Evolution of Nonribosomal Peptide Synthetase Proteins Involved in Secondary Metabolism in Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Nonribosomal Peptide Synthetase Proteins Involved in Secondary Metabolism in Fungi EVOLUTION OF NONRIBOSOMAL PEPTIDE SYNTHETASE PROTEINS INVOLVED IN SECONDARY METABOLISM IN FUNGI A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Kathryn E. Bushley August 2009 © 2009 Kathryn E. Bushley EVOLUTION OF NONRIBOSOMAL PEPTIDE SYNTHETASE PROTEINS INVOLVED IN SECONDARY METABOLISM IN FUNGI Kathryn E. Bushley, Ph. D. Cornell University 2009 Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes which biosynthesize peptides (NRPs) independently of ribosomes. Three core domains (adenylation (A), thiolation (T), condensation (C)) comprise a functional module for NRP biosynthesis. Although NRPSs produce a diversity of bioactive compounds, little is known about the evolutionary relationships of genes encoding NRPSs and the mechanisms by which they evolve. The objectives of this research were to perform phylogenomic analyses to identify major NRPS subclasses and determine evolutionary relationships and to elucidate fine-scale evolutionary mechanisms giving rise to the diverse NRPS domain structures in fungi. Chapter 2 is a published manuscript on ferrichrome synthetases tracking the evolution of domain architectures of these relatively conserved enzymes across fungi. Results supported the hypothesis that ferrichrome synthetases evolved by tandem duplication of complete modules (A-T-C) (single or double units) and loss of single A domains or complete A-T-C modules. A mechanism for evolution of iterative biosynthesis is proposed. Protein modeling of the A domain substrate binding pockets refined characterization of key residues involved in substrate specificity, by identifying novel sites. Chapter 3 reports a fungal kingdom-wide phylogenomic study of NRPSs, with the objective of identifying subclasses. Nine were identified which fell into two major groups. One consisted of primarily mono/bi-modular NRPSs with conserved domain architectures which group with bacterial NRPSs and whose products are associated with conserved metabolic roles. The other consisted of primarily multimodular and exclusively fungal NRPSs with variable domain architectures whose products perform niche-specific functions. All groups of NRPSs were much more common in Euascomycetes than in any other fungal taxonomic group. Although NRPSs are discontinuously distributed across fungal taxa, little evidence was found for horizontal gene transfer from bacteria to fungi. Overall, this study showed that both tandem duplication and loss, as well as recombination and rearrangement, of modular units (either complete A-T-C modules or single A domains) are mechanisms by which NRPSs and their chemical products evolve. Phylogenomic analysis identified subgroups of NRPSs possibly reflecting common function and suggested an older evolutionary origin of several mono/bimodular groups while multimodular fungal NRPSs are more recently derived and highly expanded in Euascomycetes. BIOGRAPHICAL SKETCH Kathryn Bushley was born in Seattle, Washington on August 25, 1968. She attended Oberlin College and obtained a B.A. degree with a double major in Biology and Anthropology in 1991. After working and dancing for several years in the Seattle area and deciding not to pursue a professional career in dance, she returned to graduate school for a Master’s in Environmental Management at Duke University. It was during her master’s degree at Duke where she first fell in love with fungi while working on a masters thesis investigating turnover of mycorrhizal fungal root systems and taking a mycology course with Dr. Rytas Vilgalys. After completing her master’s degree in 1997, she worked