Synthesis and Functionalizations of Tetrapyrrole Derivatives Lijuan Jiao Louisiana State University and Agricultural and Mechanical College, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Functionalizations of Tetrapyrrole Derivatives Lijuan Jiao Louisiana State University and Agricultural and Mechanical College, Ljiao1@Lsu.Edu Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2007 Synthesis and functionalizations of tetrapyrrole derivatives Lijuan Jiao Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Jiao, Lijuan, "Synthesis and functionalizations of tetrapyrrole derivatives" (2007). LSU Doctoral Dissertations. 1309. https://digitalcommons.lsu.edu/gradschool_dissertations/1309 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SYNTHESIS AND FUNCTIONALIZATIONS OF TETRAPYRROLE DERIVATIVES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Chemistry by Lijuan Jiao B.S., Shandong University, China 2000 M. S., University of Science and Technology of China, 2003 December, 2007 DEDICATION This Dissertation is dedicated to my parents in China for their unconditional love, their continuous support, and their understanding of every decision that I made throughout of my life. 谨以此文献给我远在中国的亲爱的父母,感谢他们这麽多年以来所给予我的无微不 至的关爱,默默无闻的支持与理解。 ii ACKNOWLEDGEMENTS First of all, I would like to give my sincere thanks to my advisor - Professor Kevin M. Smith. He is a great advisor that every student would ask for. He also has great personality. He is kind, generous, optimistic and knowledgeable. He provided me abundant guidance, freedom and support, and continuous encouragement throughout my Ph.D. studies. He led me into porphyrin chemistry and provided me with invaluable opportunities to know porphyrins and to enjoy porphyrin research. He has always been there for me when I need suggestions and help with my research, and also to help with my career plan and job interviews. Without his unconditional support, my Ph.D. studies would have been more lengthy. I will always be proud of once being his student and having worked under his guidance. My special thanks go to Professor Graça Vicente. She is a wonderful woman, independent, brilliant, but also kind and always willing to provide help to all of her students. She helped me with everything ever since I first met with her at LSU. She gave me suggestions in my studies, research, job interview and even my everyday life. It is hard to study in a science major, especially for a woman. Some time, I felt so frustrated that I even thought about quitting. But she was there, set a role model for me, and let me regain confidence to continue my studies and my research. She let me know how to balance career and everyday life. My special thanks also go to Professor William Crowe, Professor Brian Hales and Professor Henry James. Professor William Crowe is a great teacher, and he is also a kind, generous and knowledgeable person. I really enjoy his great lectures in the Organic Chemistry class. He cared about his students and tries his best to help us to learn essential organic chemistry. I also enjoyed my research discussions with him, which were very helpful for smoothing my research process. Professor Brian Hales gave me great lectures in the ―Bioinorganic Chemistry‖ iii classes, which helped me to learn interesting things outside of organic chemistry. I thank Professor Henry James for being on my committee. My special thanks also go to Ms. Sherry Wilkes. She has provided her generous help to us ever since my husband and I first arrived at LSU. Her generous support continued throughout our doctoral studies. My thanks also go to my colleges: Dr. Frank Fronczek in the LSU X-ray facility for those beautiful X-rays of my crystals; Dr. Tracy McCarley in the LSU-MS facility for teaching me how to operate the MALDI-MS; Mr. Guangyu Li and Dr. Dale Treleaven for training me to do NMR; Dr. Thomas Weldeghiorghis for the 2D-NMRs in the chlorin-e6 project; Mr. Tim Jensen for helping me to learn cell-culture techniques and fluorescence microscopy; Dr. Irena Nesterova from Dr. Soper’s research group for teaching me how to do fluoroesence quantum yield experiments and her helpful chemistry discussions. My thanks also go to