Evolution of Plastid Gene Rps2 in a Lineage of Hemiparasitic

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Plastid Gene Rps2 in a Lineage of Hemiparasitic Proc. Natl. Acad. Sci. USA Vol. 94, pp. 7367–7372, July 1997 Evolution Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: Many losses of photosynthesis and complex patterns of rate variation (molecular evolutionyrelative rates testyrbcL pseudogeneyparallel bootstrap) CLAUDE W. DEPAMPHILIS*, NELSON D. YOUNG, AND ANDREA D. WOLFE† Department of Biology, Vanderbilt University, Nashville, TN 37235 Communicated by M. T. Clegg, University of California, Riverside, CA, May 2, 1997 (received for review February 27, 1996) ABSTRACT The plastid genomes of some nonphotosyn- of feeding cells that reside solely within the photosynthetic host thetic parasitic plants have experienced an extreme reduction plant. in gene content and an increase in evolutionary rate of Despite the profound morphological and physiological remaining genes. Nothing is known of the dynamics of these changes associated with the parasitic lifestyle, all parasitic events or whether either is a direct outcome of the loss of plants examined to date retain plastids (3, 4) and plastid photosynthesis. The parasitic Scrophulariaceae and Oroban- genomes (5–9, reviewed in ref. 10). Parasites, therefore, pro- chaceae, representing a continuum of heterotrophic ability vide an outstanding opportunity to learn about gene and ranging from photosynthetic hemiparasites to nonphotosyn- genome evolution and function in the absence of the plastid thetic holoparasites, are used to investigate these issues. We genome’s primary physiological function, photosynthesis (10). present a phylogenetic hypothesis for parasitic Scrophulari- For example, the holoparasite Epifagus [Orobanchaceae (11)] aceae and Orobanchaceae based on sequences of the plastid has a greatly reduced plastid genome lacking photosynthetic gene rps2, encoding the S2 subunit of the plastid ribosome. and purported chlororespiratory genes (8), RNA polymerase Parasitic Scrophulariaceae and Orobanchaceae form a mono- genes, and some components of the plastid translation appa- phyletic group in which parasitism can be inferred to have ratus (12, 13). Conopholis, another Orobanchaceae, shares evolved once. Holoparasitism has evolved independently at many of these plastid gene deletions (6, 7, 10) and has least five times, with certain holoparasitic lineages represent- additionally lost one copy of the inverted repeat (ref. 7 and ing single species, genera, and collections of nonphotosyn- C.W.D., S. R. Downie, and J. D. Palmer, unpublished data). thetic genera. Evolutionary loss of the photosynthetic gene Despite the loss of plastid-encoded transcriptional genes, the rbcL is limited to a subset of holoparasitic lineages, with Epifagus and Conopholis plastid DNAs are transcribed (8, 14, several holoparasites retaining a full length rbcL sequence. In 15), and normal plastid intron processing and RNA editing contrast, the translational gene rps2 is retained in all plants have been demonstrated in Epifagus (15). These observations investigated but has experienced rate accelerations in several and compelling evolutionary arguments (16) have suggested hemi- as well as holoparasitic lineages, suggesting that there strongly that the Epifagus plastid genome is functional and may be substantial molecular evolutionary changes to the serves to express a small number of retained genes of non- plastid genome of parasites before the loss of photosynthesis. photosynthetic function (8, 16). It is intriguing that nearly all Independent patterns of synonymous and nonsynonymous of the remaining plastid genes in Epifagus appear to have rate acceleration in rps2 point to distinct mechanisms under- evolved at an accelerated pace compared with tobacco, a lying rate variation in different lineages. Parasitic Scrophu- related photosynthetic plant (12, 13). lariaceae (including the traditional Orobanchaceae) provide These observations demonstrate that the normally conser- a rich platform for the investigation of molecular evolutionary vative plastid genome has the potential for rapid structural process, gene function, and the evolution of parasitism. evolution when coding requirements are decreased; these observations also have other important implications for plastid Among the most remarkable features of flowering