for her advisor, Dr. Janet MacFall, for several years at the Duke Medical Center investigating how mycorrhizal fungi bind aluminum in soil using innovative techniques of magnetic resonance imaging to noninvasively measure changes in root volume. She entered the PhD program in Plant Pathology at Cornell University in fall of 2001 to study mycology and joined the Turgeon lab in 2002. iii I would like to dedicate this work to my great grandmother Lillian Vogle whose adventurous spirit inspires me to explore the boundaries of the unknown and go where no woman has gone before iv ACKNOWLEDGMENTS Many people have contributed in both large and small ways to the fruition of this work. I am grateful first and foremost for being blessed with exceptional parents whose love and support sustain me in all my endeavors. I would like to thank my committee members, B. Gillian Turgeon, Jeff Doyle, and Donna Gibson for their support, enthusiasm, and patience throughout the PhD process. I am also grateful to Oberlin College, my undergraduate institution, for teaching me to think critically and independently. Thanks to Miguel Carvahlo, Jean Bonasera, and fellow labmembers Shunwen Lu and Patrik Inderbitzin, for providing training and mentoring in molecular biology and phylogenetic techniques during the early stages of my PhD. Special thanks to Genevieve DeClerck and Paul Stodghill for their patience in initiating me into the art of computer programming and for troubleshooting more than one incomprehensible error message. I am also especially grateful to Daniel Ripoll, who performed protein structural modelling of NRPS AMP domains and contributed significantly to insights into substrate specificity of fungal ferrichrome siderophore synthetases discussed in Chapter 2 as well as other staff members of the Cornell Computation Biology Service Unit, Conrad Schoch, Adam Siepel, and Dave Schneider for providing both advice and resources for computational and phylogenetic analyses. I would also like to thank others who have provided advice along the way (Scott Kroken , Henk DeBakker, Kevin Nixon, and Ning Zhang) and the Plant Pathology administrative staff, especially Carol Fisher, for superb administrative support and assistance in formatting the thesis. v TABLE OF CONTENTS Biographical Sketch iii Dedication iv Acknowledgements v List of Tables xi List of Figures xiii List of Appendices xiv 1. Chapter 1: General Introduction 1 1.1 Modular Proteins in Secondary Metabolism 1 1.2 NRPS Biosynthesis 4 1.2.1 Adenylation (A) Domain 6 1.2.2 Thiolation (T) Domain 8 1.2.3 Condensation (C) Domain 9 1.2.4 Termination Domains 10 1.2.5 Decorating Domains 12 1.3 Evolutionary Origins of NRPS and PKS Synthetases 13 1.3.1 Relationship Between NRPSs, PKSs and Primary 13 Metabolism 1.3.2 Discovery of NRPSs and Related AMP Adenylating 14 Enzymes 1.4 Mechanisms of Evolution of Modular Proteins 16 1.4.1 Models of Gene Family Evolution 16 1.4.2 Evolution of Repeated Units in Proteins 17 1.5 Fungal NRPS: Evolution and Functional Groups 20 vi 1.5.1 Mechanisms Leading to the Discontinuous Distribution 20 of Secondary Metabolite Genes in Fungi: Gene Clusters, Horizontal Gene Transfer, and Duplication and Differential Loss (DDL) 1.5.2 Known Functional Classes of Fungal NRPSs 25 1.5.2.1 Conserved Homologs of ChNPS6, ChNPS4, ChNPS10, and ChNPS12 26 1.5.2.2 Siderophore Synthetases 29 1.5.2.3 ACV Synthetases 29 1.5.2.4 Cyclosporin Synthetases 30 1.5.2.5 Cyclic Depsipeptide Synthetases: 32 Enniatin and Related Compounds 1.5.2.6 Ergot Alkaloid Synthetases 33 1.5.2.7 Peramine Synthetase 37 1.5.2.8 Peptaibols 37 1.5.2.9 Diketopiperazines and ETP toxins 38 1.5.2.10 Dothideomycete Host-Selective Toxins 41 1.5.2.11 Fungal PKS:NRPS Hybrids 43 1.5.2.12 NRPS:PKS Hybrids 46 1.6 Objectives 46 References – Chapter 1 47 2. Chapter 2: Module Evolution and Substrate Specificity of Fungal Nonribosomal Peptide Synthetases Involved in Siderophore Biosynthesis. Published manuscript. 