelliittitietoliikenne iv Contents Abstract ii Abstract (in Finnish) iii Contents iv Abbreviations vi 1 Introduction1 1.1 Motivation................................. 1 1.2 Objective of the Thesis.......................... 2 1.3 Structure of the Thesis.......................... 2 2 Internet of Things4 2.1 The Internet of Things -trend...................... 4 2.2 Machine to Machine Communication.................. 5 2.3 Low Power Wide Area Networks..................... 6 2.4 Cellular Internet of Things........................ 9 2.5 Space-Enabled Internet of Things.................... 10 3 Satellite Communication 12 3.1 Background................................ 12 3.2 Challenges................................. 14 3.3 Satellite Broadcast Services....................... 17 3.4 Mobile Satellite Services......................... 18 3.5 Small satellites.............................. 20 4 4th Generation Mobile Cellular Network 21 4.1 LTE specification............................. 21 4.2 Network Architecture........................... 22 4.3 Protocol stack............................... 23 4.4 Air Interface................................ 24 4.4.1 Orthogonal Frequency Division Multiplexing.......... 25 4.4.2 Single-Carrier Frequency Division Multiple Access....... 27 4.4.3 Cyclic Prefixing.......................... 28 4.4.4 Frame and Protocol Structure.................. 29 4.4.5 Random Access.......................... 30 4.5 LTE in Machine to Machine communication.............. 32 5 Narrowband Internet of Things 33 5.1 Background................................ 33 5.2 Deployment................................ 34 5.3 Downlink................................. 35 5.4 Uplink................................... 37 5.5 Scheduling and Medium Access Control................. 40 v 5.6 User Equipment.............................. 41 6 Cellular Machine to Machine Satellite Network 42 6.1 Concept.................................. 42 6.2 Challenges................................. 44 6.3 Cellular Satellite Network........................ 46 6.4 Downlink................................. 47 6.5 Uplink................................... 49 6.6 Ground User Equipment......................... 52 7 Conclusion 53 References 55 vi Abbreviations 3GPP 3rd Generation Partnership Project 4G 4th Generation Mobile Communication Technology AWGN Additive White Gaussian Noise BPSK Binary Phase Shift Keying CIoT Cellular IoT CP Cyclic Prefix dBm Power in decibels (dB) referenced to one milliwatt (mW) DMRS Demodulation Reference Signal DL Downlink DVB-S2 Digital Video Broadcasting - Satellite - Second Generation eNB or eNodeB Evolved Node B, LTE basestation E-UTRA Evolved Universal Terrestrial Radio Access GEO Geostationary Earth Orbit (35 786 kilometers) HARQ Hybrid Automatic Repeat reQuest ICI Inter Carrier Interference IEEE Institute of Electrical and Electronics Engineers IoT Internet of the Things ISI Inter Symbol Interference ITU-R The Radiocommunication sector of the International Telecommunication Union kbps Kilobits per second Ku-band Ku frequency band according to IEEE standard (12 to 18 GHz) LPWAN Low-Power Wide-Area Network LTE Long Term Evolution LTE-A LTE-Advanced LTE-M LTE Category-M specification for Machine Type Communication M2M Machine to Machine MAC Media/Medium Access Control Mbps Megabits per second MTC Machine-Type Communication NAS Non-stratum Access NB-IoT Narrowband Internet of Things NPBCH Narrowband Physical Broadcast Channel NPDSCH Narrowband Physical Downlink Shared Channel NPRACH Narrowband Physical Random Access Channel NPSS Narrowband Primary Synchronization Signal NPUSCH Narrowband Physical Uplink Shared Channel NSSS Narrowband Secondary Synchronization Signal OFDM Orthogonal Frequency-Division Multiplexing OFDMA Orthogonal Frequency-Division Multiple Access PAPR Peak-to-Average Power Ratio PDU Protocol Data Unit PDCP Packet Data Convergence Protocol vii PRB Physical Resource Block PSK Phase Shift Keying QoS Quality of Service QAM Quadrature Amplitude Modulation QPSK Quadrature Phase Shift Keying RRC Radio Resource Control RLC Radio Link Control S-band S frequency band according to IEEE standard (2 to 4 GHz) SC-FDMA Single Carrier Frequency Division Multiple Access TTI Transmission Time Interval UE User Equipment UHF Ultra High Frequency -band (according to IEEE standard 300 - 1000 MHz) UL Uplink UMTS Universal Mobile Telecommunications System 1 Introduction This chapter is an introductory chapter for the general topic, the main concepts and the motivation for the work. The second half of the chapter describes the general objective and the structure of the thesis for guidance. 