LTE Progress Leading to the 5G Massive Internet of Things 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NEXT GENERATION MOBILE WIRELESS NETWORKS: 5G CELLULAR INFRASTRUCTURE JULY-SEPT 2020 the Journal of Technology, Management, and Applied Engineering
VOLUME 36, NUMBER 3 July-September 2020 Article Page 2 References Page 17 Next Generation Mobile Wireless Networks: Authors Dr. Rendong Bai 5G Cellular Infrastructure Associate Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Vigs Chandra Professor and Coordinator Cyber Systems Technology Programs Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Ray Richardson Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Peter Ping Liu Professor and Interim Chair School of Technology Eastern Illinois University Keywords: The Journal of Technology, Management, and Applied Engineering© is an official Mobile Networks; 5G Wireless; Internet of Things; publication of the Association of Technology, Management, and Applied Millimeter Waves; Beamforming; Small Cells; Wi-Fi 6 Engineering, Copyright 2020 ATMAE 701 Exposition Place Suite 206 SUBMITTED FOR PEER – REFEREED Raleigh, NC 27615 www. atmae.org JULY-SEPT 2020 The Journal of Technology, Management, and Applied Engineering Next Generation Mobile Wireless Networks: Dr. Rendong Bai is an Associate 5G Cellular Infrastructure Professor in the Department of Applied Engineering and Technology at Eastern Kentucky University. From 2008 to 2018, ABSTRACT he served as an Assistant/ The requirement for wireless network speed and capacity is growing dramatically. A significant amount Associate Professor at Eastern of data will be mobile and transmitted among phones and Internet of things (IoT) devices. The current Illinois University. He received 4G wireless technology provides reasonably high data rates and video streaming capabilities. However, his B.S. degree in aircraft the incremental improvements on current 4G networks will not satisfy the ever-growing demands of manufacturing engineering users and applications. -
Remote SIM Provisioning Over Narrowband Iot
Remote SIM Provisioning over Narrowband IoT White Paper | November 2020 Contents: NB-IoT is gaining momentum NB-IoT is gaining momentum The Internet of Things (IoT) is growing rapidly, with 27 billion connected Overcoming limitations with RSP devices predicted to be deployed by 2025 (Machina Research 2016). All these NB-IoT roaming: work in progress devices will require safe, reliable and ubiquitous connectivity to deliver NB-IoT and MNOs valuable insights that help drive efficiencies and gain competitive edge. Data messaging, protocols Cellular technologies are ideally positioned and scaled to deliver this, but the and availability increasing variety of new IoT devices and services is calling for new cellular NB-IoT modules ready for RSP technologies to satisfy specific connectivity needs. Growing the ecosystem Narrowband IoT (NB-IoT) is one of the top emerging low power, wide area networking (LPWAN) cellular technologies that satisfy the growing demand Is it plausible to employ for off-grid connectivity for very large deployments of low-complexity IoT devices. remote SIM provisioning NB-IoT technology offers great power efficiency, system capacity and spectral over Narrowband IoT? efficiency at a low price. Easy to set up, it has already been launched by 96 This is the question on Operators across 54 countries, where they continue to invest in its rollout, footprint the lips of many IoT and inter-operator global roaming agreements (Figures as of August 2020). innovators looking to It promises a wide range of benefits to different stakeholders: leverage the benefits of NB-IoT cellular For manufacturers of IoT devices, it is a more economical alternative if compared to LTE-M, due to the lower device connectivity. -
Small Data Transmission (SDT): Protocol Aspects
Small Data Transmission (SDT): Protocol Aspects Taehun Kim Ofinno • ofinno.com • May 2021 Small Data Transmission (SDT): Protocol Aspects Signals for transitioning to a radio resource control • a radio resource control (RRC) connection (RRC) connected state and maintaining the RRC establishment procedure to establish an RRC connected state could cause overheads (e.g., power connection [3][4]; and consumption and delay) to a wireless device having • an initial access stratum (AS) security activation small amount of data to transmit when in an RRC idle procedure for secured data transmission [3][4]. state or an RRC inactive state. When the procedures is successfully completed, the 3rd Generation Partnership Project (3GPP) has wireless device in an RRC connected state transmits introduced technologies to reduce the overheads. the UL data. After the transmission of the UL data, This article gives a brief introduction of the the wireless device stays in the RRC connected technologies and investigates a protocol aspects of state until receiving an RRC release message from the technologies. a base station. While staying in the RRC connected state, the wireless device should perform additional 1. Introduction procedures (e.g., radio link monitoring (RLM), Before technologies to reduce overheads for small measurement & measurement reporting, etc.). The data transmission (SDT) is introduced for long-term wireless device transitions back to the RRC idle state evolution (LTE) or new radio (NR), uplink (UL) data when receiving an RRC release message from the generated in an RRC idle state can be transmitted base station. only after transitioning to an RRC connected state according to 3GPP specifications. -