87 2.1 Abstract 87 vii 2.2 Background 88 2.3 Materials and Methods 92 2.3.1 Genomes Surveyed for Ferrichrome-Associated Nonribosomal Peptide Synthetases 92 2.3.2 Annotation of Candidate Ferrichrome Synthetases 94 2.3.3 Phylogenetic Analyses 95 2.3.3.1 Complete set of A domains 95 2.3.3.2 Individual Lineage Analysis 96 2.3.4 Substrate Specificity 97 2.3.4.1 Structural Modeling 97 2.3.4.2 Evolutionary Approaches to Identify 99 Specificity Residues 2.4 Results 100 2.4.1 Distribution of Ferrichrome Synthetases in Fungi 100 2.4.2 Domain Architecture of Ferrichrome Synthetases 101 2.4.3 Two Distinct Lineages of Ferrichrome Synthetases 103 2.4.4 Additional Duplications Within the NPS1/SidC Lineage 109 2.4.5 S. pombe sib1 110 2.4.6 Putative Ferrichrome Synthetases in the SidE Clade 110 2.4.7 Individual Lineage Analysis 111 2.4.8 Adenylation Domain Substrate Choice 115 2.4.8.1 Structural Modeling 115 2.4.8.2 Evolutionary Approaches to Identification of Specificity Residues 122 2.5 Discussion 124 2.5.1 Distinct Lineages of Ferrichrome Synthetases 124 viii 2.5.2 Evolution of Domain Architecture 125 2.5.3 Domain Architecture and Mechanism of Biosynthesis 129 2.5.4 Substrate Specificity 131 2.6 Conclusions 133 Appendices – Chapter 2 135 References – Chapter 2 151 3. Chapter 3: Identification, Distribution, and Lineage Specific Expansions of NRPS and NRPS-like Synthetase Subfamilies in Fungi Manuscript submitted 158 3.1 Abstract 158 3.2 Background 159 3.3 Results and Discussion 163 3.3.1 Identification and Domain Structure of Candidate NRPSs 163 3.3.2 Phylogenomic Analysis and Subfamily Identification 164 3.3.3 Relationships Between Fungal and Bacterial NRPSs: Horizontal Transfer or Vertical Transmission and Massive Loss? 172 3.3.4 Distribution of NRPS Subfamilies Across Fungal Taxonomic Groups 174 3.3.5 Lineage Specific Expansions and Contractions 177 3.3.6 Subfamily Distribution 178 3.3.7
Recommended publications
  • Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides
    H OH metabolites OH Review Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides Yaojie Guo , Jens C. Frisvad and Thomas O. Larsen * Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark; [email protected] (Y.G.); [email protected] (J.C.F.) * Correspondence: [email protected]; Tel.: +45-4525-2632 Received: 12 May 2020; Accepted: 8 June 2020; Published: 15 June 2020 Abstract: Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal sources. Based on the number of rings and conjugation systems on the backbone, it can be further categorized into three types A, B, and C. These compounds have been applied to various bioassays, and some have exhibited promising bioactivities like antifungal activity against phytopathogenic fungi and transcriptional activation on liver X receptor α. This review summarizes all the research related to natural OPK NRPs, including their biological sources, chemical structures, bioassays, as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal sources and chirality-related issues of these products are also discussed. Keywords: oxepine; nonribosomal peptides; bioactivity; biosynthesis; fungi; Aspergillus 1. Introduction Nonribosomal peptides (NRPs), mostly found in bacteria and fungi, are a class of peptidyl secondary metabolites biosynthesized by large modularly organized multienzyme complexes named nonribosomal peptide synthetases (NRPSs) [1]. These products are amongst the most structurally diverse secondary metabolites in nature; they exhibit a broad range of activities, which have been exploited in treatments such as the immunosuppressant cyclosporine A and the antibiotic daptomycin [2,3].