1.1 Motivation During the last two decades, the worldwide multiplication of connected devices has been driven by the growth of the personal mobile phone market. In urban areas, wireless communication networks have grown larger, offering high throughput connections for data-demanding customers. Recently, this trend has entered a new phase, offering even higher data rate connections to each user and enabling multiple connected devices for various applications. From recent development,
Recommended publications
  • Remote SIM Provisioning Over Narrowband Iot
    Remote SIM Provisioning over Narrowband IoT White Paper | November 2020 Contents: NB-IoT is gaining momentum NB-IoT is gaining momentum The Internet of Things (IoT) is growing rapidly, with 27 billion connected Overcoming limitations with RSP devices predicted to be deployed by 2025 (Machina Research 2016). All these NB-IoT roaming: work in progress devices will require safe, reliable and ubiquitous connectivity to deliver NB-IoT and MNOs valuable insights that help drive efficiencies and gain competitive edge. Data messaging, protocols Cellular technologies are ideally positioned and scaled to deliver this, but the and availability increasing variety of new IoT devices and services is calling for new cellular NB-IoT modules ready for RSP technologies to satisfy specific connectivity needs. Growing the ecosystem Narrowband IoT (NB-IoT) is one of the top emerging low power, wide area networking (LPWAN) cellular technologies that satisfy the growing demand Is it plausible to employ for off-grid connectivity for very large deployments of low-complexity IoT devices. remote SIM provisioning NB-IoT technology offers great power efficiency, system capacity and spectral over Narrowband IoT? efficiency at a low price. Easy to set up, it has already been launched by 96 This is the question on Operators across 54 countries, where they continue to invest in its rollout, footprint the lips of many IoT and inter-operator global roaming agreements (Figures as of August 2020). innovators looking to It promises a wide range of benefits to different stakeholders: leverage the benefits of NB-IoT cellular For manufacturers of IoT devices, it is a more economical alternative if compared to LTE-M, due to the lower device connectivity.
    [Show full text]
  • Narrowband Iot Introduction
    Wireless IoT Technologies and Applications - Narrowband IoT Introduction Rachel Wang Senior Engineer Hong Kong Applied Science and Technology Research Institute (ASTRI) May, 2016 ASTRI Proprietary Agenda Market and Applications 3 3 Narrowband IoT (NB- 1 of Cellular Internet of 2 Things (IoT) IoT) technology 3 NB-IoT standardization 3 3 4 Summary in 3GPP ASTRI Proprietary 2 Market forecast of cellular IoT Connections forecast 2014-2022 (Millions) 2.7 billion devices for IoT will be wirelessly connected via cellular network by 2022 according to several research companies’ forecast. ASTRI Proprietary 3 Interconnection – one key aspect of IoT Inter- sensing connection Processing Which communication technology is the competitive candidate for long distance, low cost and highly reliable interconnection? ASTRI Proprietary 4 Communication technologies comparison Multiple Standards Power consumption largely dependent on transmission range and protocol https://community.freescale.com/community/the-embedded-beat/blog/2010/03/30/so-many-wireless-connectivities--wont-one- size-fit-all Cellular communication can enable more applications of IoT. ASTRI Proprietary 5 Applications of cellular IoT (1) Source: Huawei, NB-IoT white paper, 2015 ASTRI Proprietary 6 Applications of cellular IoT (2) Water/gas/electricity metering Public lighting/water rush/smoke sensor monitor and control Modern agriculture: Monitor the temperature and humidity of field Monitor the health of forest/flower and etc. Monitor the place and health of animal in the farm/water