Narrowband Iot Introduction
Wireless IoT Technologies and Applications - Narrowband IoT Introduction Rachel Wang Senior Engineer Hong Kong Applied Science and Technology Research Institute (ASTRI) May, 2016 ASTRI Proprietary Agenda Market and Applications 3 3 Narrowband IoT (NB- 1 of Cellular Internet of 2 Things (IoT) IoT) technology 3 NB-IoT standardization 3 3 4 Summary in 3GPP ASTRI Proprietary 2 Market forecast of cellular IoT Connections forecast 2014-2022 (Millions) 2.7 billion devices for IoT will be wirelessly connected via cellular network by 2022 according to several research companies’ forecast. ASTRI Proprietary 3 Interconnection – one key aspect of IoT Inter- sensing connection Processing Which communication technology is the competitive candidate for long distance, low cost and highly reliable interconnection? ASTRI Proprietary 4 Communication technologies comparison Multiple Standards Power consumption largely dependent on transmission range and protocol https://community.freescale.com/community/the-embedded-beat/blog/2010/03/30/so-many-wireless-connectivities--wont-one- size-fit-all Cellular communication can enable more applications of IoT. ASTRI Proprietary 5 Applications of cellular IoT (1) Source: Huawei, NB-IoT white paper, 2015 ASTRI Proprietary 6 Applications of cellular IoT (2) Water/gas/electricity metering Public lighting/water rush/smoke sensor monitor and control Modern agriculture: Monitor the temperature and humidity of field Monitor the health of forest/flower and etc. Monitor the place and health of animal in the farm/water -
4G to 5G Networks and Standard Releases
4G to 5G networks and standard releases CoE Training on Traffic engineering and advanced wireless network planning Sami TABBANE 30 September -03 October 2019 Bangkok, Thailand 1 Objectives Provide an overview of various technologies and standards of 4G and future 5G 2 Agenda I. 4G and LTE networks II. LTE Release 10 to 14 III. 5G 3 Agenda I. 4G and LTE networks 4 LTE/SAE 1. 4G motivations 5 Introduction . Geneva, 18 January 2012 – Specifications for next-generation mobile technologies – IMT-Advanced – agreed at the ITU Radiocommunications Assembly in Geneva. ITU determined that "LTELTELTE----AdvancedAdvancedAdvanced" and "WirelessMANWirelessMANWirelessMAN----AdvancedAdvancedAdvanced" should be accorded the official designation of IMTIMT----AdvancedAdvanced : . Wireless MANMAN- ---AdvancedAdvancedAdvanced:::: Mobile WiMax 2, or IEEE 802. 16m; . 3GPPLTE AdvancedAdvanced: LTE Release 10, supporting both paired Frequency Division Duplex (FDD) and unpaired Time Division Duplex (TDD) spectrum. 6 Needs for IMT-Advanced systems Need for higher data rates and greater spectral efficiency Need for a Packet Switched only optimized system Use of licensed frequencies to guarantee quality of services Always-on experience (reduce control plane latency significantly and reduce round trip delay) Need for cheaper infrastructure Simplify architecture of all network elements 7 Impact and requirements on LTE characteristics Architecture (flat) Frequencies (flexibility) Bitrates (higher) Latencies (lower) Cooperation with other technologies (all 3GPP and -
An Overview of 5G System Accessibility Differentiation and Control
1 An Overview of 5G System Accessibility Differentiation and Control Jingya Li, Demia Della Penda, Henrik Sahlin, Paul Schliwa-Bertling, Mats Folke, Magnus Stattin Ericsson Contact: [email protected]; [email protected] component to provide the desired accessibility prioritization for Abstract—5G system is characterized by its capability to different types of devices, users and services, when supporting support a wide range of use cases and services. Supporting multiple verticals in a shared 5G Stand Alone (SA) network, as accessibility differentiation becomes therefore essential to illustrated in Figure 1. preserve a stable network condition during high traffic load, while This article provides first an overview of the motivations for ensuring connection and service quality to prioritized devices and accessibility differentiation in 5G system. Then, it describes the services. In this article, we describe some use cases and requirements that impact the 3GPP design of the 5G accessibility mechanisms introduced by 3GPP to maintain the service quality differentiation framework. We then provide an overview of the of ongoing high priority communications during high load supported mechanisms for accessibility differentiation and control situations, while assuring that incoming prioritized connection in 5G Stand Alone (SA) system, including cell barring and requests receive the desired access treatment. To the best of our reservation, unified access control, paging control, random access knowledge, this is the first article presenting a comprehensive control and admission control. We discuss how these summary of main use cases and technology opportunities for functionalities can be used to maintain the service quality and accessibility differentiation and control in 5G networks. -