everyone from both the Smith and Vicente research groups, especially Wei Liu, Celinah Mwakwari, Jianming Lu, Brahma Ghosh and Michael Easson for once being my lab mates and making working in the lab comfortable. My thanks also go to the other group members: Owendi Ongayi, Vijay Gottumukula, Jodie Hargus, Ravi Kumar, Raymond Luguya, Caleb Clark, Boyd Laurent, Hairong Li, Hillary Tanui, Kiran Allam, Giuseppe Pomarico, Anatol Litoshka, Martha Sibrian-Vasquez and Federica Mandoj. My deepest thanks go to my parents, Mr. Congjian Jiao and Ms. Yuying Li. I want to thank them for their love and their continuous support. They provided me with the strength and courage to take opportunities and face challenges throughout my life. I also want to thank my brothers and sisters, Mr. Tao Deng, Mr. Feng Deng, Ms. Mei Deng and Ms. Ping Li. Thanks for all their care, love and interactions in my life. I also want thank all my friends, especially Dr. Fang Chen, for being my best friend and always being there for me. iv My last, but not least, appreciation goes to my loved husband, Mr. Erhong Hao. He always stands next to me and supports me. He provides me with the deepest love, the continuous support and encouragement. He offers me his broad shoulder to let my mind rest when I was exhausted from research. It is him who makes chemistry research romantic and attractive. It is him who always believed in me and kept on pushing me to do my best. It is also him who always reminds me to cherish and follow my dreams, so that I will never lose myself. Without him, I would never be able to finish my doctoral research in such a short period. Also, without him, my life will not be so bright, colorful and lovely. v TABLE OF CONTENTS Dedication…...………………………………………….……………………………..…….…....ii Acknowledgements…..……………………...…………………………………..........................iii Abstract………………..……………………………………………………………..…..….....viii Chapter 1. Introduction……………………………………………………………………...….1 1.1History of Tetrapyrroles……………………………………………………………….…..…...1 1.2Overview of Porphyrins……………………………………….…………………..….….….…5 1.3Benzoporphyrins…………………………….…………………..…………………………....20 1.4Overview of Chlorin-e6 as a PDT Photosensitizer………………………….………...............24 1.5Overview of Porphycenes………….……………………...………………………………….28 1.6References……………………………………...………………………………………..……30 Chapter 2. β, β’-Fused Methylenepropanoporphyrins………………………...……………..37 2.1Introduction…………………………………………………………………………………...37 2.2Results and Discussion………………...……………………………………………………..39 2.3Experiment………………………………………………………………...………………….68 2.4Conclusions and Future Work……………………………………………...……………..….74 2.5References…………………………………………………………………...………………..75 Chapter 3. Benzoporphyrins from the Ring-Closing-Metathesis……….………………...…79 3.1Introduction…………………………………………………………………………………...79 3.2Results and Discussion…………………………………………...…………………………..81 3.3Conclusions……………………………………………………………………...…………....98 3.4Experiment…………………………………………...……………………………………….98 3.5References……………………………………………………………………...…….….…..105 Chapter 4. “Hangman Porphyrin” Analogs………………………………………………....107 4.1Introduction………………………………………………………………………………….107 4.2Results and Discussion………………………………...………………………………...….110 4.3Conclusions…..…………………………...……………………………………………...…121 4.4Experiment…………………………………………………………………………………..121 4.5References…………………………………………………………………………...………130 Chapter 5. Total Synthesis of Porphycenes and Improved Synthesis of 2,2’-Bipyrroles...133 5.1Introduction………………………………………………………………………………….133 5.2Results and Discussion………………………………………………………………...…....138 5.3Conclusions and Future Work…………………………………………..………………......156 5.4Experiment…………………………………………………………………………………..156 5.5References…………………………………………………………………………………...175 Chapter 6. The Unique Regiochemistry of Mono-(L)-aspartylchlorin-e6……………..…..178 6.1Introduction………………………………………………………………………………….178 vi 6.2Results and Discussion………………………………………………………..…………....180 6.3Conclusion……………………………………………………………………………….....192 6.4Experiment………………………………………………………………………………….193 6.5References…………………………………………………………………………………..196 Appendix: Letters of Permission………………...…...………………………………………198 Vita…...…………………………………………………………………………………...