    [Show full text]
  • EVOLUTION and CONVERGENCE in TELECOMMUNICATIONS 2002 2Nd Edition 2005
    the united nations 11 abdus salam educational, scientific and cultural international organization ISBN 92-95003-16-0 centre for theoretical international atomic physics energy agency lecture notes EVOLUTION AND CONVERGENCE IN TELECOMMUNICATIONS 2002 2nd Edition 2005 editors S. Radicella D. Grilli ICTP Lecture Notes EVOLUTION AND CONVERGENCE IN TELECOMMUNICATIONS 11 February - 1 March 2002 Editors S. Radicella The Abdus Salam ICTP, Trieste, Italy D. Grilli The Abdus Salam ICTP, Trieste, Italy EVOLUTION AND CONVERGENCE IN TELECOMMUNICATIONS - First edition Copyright © 2002 by The Abdus Salam International Centre for Theoretical Physics The Abdus Salam ICTP has the irrevocable and indefinite authorization to reproduce and dissem• inate these Lecture Notes, in printed and/or computer readable form, from each author. ISBN 92-95003-16-0 Printed in Trieste by The Abdus Salam ICTP Publications & Printing Section iii PREFACE One of the main missions of the Abdus Salam International Centre for Theoretical Physics in Trieste, Italy, founded in 1964 by Abdus Salam, is to foster the growth of advanced studies and research in developing countries. To this aim, the Centre organizes a large number of schools and workshops in a great variety of physical and mathematical disciplines. Since unpublished material presented at the meetings might prove of great interest also to scientists who did not take part in the schools the Centre has decided to make it available through a new publication titled ICTP Lecture Note Series. It is hoped that this formally structured pedagogical material in advanced topics will be helpful to young students and researchers, in particular to those working under less favourable conditions.
    [Show full text]
  • Enabling Massive Iot Toward 6G: a Comprehensive Survey Fengxian Guo, F
    1 Enabling Massive IoT Toward 6G: A Comprehensive Survey Fengxian Guo, F. Richard Yu, Fellow, IEEE, Heli Zhang, Xi Li, Hong Ji, Senior Member, IEEE, and Victor C.M. Leung, Fellow, IEEE Abstract—Nowadays, many disruptive Internet of things (IoT) in the future, including holographic communications, five- applications emerge, such as augmented/virtual reality (AR/VR) sense communications, and wireless brain-computer interfaces online games, autonomous driving, and smart everything, which (WBCI), which will lead to a true immersion into a distant are massive in number, data-intensive, computation-intensive, and delay-sensitive. Due to the mismatch between the fifth gen- environment. At the same time, advances in personal com- eration (5G) and the requirements of such massive IoT-enabled munications will promote the evolution of smart verticals in applications, there is a need for technological advancements and the fifth generation networks (5G) to a higher level, including evolutions for wireless communications and networking toward healthcare, remote education/training, industry Internet, fully the sixth generation (6G) networks. 6G is expected to deliver autonomous driving, and super smart homes/cities. During extended 5G capabilities at a very high level, such as Tbps data rate, sub-ms latency, cm-level localization, and so on, this paradigm shift, the Internet of Things (IoT) plays a vital which will play a significant role in supporting massive IoT role in enabling these emerging applications by connecting devices to operate seamlessly with highly diverse service require- the physical environment to the cyberspace of communication ments. Motivated by the aforementioned facts, in this paper, systems [1]. we present a comprehensive survey on 6G-enabled massive IoT.