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Amide Bond Formation in Nonribosomal Peptide Synthesis
    Amide Bond Formation in Nonribosomal Peptide Synthesis: The Formylation and Condensation Domains Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Chemie der Philipps-Universität Marburg vorgelegt von Georg Schönafinger aus München Marburg/Lahn 2007 Vom Fachbereich Chemie der Philipps-Universität Marburg als Dissertation am _______________ angenommen. Erstgutachter : Prof. Dr. M. A. Marahiel (Philipps-Universität, Marburg) Zweitgutachter : Prof. Dr. L.-O. Essen (Philipps-Universität, Marburg) Tag der Disputation: 20. Dezember 2007 2 The majority of the work presented here has been published: Samel, S.A.†, Schoenafinger, G. †, Knappe, T.A., Marahiel, M.A., Essen, L.O. 2007. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15(7): 781-92. † equal contribution Schoenafinger, G., Schracke, N., Linne, U., Marahiel, M.A. 2006. Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin. J Am Chem Soc. 128(23): 7406-7. Schoenafinger, G., Marahiel, M.A. accepted 2007. Nonribosomal Peptides. Wiley Encyclopaedia of Chemical Biology. In press. 3 To Anke 4 Summary Nonribosomal peptides are of outstanding pharmacological interest, since many representatives of this highly diverse class of natural products exhibit therapeutically important activities, such as antibacterial, antitumor and immunosuppressive properties. Understanding their biosynthesis performed by multimodular mega-enzymes, the nonribosomal peptide synthetases (NRPSs), is one of the key determinants in order to be able to reprogram these machineries for the production of novel therapeutics. The central structural motif of all peptides is the peptide (or amide) bond. In this work, two different amide bond forming catalytic entities from NRPSs were studied: The condensation (C) and formylation (F) domains.
    [Show full text]
  • Of the LEPIDOPTERISTS' SOCIETY
    Number 6 (1974) 1 Feb. 1975 of the LEPIDOPTERISTS' SOCIETY Editorial Committee of the NEWS ..... EDITOR: Ron Leuschner, 1900 John St., Manhattan Beach, CA. 90266, USA ASSOC. EDITOR: Dr. Paul A. Opler, Office of Endangered Species, Fish & Wildlife, Dept. of Interior, Washington, D.C. 20240, USA Jo Brewer H. A. Freeman M. C. Nielsen C. V. Covell, Jr. L. Paul Grey K. W. Philip J. Donald Eff Robert L. Langston Jon H. Shepard Thomas C. Emmel F. Bryant Mather E. C. Welling M. A RECENT TRAGEDY There have been a number of incidents that have caused described in one account as "dense jungle" and in the other attention recently, regarding problems or mishaps on collecting as "heavily wooded land bordered by farm land". Mr. Cowper trips. Ed Giesbert entertained the local Lorquin Society with was alone on this trip as he was well familiar with the region. a story of beetle collecting in Baja, California, where a threat­ He had even purchased a pair of heavy boots as an extra pre-, ening stranger blocked his exit on a lonely, isolated road. That caution against snakes. story, however, had a happy (even humorous) ending as Ed's When it became apparent that he was missing, an intensive Citroen vehicle with its hydraulic ,Suspension was able to sud­ search of the area was organized by Mrs. Cowper, assisted denly raise its undercarriage and clear the boulders that were by Mr. Bailey, one of his law partners. Senator Montoya of New supposed to block the road. In another incident, Fred Rindge Mexico contacted Mexican authorities to gain their full coop­ wrote that Bill Howe had "a harrowing experience in Tama­ eration in the search effort.