……202 vii ABSTRACT Chapter 1 of this Dissertation presents a brief overview of the history of tetrapyrrole derivatives and of their fundamental properties. Overviews of porphyrins, benzoporphyrins, chlorins and porphycenes are presented. Work presented in Chapter 2 through Chapter 4 mainly focuses on the syntheses and functionalization of chromophore-extended porphyrin derivatives. Several new synthetic routes for the syntheses and functionalizations of extended porphyrins either at the β-position or at the meso-position of porphyrin are developed. From these improved synthetic routes, the regio- selective syntheses of porphyrin derivatives are described. Chapter 2 mainly focuses on the syntheses of β,β’-fused methylenepropanoporphyrins and related porphyrin dimers. Chapter 3 mainly describes a new synthetic route for selective synthesis of benzoporphyrin regioisomers and Chapter 4 mainly discusses new work on the
Recommended publications
  • Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr
    Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr. 67, D-8000 München 19, Bundesrepublik Deutschland Z. Naturforsch. 38 c, 753-757 (1983); received May 4, 1983 Semisynthetic Bile Pigments, Urobiliverdin III, Coprobiliverdin III, Biliverdin IX, Uroporphyrin III 5-Aminolevulinic acid is incubated with a crude enzyme extract from Rhodopseudomonas spheroides, mutant R 26. The formed porphyrins (main product: uroporphyrin III) are isolated. Incorporation of iron, ring-splitting by coupled oxydation and subsequent iron removal leads to a mixture of pigments, from which urobiliverdin, a new bile pigment with eight carboxylic acid side chains, is isolated. It is characterized by its chromatographic behaviour, chromic acid degra­ dation and UV-vis spectroscopy. Introduction the photosynthetic bacteria, Rhodopseudomonas spheroides, mutant R26 was a gift from Prof. Naturally occurring open chained tetrapyrrolic H. Scheer, Munich. Marker porphyrins were pur­ systems (bile pigments) usually bear two carboxylic chased from Porphyrin products (Logan, USA). acid side chains, namely propionic acid side chains. Chromic acid degradation was performed accord­ Examples are phycocyanobilin [1-5], phycoerythro- ing to the procedure developed by Rüdiger [21]; the bilin [5, 6], phytochromobilin [7, 8], the biliar pig­ degradation products were separated on silicagel 60 ment bilirubin ([9], here older literature) and sterco- coated HPTLC plates (E. Merck, Darmstadt, FRG) bilin [9] which is encountered in the faeces. using the solvent system chloroform-ethyl acetate- All of these pigments probably derive from proto­ cyclohexane = 6:3:1. The imides formed were heme as has been shown experimentally in a identified by comparison with authentic standards.
    [Show full text]
  • PDF File Includes: Main Text Figures 1 to 4 Supplemental Text Supplemental Figures S1 to S8 Supplemental Tables
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.414581; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE Takayuki Nagaea, Masashi Unnob, Taiki Koizumic, Yohei Miyanoirid, Tomotsumi Fujisawab, Kento Masuif, Takanari Kamof, Kei Wadae, Toshihiko Ekif, Yutaka ItoC, Yuu Hirosef and Masaki Mishimac aSynchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan; bDepartment of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan; cDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; dInstitute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan; eDepartment of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan; fDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan 1To whom correspondence should be addressed 1Masaki Mishima Email: [email protected] 1Yuu Hirose Email: [email protected] 1 Masashi Unno Email: [email protected] Takayuki Nagae: 0000-0001-7016-5183 Tomotsumi Fujisawa: 0000-0002-3282-6814 Masashi Unno: 0000-0002-5016-6274 Yohei Miyanoiri: 0000-0001-6889-5160 Yuu Hirose: 0000-0003-1116-8979 Kei Wada: 0000-0001-7631-4151 Yutaka Ito: 0000-0002-1030-4660 Masaki Mishima: 0000-0001-7626-7287 Classification Biological Sciences Keywords cyanobacteriochrome, phytochrome, bilin, NMR, crystallography Author Contributions MM, YH, and MU designed the research and wrote the manuscript.
