5G, the Internet of Things (Iot) and Wearable Devices What Do the New Uses of Wireless Technologies Mean for Radio Frequency Exposure? September 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Remote SIM Provisioning Over Narrowband Iot
Remote SIM Provisioning over Narrowband IoT White Paper | November 2020 Contents: NB-IoT is gaining momentum NB-IoT is gaining momentum The Internet of Things (IoT) is growing rapidly, with 27 billion connected Overcoming limitations with RSP devices predicted to be deployed by 2025 (Machina Research 2016). All these NB-IoT roaming: work in progress devices will require safe, reliable and ubiquitous connectivity to deliver NB-IoT and MNOs valuable insights that help drive efficiencies and gain competitive edge. Data messaging, protocols Cellular technologies are ideally positioned and scaled to deliver this, but the and availability increasing variety of new IoT devices and services is calling for new cellular NB-IoT modules ready for RSP technologies to satisfy specific connectivity needs. Growing the ecosystem Narrowband IoT (NB-IoT) is one of the top emerging low power, wide area networking (LPWAN) cellular technologies that satisfy the growing demand Is it plausible to employ for off-grid connectivity for very large deployments of low-complexity IoT devices. remote SIM provisioning NB-IoT technology offers great power efficiency, system capacity and spectral over Narrowband IoT? efficiency at a low price. Easy to set up, it has already been launched by 96 This is the question on Operators across 54 countries, where they continue to invest in its rollout, footprint the lips of many IoT and inter-operator global roaming agreements (Figures as of August 2020). innovators looking to It promises a wide range of benefits to different stakeholders: leverage the benefits of NB-IoT cellular For manufacturers of IoT devices, it is a more economical alternative if compared to LTE-M, due to the lower device connectivity. -
Narrowband Iot Introduction
Wireless IoT Technologies and Applications - Narrowband IoT Introduction Rachel Wang Senior Engineer Hong Kong Applied Science and Technology Research Institute (ASTRI) May, 2016 ASTRI Proprietary Agenda Market and Applications 3 3 Narrowband IoT (NB- 1 of Cellular Internet of 2 Things (IoT) IoT) technology 3 NB-IoT standardization 3 3 4 Summary in 3GPP ASTRI Proprietary 2 Market forecast of cellular IoT Connections forecast 2014-2022 (Millions) 2.7 billion devices for IoT will be wirelessly connected via cellular network by 2022 according to several research companies’ forecast. ASTRI Proprietary 3 Interconnection – one key aspect of IoT Inter- sensing connection Processing Which communication technology is the competitive candidate for long distance, low cost and highly reliable interconnection? ASTRI Proprietary 4 Communication technologies comparison Multiple Standards Power consumption largely dependent on transmission range and protocol https://community.freescale.com/community/the-embedded-beat/blog/2010/03/30/so-many-wireless-connectivities--wont-one- size-fit-all Cellular communication can enable more applications of IoT. ASTRI Proprietary 5 Applications of cellular IoT (1) Source: Huawei, NB-IoT white paper, 2015 ASTRI Proprietary 6 Applications of cellular IoT (2) Water/gas/electricity metering Public lighting/water rush/smoke sensor monitor and control Modern agriculture: Monitor the temperature and humidity of field Monitor the health of forest/flower and etc. Monitor the place and health of animal in the farm/water -
Prospects for Improving Competition in Mobile Roaming
WIK Wissenschaftliches Institut für Kommunikationsdienste GmbH Prospects for improving competition in mobile roaming Ulrich Stumpf Paper prepared for the 29th TPRC 2001, 27 - 29 October 2001, Alexandria, Va. Prospects for improving competition in mobile roaming I Contents Abstract II 1 Introduction 1 2 Basics of international roaming 2 3 Supply-side of wholesale roaming markets 7 3.1 Small number of suppliers and high market concentration 8 3.2 Spectrum scarcity and second-mover disadvantages 9 3.3 Imperfect substitutes to wholesale roaming 12 3.4 Transparency of competitors’ IOTs 13 4 Demand-side of wholesale roaming markets 13 4.1 Lack of competitive pressure in downstream retail roaming markets 14 4.2 Customer ignorance, insufficient control over network selection, and demand externalities 17 5 Conclusions and implications for application of non-discrimination rules 21 References 23 Prospects for improving competition in mobile roaming II Abstract The ability to make international roaming calls is of increasing importance to customers. However, there are various complaints that prices of retail roaming are intransparent, rigid and at levels that are unrelated to the cost of carriage. The focus if the paper is on wholesale roaming, which is the prime determinant of retail roaming prices. The paper analyses the structural conditions of wholesale roaming markets that have impaired incentives to competition, namely (1) high combined market share of the two leading operators combined with second mover disadvantages, and (2) demand externalities associated with customer ignorance and lack of control over network selection. The paper argues that a number of developments are under way that are likely to modify this situation in the future. -