    [Show full text]
  • Iot Whitepaper
    IoT Solution Whitepaper WHITEPAPER, MARCH 2019 THE GAME CHANGER FOR THE INTERNET OF THINGS 1 IoT Solution Whitepaper INTRODUCTION The Internet of Things (IoT) is rapidly creating new ecosystems, revealing new insights and efficiencies, and enabling a vast array of new services and business models. While headline- grabbing IoT applications such as augmented reality or self-driving cars capture the imagination, many IoT use cases do not need to rely on high-performance wireless modules and low-latency, high-bandwidth connectivity. For Low Power Wide Area (LPWA) applications—such as smart metering, tracking of assets, and monitoring equipment—the key requirement is the ability to periodically exchange small amounts of data easily, reliably, and cost-effectively. Unlike most other existing mobile communications technologies, Narrowband IoT (NB-IoT) is optimized for these types of applications—making NB-IoT an ideal network technology for a broad array of IoT solutions. Billions of devices Low data volume Low energy consumption Deep indoor penetration Up to 100x more devices per cell Bidirectional, infrequent transmission Up to 10 years of battery-powered +20 dB link budget (compared (compared to GSM) of low data volumes. Data rates avg operation2 to GSM) 1 throughput of ~60bps 1 Dependent on network utilization and signal strength 2 Assuming equivalent of 2 AA batteries and typical traffic pattern Picture 1: NB-IoT’s core benefits Designed for massive IoT NB-IoT utilizes LTE network operators’ advantages include lower costs, reduced existing assets, such as sites, base stations, power consumption, and deeper indoor In its 2016 Release 13 standards, the 3rd antennae, backhaul, and licensed spectrum.
    [Show full text]
  • Reduced Complexity Detection of Narrowband Secondary Synchronization Signal for NB-Iot Communication Systems
    S S symmetry Article Reduced Complexity Detection of Narrowband Secondary Synchronization Signal for NB-IoT Communication Systems Young-Hwan You Department of Computer Engineering, Sejong University, Gwangjin-gu, Gunja-dong 98, Seoul 05006, Korea; [email protected] Received: 1 July 2020; Accepted: 6 August 2020; Published: 11 August 2020 Abstract: Narrowband Internet of Things is one of the most promising technologies to support low cost, massive connection, deep coverage, and low power consumption. In this paper, a computationally efficient narrowband secondary synchronization signal detection method is proposed in the narrowband Internet of Things system. By decoupling the detection of complementary sequence and Zadoff–Chu sequence that make up the synchronization signal sequence, the search space of narrowband secondary synchronization signal hypotheses is reduced. Such a design strategy along with the use of the symmetric property of synchronization signals allows reduced-complexity synchronization signal detection in the narrowband Internet of Things system. Both theoretical and simulation results are provided to verify the usefulness of the proposed detector. It is shown via simulation results that the complexity of the proposed detection method is significantly reduced while producing some performance degradation, compared to the conventional detection method. Keywords: narrowband Internet of Things; narrowband secondary synchronization signal 1. Introduction With the rapid growth of the Internet of Things (IoT) industry, Low-Power Wide-Area (LPWA) technologies become more and more popular [1]. Recently, cellular LPWA solutions, such as enhanced Long Term Evolution for Machine-Type Communication (LTE-MTC), Extended Coverage-Global System for Mobile communications for the IoT (EC GSM-IoT), and Narrowband IoT (NB-IoT), have been envisaged as a promising technology for existing and future cellular networks [2–5].
    [Show full text]
  • Beamforming in LEO Constellations for NB-Iot Services in 6G Communications
    Beamforming in LEO Constellations for NB-IoT Services in 6G Communications Alessandro Guidotti, Matteo Conti, Alessandro Vanelli-Coralli Department of Electrical, Electronic, and Information Engineering ”Guglielmo Marconi” (DEI) University of Bologna, Bologna, Italy fa.guidotti, matteo.conti19, [email protected] Abstract—With the first commercializations of 5G networks, connections (52547 per cell-site sector); and iv) improving Beyond 5G (B5G), or 6G, systems are starting to be defined. the battery efficiency. It shall be noticed that this is actually a In this context, Internet of Things (IoT) services will be even new technology and, thus, not fully backward compatible with more impactful with respect to 5G systems. In order to cope with the huge amount of IoT devices, and the potentially large legacy 3GPP devices. Based on the lessons learnt from the capacity requirements for the most advanced of them (e.g., live initial 5G deployments and on the global societal and network camera feeds from first responders in emergency scenarios), trends, the translation from human-centric towards machine- non-terrestrial systems will be pivotal to assist and complement centric communications will be even more pronounced in the terrestrial networks. In this paper, we propose a multi- 6G. In fact, it is expected that the number of Machine-To- layer non-terrestrial architecture for NarrowBand-IoT (NB-IoT) services based on Geosynchronous Orbit (GSO) and Non GSO Machine (M2M) connections will increase from 8.9 billions (NGSO) nodes. To cope with both the number of devices and the in 2020 to 14.7 billions in 2023, representing one third of potentially large capacities, we propose to implement Minimum the global devices, [15].