plants, gene evolution and function (reviewed in ref. 10). However, we including aquatic and carnivorous plants, epiphytes, and plants know nothing about the dynamics of the events that led to the tolerant of extreme desiccation, is their many adaptations to extraordinary plastid DNAs seen in parasitic plants. For varied physical and biotic environments. One extraordinary example, is there some predictable order to the genetic plant adaptation is parasitism, in which modified roots (haus- changes associated with the loss of photosynthesis? Have the toria) are used to transfer water, minerals, and a diverse profound alterations to the plastid genome seen in Epifagus collection of carbon compounds from a host plant to the and Conopholis all followed the loss of photosynthesis, or parasite (1, 2). The evolution of parasitism has probably might some have begun before its loss? Are the similarities occurred at least eight times within the angiosperms (1). On between the plastid genomes of these plants due to conver- several occasions this has proceeded to an extreme form gence or to shared ancestry? How rapidly do the structural and known as holoparasitism, in which the parasite obtains virtu- other changes to the plastid genome come about in parasitic ally all of its reduced carbon from its host. In addition to the plants? loss of photosynthesis and associated pigments (2), holopara- The parasitic ScrophulariaceaeyOrobanchaceae is uniquely sites exhibit reduction or loss of leaves and loss of nonhaus- suited to investigate these issues. Within this group are facul- torial roots, and, in one extreme group (Rafflesiaceae) (1), vegetative tissues have been reduced to a mycelium-like mass Abbreviation: ML, maximum likelihood. Data deposition: The sequences reported in this paper, including plant The publication costs of this article were defrayed in part by page charge collection and voucher data, have been deposited in the GenBank database (accession nos. U48738-U48777). payment. This article must therefore be hereby marked ‘‘advertisement’’ in *To whom reprint requests should be addressed. e-mail: accordance with 18 U.S.C. §1734 solely to indicate this fact. [email protected]. © 1997 by The National Academy of Sciences 0027-8424y97y947367-6$2.00y0 †Present address: Department of Plant Biology, Ohio State University, PNAS is available online at http:yywww.pnas.org. Columbus, OH 43210. 7367 Downloaded by guest on September 28, 2021 7368 Evolution: dePamphilis et al. Proc. Natl. Acad. Sci. USA 94 (1997) tative as well as obligate parasites, hemiparasites of widely Phylogenetic Analysis. Parsimony analyses used PAUP 3.1.1 varying photosynthetic ability, and a diverse collection of fully (25) on an Apple Quadra 950. Options were 500 random taxon heterotrophic holoparasites (1, 2, 17–19). No other group of addition sequences, tree-bisection reconnection branch swap- parasitic plants displays this continuum of parasitic abilities. ping, mulpars, and steepest descent. Bootstrap analyses (26) Comparative analysis of the plastid genomes of these plants were performed in parallel on 28 Apple Quadra 650 computers should provide a powerful tool for the interpretation of with different random number seeds. Settings were identical to molecular evolution relative to photosynthetic ability (10); above except that 10 random taxon input orders were used for however, no explicit phylogeny has been proposed. each of 400 bootstrap replicates. Bremer support analyses (27) In this paper, we develop a phylogenetic framework for the were carried out for all trees up to two steps longer than the study of evolutionary changes associated with parasitism using most parsimonious trees. Bremer support values (27) for rps2, a plastid gene new to plant phylogenetic analysis. rps2, remaining nodes were estimated using inverse constraints (28). encoding ribosomal protein CS2, is one of the more rapidly Maximum likelihood (ML) phylogenetic analyses (29) were evolving plastid genes known to be retained in all parasitic performed using PHYLIP 3.5 (30) and FASTDNAML 1.0.6 (31) ScrophulariaceaeyOrobanchaceae (refs. 12 and 16 and run on a Sun Microsystems SparcStation 10. Ten random input C.W.D., unpublished data), so sequences provide many char- orders were run using empirical base frequencies and a acters for phylogenetic analysis. First, we show that parasitism transitionytransversion