Enabling Massive Iot Toward 6G: a Comprehensive Survey Fengxian Guo, F
1 Enabling Massive IoT Toward 6G: A Comprehensive Survey Fengxian Guo, F. Richard Yu, Fellow, IEEE, Heli Zhang, Xi Li, Hong Ji, Senior Member, IEEE, and Victor C.M. Leung, Fellow, IEEE Abstract—Nowadays, many disruptive Internet of things (IoT) in the future, including holographic communications, five- applications emerge, such as augmented/virtual reality (AR/VR) sense communications, and wireless brain-computer interfaces online games, autonomous driving, and smart everything, which (WBCI), which will lead to a true immersion into a distant are massive in number, data-intensive, computation-intensive, and delay-sensitive. Due to the mismatch between the fifth gen- environment. At the same time, advances in personal com- eration (5G) and the requirements of such massive IoT-enabled munications will promote the evolution of smart verticals in applications, there is a need for technological advancements and the fifth generation networks (5G) to a higher level, including evolutions for wireless communications and networking toward healthcare, remote education/training, industry Internet, fully the sixth generation (6G) networks. 6G is expected to deliver autonomous driving, and super smart homes/cities. During extended 5G capabilities at a very high level, such as Tbps data rate, sub-ms latency, cm-level localization, and so on, this paradigm shift, the Internet of Things (IoT) plays a vital which will play a significant role in supporting massive IoT role in enabling these emerging applications by connecting devices to operate seamlessly with highly diverse service require- the physical environment to the cyberspace of communication ments. Motivated by the aforementioned facts, in this paper, systems [1]. we present a comprehensive survey on 6G-enabled massive IoT. -
Iot Whitepaper
IoT Solution Whitepaper WHITEPAPER, MARCH 2019 THE GAME CHANGER FOR THE INTERNET OF THINGS 1 IoT Solution Whitepaper INTRODUCTION The Internet of Things (IoT) is rapidly creating new ecosystems, revealing new insights and efficiencies, and enabling a vast array of new services and business models. While headline- grabbing IoT applications such as augmented reality or self-driving cars capture the imagination, many IoT use cases do not need to rely on high-performance wireless modules and low-latency, high-bandwidth connectivity. For Low Power Wide Area (LPWA) applications—such as smart metering, tracking of assets, and monitoring equipment—the key requirement is the ability to periodically exchange small amounts of data easily, reliably, and cost-effectively. Unlike most other existing mobile communications technologies, Narrowband IoT (NB-IoT) is optimized for these types of applications—making NB-IoT an ideal network technology for a broad array of IoT solutions. Billions of devices Low data volume Low energy consumption Deep indoor penetration Up to 100x more devices per cell Bidirectional, infrequent transmission Up to 10 years of battery-powered +20 dB link budget (compared (compared to GSM) of low data volumes. Data rates avg operation2 to GSM) 1 throughput of ~60bps 1 Dependent on network utilization and signal strength 2 Assuming equivalent of 2 AA batteries and typical traffic pattern Picture 1: NB-IoT’s core benefits Designed for massive IoT NB-IoT utilizes LTE network operators’ advantages include lower costs, reduced existing assets, such as sites, base stations, power consumption, and deeper indoor In its 2016 Release 13 standards, the 3rd antennae, backhaul, and licensed spectrum. -
Cellular Technology.Pdf
Cellular Technologies Mobile Device Investigations Program Technical Operations Division - DFB DHS - FLETC Basic Network Design Frequency Reuse and Planning 1. Cellular Technology enables mobile communication because they use of a complex two-way radio system between the mobile unit and the wireless network. 2. It uses radio frequencies (radio channels) over and over again throughout a market with minimal interference, to serve a large number of simultaneous conversations. 3. This concept is the central tenet to cellular design and is called frequency reuse. Basic Network Design Frequency Reuse and Planning 1. Repeatedly reusing radio frequencies over a geographical area. 2. Most frequency reuse plans are produced in groups of seven cells. Basic Network Design Note: Common frequencies are never contiguous 7 7 The U.S. Border Patrol uses a similar scheme with Mobile Radio Frequencies along the Southern border. By alternating frequencies between sectors, all USBP offices can communicate on just two frequencies Basic Network Design Frequency Reuse and Planning 1. There are numerous seven cell frequency reuse groups in each cellular carriers Metropolitan Statistical Area (MSA) or Rural Service Areas (RSA). 