    [Show full text]
  • Spread Spectrum
    9/2/15 SPREAD SPECTRUM 37 Spread Spectrum q Frequency-dependent fading bad for narrowband signals Ø Narrowband interference can wipe out signals q “Spread” the narrowband signal into a broadband signal Ø Receiver “de-spreads” signal (“spreads” narrowband interference) dP/df dP/df dP/df dP/df (iii) (iv) (i) (ii) f f f f sender receiver dP/df user signal broadband interference (v) narrowband interference f 38 © Jasleen Kaur 2015 1 9/2/15 Spread Spectrum: Multiple Channels q Resistance to narrowband interference q Coexistence of multiple signals without coordination Ø No need for frequency planning Ø Resistance to frequency-selective fading Ø Tap-proof (with secret code and CDM) Ø Characteristics like background noise channel channel quality quality 2 2 2 2 2 1 5 6 2 3 1 4 frequency narrow band guard space spread frequency signal spectrum narrowband channels spread spectrum channels 39 Direct Sequence Spread Spectrum q XOR of the signal with “chipping sequence” Ø Chipping sequence is a pseudo-random number q Many chips per bit è higher signal bandwidth Ø By the factor, s = tb / tc tb Ø Civil applications, s of 10 – 100 user data Ø Military applications, up to 10,000 0 1 XOR tc q IEEE 802.11 uses Barker codes chipping sequence Ø Good robustness against 0 1 1 0 1 0 1 0 1 1 0 1 0 1 interference = resulting Ø Insensitivity to multi-path signal propagation 0 1 1 0 1 0 1 1 0 0 1 0 1 0 tb: bit period tc: chip period 40 © Jasleen Kaur 2015 2 9/2/15 Direct Sequence Spread Spectrum q Receiver has to perform correlation: Ø Synchronize to identify bit
    [Show full text]
  • LTE Progress Leading to the 5G Massive Internet of Things 1
    LTE Progress Leading to the 5G Massive Internet of Things 1 LTE Progress Leading to the 5G Massive Internet of Things CONTENTS Executive Summary ...................................................................................................................................... 4 1. Introduction ............................................................................................................................................... 7 2. IoT Market Drivers ..................................................................................................................................... 9 2.1 Evolution from M2M to IoT ................................................................................................................ 10 2.2 Key IoT Market Drivers ...................................................................................................................... 12 2.3 IoT Connectivity Market Forecast ...................................................................................................... 15 2.4 Operator Deployment Concepts ........................................................................................................ 20 2.4.1 Global IoT Platforms ................................................................................................................... 22 3. IoT Requirements .................................................................................................................................... 29 3.1 Overview in 3GPP ............................................................................................................................