    [Show full text]
  • Noncanonical Coproporphyrin-Dependent Bacterial Heme Biosynthesis Pathway That Does Not Use Protoporphyrin
    Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin Harry A. Daileya,b,c,1, Svetlana Gerdesd, Tamara A. Daileya,b,c, Joseph S. Burcha, and John D. Phillipse aBiomedical and Health Sciences Institute and Departments of bMicrobiology and cBiochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; dMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439; and eDivision of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132 Edited by J. Clark Lagarias, University of California, Davis, CA, and approved January 12, 2015 (received for review August 25, 2014) It has been generally accepted that biosynthesis of protoheme of a “primitive” pathway in Desulfovibrio vulgaris (13). This path- (heme) uses a common set of core metabolic intermediates that way, named the “alternative heme biosynthesis” path (or ahb), has includes protoporphyrin. Herein, we show that the Actinobacteria now been characterized by Warren and coworkers (15) in sulfate- and Firmicutes (high-GC and low-GC Gram-positive bacteria) are reducing bacteria. In the ahb pathway, siroheme, synthesized unable to synthesize protoporphyrin. Instead, they oxidize copro- from uroporphyrinogen III, can be further metabolized by suc- porphyrinogen to coproporphyrin, insert ferrous iron to make Fe- cessive demethylation and decarboxylation to yield protoheme (14, coproporphyrin (coproheme), and then decarboxylate coproheme 15) (Fig. 1 and Fig. S1). A similar pathway exists for protoheme- to generate protoheme. This pathway is specified by three genes containing archaea (15, 16). named hemY, hemH, and hemQ. The analysis of 982 representa- Current gene annotations suggest that all enzymes for pro- tive prokaryotic genomes is consistent with this pathway being karyotic heme synthetic pathways are now identified.
    [Show full text]
  • Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation Into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N
    plants Review Light-Independent Nitrogen Assimilation in Plant Leaves: Nitrate Incorporation into Glutamine, Glutamate, Aspartate, and Asparagine Traced by 15N Tadakatsu Yoneyama 1,* and Akira Suzuki 2,* 1 Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan 2 Institut Jean-Pierre Bourgin, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), UMR1318, RD10, F-78026 Versailles, France * Correspondence: [email protected] (T.Y.); [email protected] (A.S.) Received: 3 September 2020; Accepted: 29 September 2020; Published: 2 October 2020 Abstract: Although the nitrate assimilation into amino acids in photosynthetic leaf tissues is active under the light, the studies during 1950s and 1970s in the dark nitrate assimilation provided fragmental and variable activities, and the mechanism of reductant supply to nitrate assimilation in darkness remained unclear. 15N tracing experiments unraveled the assimilatory mechanism of nitrogen from nitrate into amino acids in the light and in darkness by the reactions of nitrate and nitrite reductases, glutamine synthetase, glutamate synthase, aspartate aminotransferase, and asparagine synthetase. Nitrogen assimilation in illuminated leaves and non-photosynthetic roots occurs either in the redundant way or in the specific manner regarding the isoforms of nitrogen assimilatory enzymes in their cellular compartments. The electron supplying systems necessary to the enzymatic reactions share in part a similar electron donor system at the expense of carbohydrates in both leaves and roots, but also distinct reducing systems regarding the reactions of Fd-nitrite reductase and Fd-glutamate synthase in the photosynthetic and non-photosynthetic organs.