ratio of 2.0. has evolved just once in Scrophulariaceae and Orobanchaceae, rbcL Gene Assays. PCR and Southern blot assays (8) were but we trace the loss of photosynthesis to a minimum of five used to provide complementary information about the pres- independent lineages within this group. The phylogeny is then ence or absence of rbcL in each plant. PCR amplifications used used to demonstrate that the photosynthetic gene rbcL is often primers RH1 (59-ATGTCACCACAAACAGAAACTA- retained in nonphotosynthetic lineages, sometimes long after AAGC) and Z1352R (59-CTTCACAAGCAGCAGCTAG- the loss of photosynthesis. In addition, the translational gene GTCAGGACTCC). Amplifications were as for rps2, except a rps2 had experienced rate accelerations in several hemi- as well 50-ml reaction used 0.32 mM for each primer and annealing was as holoparasitic lineages. These patterns
Recommended publications
  • PRIORITY GRASSLANDS INITIATIVE Methodology for Identifying Priority Grasslands
    PRIORITY GRASSLANDS INITIATIVE Methodology for Identifying Priority Grasslands September 2007 Building a Scientific Framework and Rationale for Sustainable Conservation and Stewardship Grasslands Conservation Council of British Columbia 954A Laval Crescent Kamloops, BC V2C 5P5 Phone: (250) 374-5787 Email: [email protected] Website: www.bcgrasslands.org Cover photo: Prickly-pear cactus by Richard Doucette Grasslands Conservation Council of British Columbia i Table of Contents Executive Summary .....................................................................................................................................i Acknowledgements .....................................................................................................................................ii Introduction.................................................................................................................................................1 Methodology Overview...............................................................................................................................2 Methodology Stages ....................................................................................................................................5 Stage 1: Initial GIS Data Gathering, Preparation and Analysis................................................................ 5 Stage 2: Expert Input .............................................................................................................................. 10 Stage 3: Assessment of Recreational
    [Show full text]
  • Evolution of the Euphrasia Transmorrisonensis Complex
    Journal of Biogeography (J. Biogeogr.) (2005) 32, 1921–1929 ORIGINAL Evolution of the Euphrasia ARTICLE transmorrisonensis complex (Orobanchaceae) in alpine areas of Taiwan Ming-Jou Wu1,2, Shing-Fan Huang1,3, Tseng-Chieng Huang1, Pei-Fen Lee4 and Tsan-Piao Lin1* 1Institute of Plant Biology, National Taiwan ABSTRACT University, Taipei, Taiwan, 2Department of Aims To unravel isolation and differentiation of the genetic structure of the Science Education, National Hualien University of Education, Hualien, Taiwan, Euphrasia transmorrisonensis complex, a showy herb, among alpine regions of 3Department of Science Education, National mountain peaks in subtropical Taiwan and to infer its evolutionary history. Hsinchu Teachers College, Hsinchu, Taiwan Location Alpine ecosystems of high-montane regions of Taiwan. and 4Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Methods Phylogenetic analyses of the trnL intron and the trnL–trnF intergenic Taiwan spacer of chloroplast (cp) DNA, and the intertranscribed spacer (ITS) of nuclear ribosomal (nr) DNA between 18S and 26S were carried out on 18 populations of the E. transmorrisonensis complex in Taiwan. Results In total, 10 haplotypes for cpDNA and 14 haplotypes for nrDNA were detected. Three population groups located in the northern, north-eastern, and south-central regions of the Central Mountain Range (CMR) were revealed according to the frequencies of haplotypes and haplotype lineages of nrDNA. Balancing selection might have played a role in the evolution of Euphrasia in Taiwan. Main conclusions By integrating the spatial-genetic patterns of cpDNA and nrDNA, two possible evolutionary histories of Euphrasia in Taiwan were inferred. The favourable hypotheses for interpreting the data suggest at least three origins of the E.