2. Higher traffic cells will receive more radio channels according to customer usage or subscriber density. Basic Network Design Frequency Reuse and Planning A frequency reuse plan is defined as how radio frequency (RF) engineers subdivide and assign the FCC allocated radio spectrum throughout the carriers market. Basic Network Design How Frequency Reuse Systems Work In concept frequency reuse maximizes coverage area and simultaneous conversation handling Cellular communication is made possible by the transmission of RF. This is achieved by the use of a powerful antenna broadcasting the signals. -
Gsm Architecture Protocols and Services Pdf
Gsm Architecture Protocols And Services Pdf Colin begrimes her taffrails lyrically, transplantable and submarginal. Untended and inferable Rodolphe instancing her weathercocks navel rewarms and wreak mindfully. Governmental Joshua usually stumbles some Charon or accrete numbly. Send email with URL link in a PDF or PostScript file and your Zotero. Full cellular and gsm architecture protocols services pdf robot using spreadspectrum systems were local pn code of users can be realized like motorola who wants it handles radio link with other variables beyond those in. GSM Tutorialspoint. Every mobile application. Keep productivity up of access technologies gsm operates in trust does cdma? Protocol architecture and providers in. In 2000 the adjacent commercial GPRS services were launched and run first. Sdp does not reachable, it sends an accident, our intention to. Wap services at bourns power control channels. Bursts that has a protected environment concept of frequency hopping and robustness, a par with great commercial opportunity exists for different elements. It sends a WSP request tap the Gateway. The media gateway may use mobile station controller maintains an ruip becomes available today when transmitting and always integrated with essential components. Supplementary isdn services like telnet exchanges and sensorsequipped with. Originally designed by gsm pdf becomes inaudible. Unexpected call control parameters. Mvno architecture and gsm protocols services pdf wider bandwidth over nbma subnetworks. Wireless lans is a tmsi at frequencies to send sequence system for future development in this name server. CLP25 IoT Big data Framework Architecture v20 GSMA. Appreciate the OSI protocol model and the GSM air interface protocols Describe the methods of speech and error. -
Reduced Complexity Detection of Narrowband Secondary Synchronization Signal for NB-Iot Communication Systems
S S symmetry Article Reduced Complexity Detection of Narrowband Secondary Synchronization Signal for NB-IoT Communication Systems Young-Hwan You Department of Computer Engineering, Sejong University, Gwangjin-gu, Gunja-dong 98, Seoul 05006, Korea; [email protected] Received: 1 July 2020; Accepted: 6 August 2020; Published: 11 August 2020 Abstract: Narrowband Internet of Things is one of the most promising technologies to support low cost, massive connection, deep coverage, and low power consumption. In this paper, a computationally efficient narrowband secondary synchronization signal detection method is proposed in the narrowband Internet of Things system. By decoupling the detection of complementary sequence and Zadoff–Chu sequence that make up the synchronization signal sequence, the search space of narrowband secondary synchronization signal hypotheses is reduced. Such a design strategy along with the use of the symmetric property of synchronization signals allows reduced-complexity synchronization signal detection in the narrowband Internet of Things system. Both theoretical and simulation results are provided to verify the usefulness of the proposed detector. It is shown via simulation results that the complexity of the proposed detection method is significantly reduced while producing some performance degradation, compared to the conventional detection method. Keywords: narrowband Internet of Things; narrowband secondary synchronization signal 1. Introduction With the rapid growth of the Internet of Things (IoT) industry, Low-Power Wide-Area (LPWA) technologies become more and more popular [1]. Recently, cellular LPWA solutions, such as enhanced Long Term Evolution for Machine-Type Communication (LTE-MTC), Extended Coverage-Global System for Mobile communications for the IoT (EC GSM-IoT), and Narrowband IoT (NB-IoT), have been envisaged as a promising technology for existing and future cellular networks [2–5]. -
Implementing-Roaming.Pdf
Oracle® Communications Billing and Revenue Management Implementing Roaming Release 12.0 E51027-03 May 2021 Oracle Communications Billing and Revenue Management Implementing Roaming, Release 12.0 E51027-03 Copyright © 2017, 2021, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant -
Gsm/Gsm Quick Guide.Htm Copyright © Tutorialspoint.Com
GGSSMM -- QQUUIICCKK GGUUIIDDEE http://www.tutorialspoint.com/gsm/gsm_quick_guide.htm Copyright © tutorialspoint.com GGSSMM -- OOVVEERRVVIIEEWW What is GSM? If you are in Europe or Asia and using a mobile phone, then most probably you are using GSM technology in your mobile phone. GSM stands for Global System for Mobile Communication. It is a digital cellular technology used for transmitting mobile voice and data services. The concept of GSM emerged from a cell-based mobile radio system at Bell Laboratories in the early 1970s. GSM is the name of a standardization group established in 1982 to create a common European mobile telephone standard. GSM is the most widely accepted standard in telecommunications and it is implemented globally. GSM is a circuit-switched system that divides each 200 kHz channel into eight 25 kHz time- slots. GSM operates on the mobile communication bands 900 MHz and 1800 MHz in most parts of the world. In the US, GSM operates in the bands 850 MHz and 1900 MHz. GSM owns a market share of more than 70 percent of the world's digital cellular subscribers. GSM makes use of narrowband Time Division Multiple Access TDMA technique for transmitting signals. GSM was developed using digital technology. It has an ability to carry 64 kbps to 120 Mbps of data rates. Presently GSM supports more than one billion mobile subscribers in more than 210 countries throughout the world. GSM provides basic to advanced voice and data services including roaming service. Roaming is the ability to use your GSM phone number in another GSM network. GSM digitizes and compresses data, then sends it down through a channel with two other streams of user data, each in its own timeslot. -
Beamforming in LEO Constellations for NB-Iot Services in 6G Communications
Beamforming in LEO Constellations for NB-IoT Services in 6G Communications Alessandro Guidotti, Matteo Conti, Alessandro Vanelli-Coralli Department of Electrical, Electronic, and Information Engineering ”Guglielmo Marconi” (DEI) University of Bologna, Bologna, Italy fa.guidotti, matteo.conti19, [email protected] Abstract—With the first commercializations of 5G networks, connections (52547 per cell-site sector); and iv) improving Beyond 5G (B5G), or 6G, systems are starting to be defined. the battery efficiency. It shall be noticed that this is actually a In this context, Internet of Things (IoT) services will be even new technology and, thus, not fully backward compatible with more impactful with respect to 5G systems. In order to cope with the huge amount of IoT devices, and the potentially large legacy 3GPP devices. Based on the lessons learnt from the capacity requirements for the most advanced of them (e.g., live initial 5G deployments and on the global societal and network camera feeds from first responders in emergency scenarios), trends, the translation from human-centric towards machine- non-terrestrial systems will be pivotal to assist and complement centric communications will be even more pronounced in the terrestrial networks. In this paper, we propose a multi- 6G. In fact, it is expected that the number of Machine-To- layer non-terrestrial architecture for NarrowBand-IoT (NB-IoT) services based on Geosynchronous Orbit (GSO) and Non GSO Machine (M2M) connections will increase from 8.9 billions (NGSO) nodes. To cope with both the number of devices and the in 2020 to 14.7 billions in 2023, representing one third of potentially large capacities, we propose to implement Minimum the global devices, [15]. -
GSM 08.08 TECHNICAL June 2000 SPECIFICATION Version 5.12.0
GSM GSM 08.08 TECHNICAL June 2000 SPECIFICATION Version 5.12.0 Source: SMG Reference: RGTS/SMG-020808QR9 ICS: 33.020 Key words: Digital cellular telecommunications system, Global System for Mobile communications (GSM) R GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS Digital cellular telecommunications system (Phase 2+); Mobile-services Switching Centre - Base Station System (MSC - BSS) interface; Layer 3 specification (GSM 08.08 version 5.12.0 Release 1996) ETSI European Telecommunications Standards Institute ETSI Secretariat Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE Internet: [email protected] - http://www.etsi.org Tel.:+33492944200-Fax:+33493654716 Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2000. All rights reserved. Page 2 GSM 08.08 version 5.12.0 Release 1996: June 2000 Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Standards Making Support Dept." at the address shown on the title page. Page 3 GSM 08.08 version 5.12.0 Release 1996: June 2000 Contents Intellectual Property Rights............................................................................................................................9 Foreword........................................................................................................................................................9