    [Show full text]
  • 1.1-Billion-Year-Old Porphyrins Establish a Marine Ecosystem Dominated by Bacterial Primary Producers
    1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers N. Guenelia,1, A. M. McKennab, N. Ohkouchic, C. J. Borehamd, J. Beghine, E. J. Javauxe, and J. J. Brocksa,1 aResearch School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia; bNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310-4005; cDepartment of Biogeochemistry, Japan Agency for Marine–Earth Science and Technology, 237-0061 Kanagawa Prefecture, Yokosuka, Natsushimacho, Japan; dGeoscience Australia, Symonston, ACT 2609, Australia; and eDepartment of Geology, Unité de Recherche Geology, University of Liège, 4000 Liege, Belgium Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved June 8, 2018 (received for review March 6, 2018) The average cell size of marine phytoplankton is critical for the the molecular fossils of biological lipids, can provide comple- flow of energy and nutrients from the base of the food web to mentary information about primary producers. For example, higher trophic levels. Thus, the evolutionary succession of primary hydrocarbon fossils of carotenoid pigments extracted from sed- producers through Earth’s history is important for our understand- imentary rocks have been used to detect phototrophic green ing of the radiation of modern protists ∼800 million years ago and (Chlorobiaceae) and purple sulfur bacteria (PSB) (Chromatia- ∼ the emergence of eumetazoan animals 200 million years later. ceae) in 1,640-My-old marine ecosystems (4, 5), while the con- Currently, it is difficult to establish connections between primary centration of eukaryotic steranes, relative to bacterial hopanes, production and the proliferation of large and complex organisms may provide basic information about the ecological relevance of because the mid-Proterozoic (∼1,800–800 million years ago) rock Precambrian algae (6).
    [Show full text]
  • Synthesis and Spectroscopic Properties of Β-Meso Directly Linked Porphyrin–Corrole Hybrid Compounds
    Synthesis and spectroscopic properties of β-meso directly linked porphyrin–corrole hybrid compounds Baris Temelli* and Hilal Kalkan Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2018, 14, 187–193. Hacettepe University, Department of Chemistry, Beytepe Campus, doi:10.3762/bjoc.14.13 06800, Ankara, Turkey Received: 09 October 2017 Email: Accepted: 05 January 2018 Baris Temelli* - [email protected] Published: 22 January 2018 * Corresponding author Associate Editor: J. Aubé Keywords: © 2018 Temelli and Kalkan; licensee Beilstein-Institut. corrole; hybrid compounds; indium(III) chloride; porphyrin; License and terms: see end of document. porphyrinoids Abstract The preparation of β-meso directly linked porphyrin–corrole hybrids was realized for the first time via an InCl3-catalyzed condensa- tion reaction of 2-formyl-5,10,15,20-tetraphenylporphyrins with meso-substituted dipyrromethanes. Hybrid compounds have been characterized by 1H NMR, 13C NMR, 2D NMR, UV–vis absorption and fluorescence spectroscopy. Introduction Porphyrins and metalloporphyrins play an important role in compounds, corroles, contracted porphyrin analogues [31-33], chemistry, biology, medical and materials sciences because of assumed an important place in porphyrin chemistry due to their their presence in biological compounds such as chlorophyll and small cavities, trianionic characters, high fluorescence quantum heme molecules that have very important functions in the yields and favorable electronic properties. Porphyrin–corrole metabolism of living organisms [1,2]. In recent years, efforts in conjugates have been successfully used as donor–acceptor porphyrin chemistry have been focused on the synthesis of systems in photoinduced charge separation processes. It was multichromophore containing compounds and their potential shown that derivatives of these conjugates could be potentially applications in molecular wires, sensors, nonlinear optical used in photovoltaic applications [21-23].
    [Show full text]
  • Phototrophic Pigment Production with Microalgae
    Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis committee Promotor Prof. Dr R.H. Wijffels Professor of Bioprocess Engineering Wageningen University Co-promotors Dr D.E. Martens Assistant professor, Bioprocess Engineering Group Wageningen University Dr P.P. Lamers Assistant professor, Bioprocess Engineering Group Wageningen University Other members Prof. Dr H. van Amerongen, Wageningen University Prof. Dr M.J.E.C. van der Maarel, University of Groningen Prof. Dr C. Vilchez Lobato, University of Huelva, Spain Dr S. Verseck, BASF Personal Care and Nutrition GmbH, Düsseldorf, Germany This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis submitted in fulfilment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 5 December 2014 at 11 p.m. in the Aula. K. J. M. Mulders Phototrophic pigment production with microalgae, 192 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With propositions, references and summaries in Dutch and English ISBN 978-94-6257-145-7 Abstract Microalgal pigments are regarded as natural alternatives for food colourants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary carotenoids. Different microalgal groups each possess their own set of primary pigments. Besides, a selected group of green algae (Chlorophytes) accumulate secondary pigments (secondary carotenoids) when exposed to oversaturating light conditions.