    [Show full text]
  • 1083 a Ground-Breaking Study Published 5 Years Ago Revealed That
    American Journal of Botany 100(6): 1083–1094. 2013. SPECIAL INVITED PAPER—EVOLUTION OF PLANT MATING SYSTEMS P OLLINATION AND MATING SYSTEMS OF APODANTHACEAE AND THE DISTRIBUTION OF REPRODUCTIVE TRAITS 1 IN PARASITIC ANGIOSPERMS S IDONIE B ELLOT 2 AND S USANNE S. RENNER 2 Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67 80638 Munich, Germany • Premise of the study: The most recent reviews of the reproductive biology and sexual systems of parasitic angiosperms were published 17 yr ago and reported that dioecy might be associated with parasitism. We use current knowledge on parasitic lineages and their sister groups, and data on the reproductive biology and sexual systems of Apodanthaceae, to readdress the question of possible trends in the reproductive biology of parasitic angiosperms. • Methods: Fieldwork in Zimbabwe and Iran produced data on the pollinators and sexual morph frequencies in two species of Apodanthaceae. Data on pollinators, dispersers, and sexual systems in parasites and their sister groups were compiled from the literature. • Key results: With the possible exception of some Viscaceae, most of the ca. 4500 parasitic angiosperms are animal-pollinated, and ca. 10% of parasites are dioecious, but the gain and loss of dioecy across angiosperms is too poorly known to infer a statisti- cal correlation. The studied Apodanthaceae are dioecious and pollinated by nectar- or pollen-foraging Calliphoridae and other fl ies. • Conclusions: Sister group comparisons so far do not reveal any reproductive traits that evolved (or were lost) concomitant with a parasitic life style, but the lack of wind pollination suggests that this pollen vector may be maladaptive in parasites, perhaps because of host foliage or fl owers borne close to the ground.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Extensive Plastome Reduction and Loss of Photosynthesis Genes in Diphelypaea Coccinea, a Holoparasitic Plant of the Family Orobanchaceae
    Extensive plastome reduction and loss of photosynthesis genes in Diphelypaea coccinea, a holoparasitic plant of the family Orobanchaceae Eugeny V. Gruzdev1,2, Vitaly V. Kadnikov1, Alexey V. Beletsky1, Andrey V. Mardanov1 and Nikolai V. Ravin1,2 1 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia 2 Moscow State University, Moscow, Russia ABSTRACT Background. Parasitic plants have the ability to obtain nutrients from their hosts and are less dependent on their own photosynthesis or completely lose this capacity. The reduction in plastid genome size and gene content in parasitic plants predominantly results from loss of photosynthetic genes. Plants from the family Orobanchaceae are used as models for studying plastid genome evolution in the transition from an autotrophic to parasitic lifestyle. Diphelypaea is a poorly studied genus of the Orobanchaceae, comprising two species of non-photosynthetic root holoparasites. In this study, we sequenced the plastid genome of Diphelypaea coccinea and compared it with other Orobanchaceae, to elucidate patterns of plastid genome evolution. In addition, we used plastid genome data to define the phylogenetic position of Diphelypaea spp. Methods. The complete nucleotide sequence of the plastid genome of D. coccinea was obtained from total plant DNA, using pyrosequencing technology. Results. The D. coccinea plastome is only 66,616 bp in length, and is highly rearranged; however, it retains a quadripartite structure. It contains only four rRNA genes, 25 tRNA genes and 25 protein-coding genes, being one of the most highly reduced plastomes Submitted 16 May 2019 among the parasitic Orobanchaceae. All genes related to photosynthesis, including the Accepted 4 September 2019 Published 2 October 2019 ATP synthase genes, had been lost, whereas most housekeeping genes remain intact.
    [Show full text]
  • Molecular Evolutionary Analysis of Plastid Genomes in Nonphotosynthetic Angiosperms and Cancer Cell Lines
    The Pennsylvania State University The Graduate School Department or Biology MOLECULAR EVOLUTIONARY ANALYSIS OF PLASTID GENOMES IN NONPHOTOSYNTHETIC ANGIOSPERMS AND CANCER CELL LINES A Dissertation in Biology by Yan Zhang 2012 Yan Zhang Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Dec 2012 The Dissertation of Yan Zhang was reviewed and approved* by the following: Schaeffer, Stephen W. Professor of Biology Chair of Committee Ma, Hong Professor of Biology Altman, Naomi Professor of Statistics dePamphilis, Claude W Professor of Biology Dissertation Adviser Douglas Cavener Professor of Biology Head of Department of Biology *Signatures are on file in the Graduate School iii ABSTRACT This thesis explores the application of evolutionary theory and methods in understanding the plastid genome of nonphotosynthetic parasitic plants and role of mutations in tumor proliferations. We explore plastid genome evolution in parasitic angiosperms lineages that have given up the primary function of plastid genome – photosynthesis. Genome structure, gene contents, and evolutionary dynamics were analyzed and compared in both independent and related parasitic plant lineages. Our studies revealed striking similarities in changes of gene content and evolutionary dynamics with the loss of photosynthetic ability in independent nonphotosynthetic plant lineages. Evolutionary analysis suggests accelerated evolution in the plastid genome of the nonphotosynthetic plants. This thesis also explores the application of phylogenetic and evolutionary analysis in cancer biology. Although cancer has often been likened to Darwinian process, very little application of molecular evolutionary analysis has been seen in cancer biology research. In our study, phylogenetic approaches were used to explore the relationship of several hundred established cancer cell lines based on multiple sequence alignments constructed with variant codons and residues across 494 and 523 genes.
    [Show full text]
  • The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012).