    [Show full text]
  • Communications in the 6G Era
    Communications in the 6G Era White paper The focus of wireless research is increasingly shifting toward 6G as 5G deployments get underway. At this juncture, it is essential to establish a vision of future communications to provide guidance for that research. In this paper, we attempt to paint a broad picture of communication needs and technologies in the timeframe of 6G. The future of connectivity is in the creation of digital twin worlds that are a true representation of the physical and biological worlds at every spatial and time instant, unifying our experience across these physical, biological and digital worlds. New themes are likely to emerge that will shape 6G system requirements and technologies, such as: (i) new man–machine interfaces created by a collection of multiple local devices acting in unison; (ii) ubiquitous universal computing distributed among multiple local devices and the cloud; (iii) multi-sensory data fusion to create multi-verse maps and new mixed-reality experiences; and (iv) precision sensing and actuation to control the physical world. With rapid advances in artificial intelligence, it has the potential to become the foundation for the 6G air interface and network, making data, compute and energy the new resources to be exploited for achieving superior performance. In addition, in this paper we discuss the other major technology transformations that are likely to define 6G: (i) cognitive spectrum sharing methods and new spectrum bands; (ii) the integration of localization and sensing capabilities into the system definition, (iii) the achievement of extreme performance requirements on latency and reliability; (iv) new network architecture paradigms involving sub-networks and RAN– Core convergence; and (v) new security and privacy schemes.
    [Show full text]
  • Performance Analysis of Spread Spectrum Techniques
    Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) Performance Analysis of Spread Spectrum Techniques Astha Singh1 Faculty Electronics Engg. Dept. Dr. Ambedkar Institute Of Technology For Handicapped Kanpur (UP), India [email protected] Abstract In this paper we had analyzed the spread spectrum techniques in a broader sense, in context of their performance. Spread spectrum is an increasingly important form of encoding for wireless communications. It can be used to transmit either analog or digital data, using an analog signal. The basic idea of spread spectrum is to modulate the signal so as to increase significantly the bandwidth (spread the spectrum) of the signal to be transmitted. It was initially developed for military and intelligence requirements. The use of spread spectrum makes jamming and interception more difficult and provides improved reception. Keywords: SS, DSSS, FHSS, BPSK, SFH, FFH. A despreading operation reconstitutes the information into its 1. INTRODUCTION original bandwidth. Obviously, the same code must be known in advance at both ends of the transmission channel. (In some circumstances, the code should be known only by those two Spread spectrum technology has blossomed from a military parties.) technology into one of the fundamental building blocks in current and next-generation wireless systems. From cellular to cordless to wireless LAN (WLAN) systems, spectrum is a vital component in the system design process. Since spread-spectrum is such an integral ingredient, it's vital for designers to have an understanding of how this technology. Fig2: Spread-spectrum communication system. Spread-spectrum transmitters use similar transmit power levels to narrowband transmitters.
    [Show full text]
  • NB-Iot and LTE-M in the Context of 5G
    MOBILEMOBILE-E NABLEDIoT IUNN THMANNEDE 5G FU TUREAIRCRAFT NB-IoTHow mobile and LTE-M networks in the can support unmanned context of 5G aircraft operations JANUARY 2018 APRIL 2018 MOBILE IoT IN THE 5G FUTURE NB-IoT AND LTE-M IN THE CONTEXT OF 5G TABLE OF CONTENTS 1 Executive Summary 2 2 Introduction 3 Scope 3 Abbreviations 3 3 Mobile IoT and 5G 4 What is Mobile IoT? 4 What is 5G? 5 NB-IoT and LTE-M are part of 5G 7 NB-IoT and LTE-M will coexist with other 5G components 7 References 9 MOBILE IoT IN THE 5G FUTURE 1. 1 MOBILE IoT IN THE 5G FUTURE NB-IoT AND LTE-M IN THE CONTEXT OF 5G 1. Mobile IoT in the 5G Future Mobile operators provide secure connectivity and higher value services enabling a complete range of IoT solutions for consumers and businesses. Mobile IoT delivers trusted, cost effective low power wide area capability today, while forming the foundation of the 5G future and supporting IoT growth on a massive scale. Leading mobile operators, global vendors and In order to complete the 5G system support for developers are launching NB-IoT and LTE-M NB-IoT and LTE-M, 3GPP is also investigating networks as an integral part of their long term options for the 5G core network to support NB-IoT 5G IoT strategies. Mobile IoT refers to low power and LTE-M radio access network. This will enable wide area (LPWA) 3GPP standardised secure a smooth operator migration path to 5G NR operator managed IoT networks in licensed frequency bands while preserving NB-IoT and spectrum.
    [Show full text]