TS 5G.300 V1.1 (2016-06) Technical Specification
TS 5G.300 v1.1 (2016-06) Technical Specification KT PyeongChang 5G Special Interest Group (KT 5G-SIG); KT 5th Generation Radio Access; Overall Description; (Release 1) Ericsson, Intel Corp., Nokia, Qualcomm Technologies Inc., Samsung Electronics & KT Disclaimer: This document provides information related to 5G technology. All information provided herein is subject to change without notice. The members of the KT PyeongChang 5G Special Interest Group (“KT 5G- SIG”) disclaim and make no guaranty or warranty, express or implied, as to the accuracy or completeness of any information contained or referenced herein. THE KT 5G-SIG AND ITS MEMBERS DISCLAIM ANY IMPLIED WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE, AND ALL INFORMATION IS PROVIDED ON AN “AS-IS” BASIS. No licenses under any intellectual property of any kind are provided by any person (whether a member of the KT 5G-SIG or not) that may be necessary to access or utilize any of the information contained herein, including, but not limited to, any source materials referenced herein, and any patents required to implement or develop any technology described herein. It shall be the responsibility of anyone attempting to use the information contained or referenced herein to obtain any such licenses, if necessary. The KT 5G-SIG and its members disclaim liability for any damages or losses of any nature whatsoever whether direct, indirect, incidental, special or consequential resulting from the use of or reliance on any information contained or referenced herein. © 2016 KT corp. All rights reserved 2 TS 5G.300 v1.1 (2016-06) Document History Version Date Change 0.1 2016-02-17 First Draft Version 1.1 2016-07-13 Final Version 1.2 2016-08-31 Correction in Appendix A4 KT 5G-SIG 3 TS 5G.300 v1.1 (2016-06) Contents Foreword............................................................................................................................................................ -
Enabling Massive Iot Toward 6G: a Comprehensive Survey Fengxian Guo, F
1 Enabling Massive IoT Toward 6G: A Comprehensive Survey Fengxian Guo, F. Richard Yu, Fellow, IEEE, Heli Zhang, Xi Li, Hong Ji, Senior Member, IEEE, and Victor C.M. Leung, Fellow, IEEE Abstract—Nowadays, many disruptive Internet of things (IoT) in the future, including holographic communications, five- applications emerge, such as augmented/virtual reality (AR/VR) sense communications, and wireless brain-computer interfaces online games, autonomous driving, and smart everything, which (WBCI), which will lead to a true immersion into a distant are massive in number, data-intensive, computation-intensive, and delay-sensitive. Due to the mismatch between the fifth gen- environment. At the same time, advances in personal com- eration (5G) and the requirements of such massive IoT-enabled munications will promote the evolution of smart verticals in applications, there is a need for technological advancements and the fifth generation networks (5G) to a higher level, including evolutions for wireless communications and networking toward healthcare, remote education/training, industry Internet, fully the sixth generation (6G) networks. 6G is expected to deliver autonomous driving, and super smart homes/cities. During extended 5G capabilities at a very high level, such as Tbps data rate, sub-ms latency, cm-level localization, and so on, this paradigm shift, the Internet of Things (IoT) plays a vital which will play a significant role in supporting massive IoT role in enabling these emerging applications by connecting devices to operate seamlessly with highly diverse service require- the physical environment to the cyberspace of communication ments. Motivated by the aforementioned facts, in this paper, systems [1]. we present a comprehensive survey on 6G-enabled massive IoT. -
UMTS); Radio Interface Protocol Architecture (3GPP TS 25.301 Version 3.8.0 Release 1999)
ETSI TS 125 301 V3.8.0 (2001-06) Technical Specification Universal Mobile Telecommunications System (UMTS); Radio Interface Protocol Architecture (3GPP TS 25.301 version 3.8.0 Release 1999) 3GPP TS 25.301 version 3.8.0 Release 1999 1 ETSI TS 125 301 V3.8.0 (2001-06) Reference RTS/TSGR-0225301UR5 Keywords UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.:+33492944200 Fax:+33493654716 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/ If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2001. -
Fuzzing Radio Resource Control Messages in 5G and LTE Systems