    [Show full text]
  • Comparative Morphological, Anatomical and Palynological Investigations of the Genus Euphrasia L
    © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 19 (2012): 23 –37 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Comparative morphological, anatomical and palynological investigations of the genus Euphrasia L. (Orobanchaceae) in Iran Shahryar Saeidi Mehrvarz, Sayad Roohi, Iraj Mehrgan & Elham Roudi Summary: Comparative morphological, anatomical and palynological studies on six species Euphrasia L. (Orobanchaceae) in Iran are presented using plants collected from their type localities and many other populations. Euphrasia petiolaris and E. sevanensis are reported for the flora of Iran for the first time. In terms of anatomy, the phloem/xylem proportion in vascular bundles of stem and root, presence or absence of collenchyma at the periphery of stem cortex, the number of parenchyma cell layers of stem cortex and the thickness of the vascular bundle in the leaf midrib provide valuable characters in distinguishing species. According to the obtained results, the pollen morphology seems also to be taxonomically valuable. The main shapes observed among investigated taxa were spheroidal, oblate- spheroidal and prolate-spheroidal. The pollen grains were tricolpate and microrugulate, micropilate and microgemmate on exine surface. The relationships between taxa were estimated by analyzing the scored morphological, anatomical and palynological data using the Euclidian distance coefficient and UPGMA clustering method. Keys are provided for identification of the species of Euphrasia in Iran based on both morphological and anatomical features. Keywords: anatomy, palynology, Euphrasia, Orobanchaceae, taxonomy, flora of Iran The genus Euphrasia comprises about 450 perennial and annual green hemiparasitic species (Mabberley 2008). The distribution area ranges from Europe to Asia, the northern parts of America, South America, the mountains of Indonesia, Australia and New Zealand (Barker 1982).
    [Show full text]
  • Greek Island Odyssey Holiday Report 2013
    Greek Island Odyssey Holiday Report 2013 Day 1: Saturday 20th April As our plane came in to land at Rhodes airport the wildlife spotting began! We had a good view of a female Marsh Harrier and Little Egret over the nearby river. Then, on the drive to the hotel, we saw a Wood Sandpiper on the same river by the road bridge. Upon our arrival in the medieval old town Andy and Denise made a quick foray into the moat and town and found Starred Agamas, Oertzen’s Rock Lizards, a Dahl’s Whip Snake and Large Wall Brown butterflies. It was late evening by then and so we sat at a local taverna for our first traditional Greek mezedes meal and discussed plans for the week ahead over a civilized glass of wine. Day 2: Sunday 21st April After a hearty breakfast at the hotel we set off on our first Anatolian Worm Lizard full day of exploration. Our first stop was the archaeological park at Monte Smith. After parking the car and with lots of butterflies flying around us, it was hard to know just what to look at first. Andy diverted our attention, announcing that he had found an Anatolian Worm Lizard, a strange creature looking more like a worm than a lizard and which is found in Turkey and Greece. On Rhodes it is recorded only in the northern parts of the island. Lesser Fiery Copper We then moved on to watch the butterflies. The first two we identified were male and female Lesser Fiery Coppers, soon followed by Eastern Bath White, and Clouded yellow.
    [Show full text]
  • Diversity and Evolution of Asterids!