    [Show full text]
  • Retrograde Bilin Signaling Enables Chlamydomonas Greening and Phototrophic Survival
    Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival Deqiang Duanmua, David Caserob,c, Rachel M. Dentd, Sean Gallahere, Wenqiang Yangf, Nathan C. Rockwella, Shelley S. Martina, Matteo Pellegrinib,c, Krishna K. Niyogid,g,h, Sabeeha S. Merchantb,e, Arthur R. Grossmanf, and J. Clark Lagariasa,1 aDepartment of Molecular and Cellular Biology, University of California, Davis, CA 95616; bInstitute for Genomics and Proteomics, cDepartment of Molecular, Cell and Developmental Biology, and eDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; dDepartment of Plant and Microbial Biology, gHoward Hughes Medical Institute, and hPhysical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; and fDepartment of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305 Contributed by J. Clark Lagarias, December 20, 2012 (sent for review October 30, 2012) The maintenance of functional chloroplasts in photosynthetic share similar mechanisms for light sensing and retrograde sig- eukaryotes requires real-time coordination of the nuclear and naling. However, many chlorophyte genomes lack phytochromes plastid genomes. Tetrapyrroles play a significant role in plastid-to- (21–24), a deficiency offset by a larger complement of flavin- and nucleus retrograde signaling in plants to ensure that nuclear gene retinal-based sensors (25–30). expression is attuned to the needs of the chloroplast. Well-known Despite the absence of phytochromes, all known chlorophyte sites of synthesis of chlorophyll for photosynthesis, plant chlor- genomes retain cyanobacterial-derived genes for the two key oplasts also export heme and heme-derived linear tetrapyrroles enzymes required for bilin biosynthesis (Fig. 1A): a heme oxygen- (bilins), two critical metabolites respectively required for essential ase (HMOX1) and a ferredoxin-dependent bilin reductase (PCYA).
    [Show full text]
  • Magnesium-Protoporphyrin Chelatase of Rhodobacter
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 1941-1944, March 1995 Biochemistry Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli (protoporphyrin IX/tetrapyrrole/chlorophyll/bacteriochlorophyll/photosynthesis) LUCIEN C. D. GIBSON*, ROBERT D. WILLOWSt, C. GAMINI KANNANGARAt, DITER VON WETTSTEINt, AND C. NEIL HUNTER* *Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom; and tCarlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark Contributed by Diter von Wettstein, November 14, 1994 ABSTRACT Magnesium-protoporphyrin chelatase lies at Escherichia coli and demonstrate that the extracts of the E. coli the branch point of the heme and (bacterio)chlorophyll bio- transformants can convert Mg-protoporphyrin IX to Mg- synthetic pathways. In this work, the photosynthetic bacte- protoporphyrin monomethyl ester (20, 21). Apart from posi- rium Rhodobacter sphaeroides has been used as a model system tively identifying bchM as the gene encoding the Mg- for the study of this reaction. The bchH and the bchI and -D protoporphyrin methyltransferase, this work opens up the genes from R. sphaeroides were expressed in Escherichia coli. possibility of extending this approach to other parts of the When cell-free extracts from strains expressing BchH, BchI, pathway. In this paper, we report the expression of the genes and BchD were combined, the mixture was able to catalyze the bchH, -I, and -D from R. sphaeroides in E. coli: extracts from insertion of Mg into protoporphyrin IX in an ATP-dependent these transformants, when combined in vitro, are highly active manner.