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2021 Fuzzing Radio Resource Control messages in 5G and LTE systems To test telecommunication systems with ASN.1 grammar rules based adaptive fuzzer SRINATH POTNURU KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Fuzzing Radio Resource Control messages in 5G and LTE systems To test telecommunication systems with ASN.1 grammar rules based adaptive fuzzer SRINATH POTNURU Master’s in Computer Science and Engineering with specialization in ICT Innovation, 120 credits Date: February 15, 2021 Host Supervisor: Prajwol Kumar Nakarmi KTH Supervisor: Ezzeldin Zaki Examiner: György Dán School of Electrical Engineering and Computer Science Host company: Ericsson AB Swedish title: Fuzzing Radio Resource Control-meddelanden i 5G- och LTE-system Fuzzing Radio Resource Control messages in 5G and LTE systems / Fuzzing Radio Resource Control-meddelanden i 5G- och LTE-system © 2021 Srinath Potnuru iii Abstract 5G telecommunication systems must be ultra-reliable to meet the needs of the next evolution in communication. The systems deployed must be thoroughly tested and must conform to their standards. Software and network protocols are commonly tested with techniques like fuzzing, penetration testing, code review, conformance testing. With fuzzing, testers can send crafted inputs to monitor the System Under Test (SUT) for a response. 3GPP, the standardiza- tion body for the telecom system, produces new versions of specifications as part of continuously evolving features and enhancements. This leads to many versions of specifications for a network protocol like Radio Resource Control (RRC), and testers need to constantly update the testing tools and the testing environment. -
Iot Whitepaper
IoT Solution Whitepaper WHITEPAPER, MARCH 2019 THE GAME CHANGER FOR THE INTERNET OF THINGS 1 IoT Solution Whitepaper INTRODUCTION The Internet of Things (IoT) is rapidly creating new ecosystems, revealing new insights and efficiencies, and enabling a vast array of new services and business models. While headline- grabbing IoT applications such as augmented reality or self-driving cars capture the imagination, many IoT use cases do not need to rely on high-performance wireless modules and low-latency, high-bandwidth connectivity. For Low Power Wide Area (LPWA) applications—such as smart metering, tracking of assets, and monitoring equipment—the key requirement is the ability to periodically exchange small amounts of data easily, reliably, and cost-effectively. Unlike most other existing mobile communications technologies, Narrowband IoT (NB-IoT) is optimized for these types of applications—making NB-IoT an ideal network technology for a broad array of IoT solutions. Billions of devices Low data volume Low energy consumption Deep indoor penetration Up to 100x more devices per cell Bidirectional, infrequent transmission Up to 10 years of battery-powered +20 dB link budget (compared (compared to GSM) of low data volumes. Data rates avg operation2 to GSM) 1 throughput of ~60bps 1 Dependent on network utilization and signal strength 2 Assuming equivalent of 2 AA batteries and typical traffic pattern Picture 1: NB-IoT’s core benefits Designed for massive IoT NB-IoT utilizes LTE network operators’ advantages include lower costs, reduced existing assets, such as sites, base stations, power consumption, and deeper indoor In its 2016 Release 13 standards, the 3rd antennae, backhaul, and licensed spectrum. -
5G Wireless Infrastructure Semiconductor Analysis
5G WIRELESS INFRASTRUCTURE SEMICONDUCTOR ANALYSIS SIA CONFIDENTIAL | 5G INFRASTRUCTURE ANALYSIS | 1 2 | 5G INFRASTRUCTURE ANALYSIS EXECUTIVE SUMMARY On behalf of SIA, a wireless market intelligence firm has analyzed all of the semiconductor function product families within the key elements of a 5G radio access network (RAN)- baseband unit (BBU) and active antenna unit (AAU)/remote radio unit (RRU) systems for 5G base stations along with the current domestic United States and foreign/international semiconductor suppliers. Our conclusion is that despite the United States maintaining overall market-share leadership in semiconductors with a 45% share of the global market, substitutes for U.S. components exist for nearly every semiconductor product family required to build a complete RAN infrastructure. In fact, our analysis indicates that of the more than fifty critical semiconductor elements necessary to design, manufacture, and sell a competitive 5G RAN network1, only 3 components could face supply constraints outside the United States in the event of an export restriction. For each of those three components, we have further concluded that alternatives are currently being deployed or under active development, especially within China by Huawei’s semiconductor design arm, HiSilicon. 8 | 5G INFRASTRUCTURE ANALYSIS | SIA CONFIDENTIAL OUR CONCLUSION FOR THE BASEBAND UNIT SYSTEM FOR A 5G BASE STATION IS THAT THE TWO KEY SEMICONDUCTOR PRODUCT FAMILIES THAT MAY PRESENT SUPPLY ISSUES OUTSIDE OF THE UNITED STATES ARE: • Commercial off-the-shelf Field