    Diversity and Evolution of Asterids! . mints and snapdragons . ! *Boraginaceae - borage family! Widely distributed, large family of alternate leaved plants. Typically hairy. Typically possess helicoid or scorpiod cymes = compound monochasium. Many are poisonous or used medicinally. Mertensia virginica - Eastern bluebells *Boraginaceae - borage family! CA (5) CO (5) A 5 G (2) Gynobasic style; not terminal style which is usual in plants; this feature is shared with the mint family (Lamiaceae) which is not related Myosotis - forget me not 2 carpels each with 2 ovules are separated at maturity and each further separated into 1 ovuled compartments Fruit typically 4 nutlets *Boraginaceae - borage family! Echium vulgare Blueweed, viper’s bugloss adventive *Boraginaceae - borage family! Hackelia virginiana Beggar’s-lice Myosotis scorpioides Common forget-me-not *Boraginaceae - borage family! Lithospermum canescens Lithospermum incisium Hoary puccoon Fringed puccoon *Boraginaceae - borage family! pin thrum Lithospermum canescens • Lithospermum (puccoon) - classic Hoary puccoon dimorphic heterostyly *Boraginaceae - borage family! Mertensia virginica Eastern bluebells Botany 401 final field exam plant! *Boraginaceae - borage family! Leaves compound or lobed and “water-marked” Hydrophyllum virginianum - Common waterleaf Botany 401 final field exam plant! **Oleaceae - olive family! CA (4) CO (4) or 0 A 2 G (2) • Woody plants, opposite leaves • 4 merous actinomorphic or regular flowers Syringa vulgaris - Lilac cultivated **Oleaceae - olive family! CA (4)
    [Show full text]
  • Anatomy of the Roots of Some Northern Hemiparasites (Orobanchaceae)
    Turczaninowia 20 (1): 107–117 (2017) ISSN 1560–7259 (print edition) DOI: 10.14258/turczaninowia.20.1.9 TURCZANINOWIA http://turczaninowia.asu.ru ISSN 1560–7267 (online edition) УДК 581.8:582.951.6 Anatomy of the roots of some northern hemiparasites (Orobanchaceae) E. V. Pavlenko, S. E. Petrova Lomonosov Moscow State University, Faculty of Biology, department of higher plants, Lenin Hills, d 1, p. 12, Moscow, 119991, Russia. E-mail: [email protected] Key words: Bartsia alpina, Castilleja lapponica, Pedicularis lapponica, Pedicularis sceptrum-carolinum, Rhinanthus minor, Scrophularia nodosa, haustorium. Summary. The root structure and the haustorial formation of 5 northern hemiparasites: Bartsia alpina, Castilleja lapponica, Pedicularis lapponica, Pedicularis sceptrum-carolinum, Rhinanthus minor subsp. groenlandicus (Oro- banchaceae) have been studied. The autotroph Scrophularia nodosa (Scrophulariaceae) has been chosen as a control. It is shown that the main preconditions providing the possibility of rapid haustorium development are the long life of the primary outermost tissue of the root – the rhizodermis that covers the entire length of both young and older roots, and constant readiness of this tissue to form special haustorial hairs, and also an unusual structure of exodermis, which in many details is similar to rhizodermis. The formation of haustorial hairs is one of the earliest structural events in haustorium development; the haustorial hairs are long, with a smooth surface. The division and elongation of cells in the outer tissues play a major role in the early stages of endophyte development. The parasitic form of life influence the inner structure of the vascular cylinder that appears as the reduction of phloem conductive elements and the ac- cumulation of large amounts of starch in the xylem.
    [Show full text]
  • The Potential Sensitivity to Climate Change of Selected Endangered and Important Natura 2000 Habitats and Plants from Bucegi Natural Park, Romania
    Sârbu A et al . (2020) Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(1):456-479 DOI:10.15835/nbha48111756 Notulae Botanicae Horti AcademicPres Research Article Agrobotanici Cluj-Napoca The potential sensitivity to climate change of selected endangered and important Natura 2000 Habitats and plants from Bucegi Natural Park, Romania Anca SÂRBU 1, Georg A. JANAUER 2*, Norbert EXLER 2, Ion SÂRBU 3, Paulina ANASTASIU 1,4 1University of Bucharest, Faculty of Biology, Department of Botany-Microbiology, 1-3 Intrarea Portocalelor, 060101Bucharest, Romania; [email protected] ; [email protected] 2University of Vienna, Department of Limnology and Biological Oceanography, 14 Althanstraße, 1090 Vienna, Austria; [email protected] (*corresponding author); [email protected] 3University “Al. I. Cuza”, Faculty of Biology, Department of Botany, 11 Bulevardul Carol I, 700506 Iaşi, Romania; [email protected] 4University of Bucharest, Botanic Garden “D. Brandza”, Şos. Cotroceni 32, Bucharest, Romania Abstract This study was carried out in the Bucegi Natural Park, a protected area of the Romanian Carpathians. It aims at documenting the potential sensitivity of six widespread Natura 2000 habitat types and of all plants with conservative value (200 taxa) in the mountain area, to the changes in temperature and humidity, predicted for this century. Regional expert knowledge and environmental indicator values were considered in assessing the potential habitat’s sensitivity. The results support the evidence that sensitivity to temperature may be potentially higher for habitats at alpine and subalpine levels (bushes and grasslands) and medium for forest habitats. Sensitivity to moisture was detected as potentially high for forest habitats and as medium for bushes and grasslands at high mountain elevation.
    [Show full text]