    [Show full text]
  • Modifications of Protoporphyrin IX Fluorescence During ALA-Based
    ARTICLE IN PRESS Medical Laser Application 21 (2006) 291–297 www.elsevier.de/mla Modifications of protoporphyrin IX fluorescence during ALA-based photodynamic therapy of endometriosis Karsten Ko¨niga,Ã, Marie-Therese Wyss-Desserichb, Yona Tadirc, Urs Hallerb, Bruce Trombergc, Michael W. Bernsc, P. Wyssb aFraunhofer Institute of Biomedical Technology (IBMT), Ensheimer Straße 48, 66386 St. Ingbert, Germany bDepartment of Obstetrics and Gynecology, Clinic of Gynecology, Frauenklinikstr. 10, University Hospital Zu¨rich, 8091 Zu¨rich, Switzerland cBeckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Road Irvine, Irvine, CA 92612, USA Received 20 June 2006; accepted 31 July 2006 Abstract Modifications of the porphyrin fluorescence during photodynamic treatment of ovarian cells, endometrial adenocarcinoma cells and rat uterus after administration of the porphyrin precursor d-aminolevulinic acid and exposure with 630 nm laser radiation have been studied. The intracellular and intratissue fluorescence was excited with 407 nm radiation of a krypton ion laser and detected by spectral microscopic imaging using a modified microscope equipped with a slow-scan cooled camera and a liquid crystal filter. In particular, singlet oxygen induced effects due to photobleaching as well as formation of chlorin-type fluorescent photoproducts were detected at around 500, 630 and 670 nm. The photodynamically induced fluorescence modifications were found to vary between cell types. The major fluorescence peak of PP IX was photobleached 63% by a phototoxic fluence of about 20–40 J/cm2 in cells and within rat endometrium. Higher fluences were required to bleach the fluorescence at around 670 nm due to the formation of fluorescent photoproducts.
    [Show full text]
  • AOP 131: Aryl Hydrocarbon Receptor Activation Leading to Uroporphyria
    Organisation for Economic Co-operation and Development DOCUMENT CODE For Official Use English - Or. English 1 January 1990 AOP 131: Aryl hydrocarbon receptor activation leading to uroporphyria Short Title: AHR activation-uroporphyria This document was approved by the Extended Advisory Group on Molecular Screening and Toxicogenomics in June 2018. The Working Group of the National Coordinators of the Test Guidelines Programme and the Working Party on Hazard Assessment are invited to review and endorse the AOP by 29 March 2019. Magdalini Sachana, Administrator, Hazard Assessment, [email protected], +(33- 1) 85 55 64 23 Nathalie Delrue, Administrator, Test Guidelines, [email protected], +(33-1) 45 24 98 44 This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. 2 │ Foreword This Adverse Outcome Pathway (AOP) on Aryl hydrocarbon receptor activation leading to uroporphyria, has been developed under the auspices of the OECD AOP Development Programme, overseen by the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST), which is an advisory group under the Working Group of the National Coordinators for the Test Guidelines Programme (WNT). The AOP has been reviewed internally by the EAGMST, externally by experts nominated by the WNT, and has been endorsed by the WNT and the Working Party on Hazard Assessment (WPHA) in xxxxx. Through endorsement of this AOP, the WNT and the WPHA express confidence in the scientific review process that the AOP has undergone and accept the recommendation of the EAGMST that the AOP be disseminated publicly.
    [Show full text]
  • The Function of Pufq in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter Capsulatus
    The Function of PufQ in the Regulation of Bacteriochlorophyll Biosynthesis in Rhodobacter capsulatus Himani Rajeshwar Utkhede B.Sc. Simon Fraser University, 200 1 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE in the Department of Molecular Biology and Biochemistry O Himani R. Utkhede 2004 SIMON FRASER UNIVERSITY March, 2004 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval I Name: Himani R. Utkhede Degree: Master of Science Title of Thesis: The Function of PufQ in the Regulation of Bacteriochlorophyll Synthesis in Rhodobacter capsulatus. Examining Committee: Dr. W.S. Davidson, Chair Dr. William R. Richards, Senior Supervisor Professor Emeritus, Molecular Biology and Biochemistry Simon Fraser University Dr. Michel Leroux, Supervisor Assistzt Prcfessor, ?v!s!ec.dzr Eic!ca.;- - 2~2L3.icche~isty Simon Fraser University Dr. Erika Plettner, Supervisor Assistant Professor, Chemistry Simon Fraser University Dr. Lynne Quarmby, Internal Examiner Assistant Professor, Biology Simon Fraser University Date Approved: Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further agreed that permission for multiple copying of ths work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.
    [Show full text]