    [Show full text]
  • The Speciation History of Heliconius: Inferences from Multilocus DNA Sequence Data
    The speciation history of Heliconius: inferences from multilocus DNA sequence data by Margarita Sofia Beltrán A thesis submitted for the degree of Doctor of Philosophy of the University of London September 2004 Department of Biology University College London 1 Abstract Heliconius butterflies, which contain many intermediate stages between local varieties, geographic races, and sympatric species, provide an excellent biological model to study evolution at the species boundary. Heliconius butterflies are warningly coloured and mimetic, and it has been shown that these traits can act as a form of reproductive isolation. I present a species-level phylogeny for this group based on 3834bp of mtDNA (COI, COII, 16S) and nuclear loci (Ef1α, dpp, ap, wg). Using these data I test the geographic mode of speciation in Heliconius and whether mimicry could drive speciation. I found little evidence for allopatric speciation. There are frequent shifts in colour pattern within and between sister species which have a positive and significant correlation with species diversity; this suggests that speciation is facilitated by the evolution of novel mimetic patterns. My data is also consistent with the idea that two major innovations in Heliconius, adult pollen feeding and pupal-mating, each evolved only once. By comparing gene genealogies from mtDNA and introns from nuclear Tpi and Mpi genes, I investigate recent speciation in two sister species pairs, H. erato/H. himera and H. melpomene/H. cydno. There is highly significant discordance between genealogies of the three loci, which suggests recent speciation with ongoing gene flow. Finally, I explore the phylogenetic relationships between races of H. melpomene using an AFLP band tightly linked to the Yb colour pattern locus (which determines the yellow bar in the hindwing).
    [Show full text]
  • Teleomorph Hypocrea Jecorina)
    Downloaded from orbit.dtu.dk on: Dec 20, 2017 Unraveling the Secondary Metabolism of the Biotechnological Important Filamentous Fungus Trichoderma reesei ( Teleomorph Hypocrea jecorina) Jørgensen, Mikael Skaanning; Larsen, Thomas Ostenfeld; Mortensen, Uffe Hasbro; Aubert, Dominique Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Jørgensen, M. S., Larsen, T. O., Mortensen, U. H., & Aubert, D. (2013). Unraveling the Secondary Metabolism of the Biotechnological Important Filamentous Fungus Trichoderma reesei ( Teleomorph Hypocrea jecorina). Kgs. Lyngby: Technical University of Denmark (DTU). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Unraveling the Secondary Metabolism of the Biotechnological Important Filamentous Fungus Trichoderma reesei (Teleomorph Hypocrea jecorina) MJ-T-030 Mikael Skaanning Jørgensen Ph.D. Thesis November 2012 MJ-T-020 MJ-T-032 28 8 20 27 5 28 1 30 17 8 24 25 9 25 31 13 15 26 16 4 24 12 32 18 11 3 14 13 19 10 5 7 2 9 2521 22 23 Unraveling the Secondary Metabolism of the Biotechnological Important Filamentous Fungus Trichoderma reesei (Teleomorph Hypocrea jecorina) Mikael Skaanning Jørgensen Ph.D.
    [Show full text]
  • Construction of Hybrid Peptide Synthetases for the Production of A-L-Aspartyl-L-Phenylalanine, a Precursor for the High-Intensity Sweetener Aspartame
    Eur. J. Biochem. 270, 4555–4563 (2003) Ó FEBS 2003 doi:10.1046/j.1432-1033.2003.03858.x Construction of hybrid peptide synthetases for the production of a-L-aspartyl-L-phenylalanine, a precursor for the high-intensity sweetener aspartame Thomas Duerfahrt1, Sascha Doekel1,*, Theo Sonke2, Peter J. L. M. Quaedflieg2 and Mohamed A. Marahiel1 1Philipps-Universita¨t Marburg, Fachbereich Chemie/Biochemie, Marburg, Germany; 2DSM Research, Life Sciences – Advanced Synthesis, Catalysis and Development, Geleen, the Netherlands Microorganisms produce a large number of pharmaco- Product release was ensured by a C-terminally fused logically and biotechnologically important peptides by thioesterase domains and quantified by HPLC/MS ana- using nonribosomal peptide synthetases (NRPSs). Due to lysis. Significant differences of enzyme activity caused by their modular arrangement and their domain organization the fusion strategies were observed. Two forms of the NRPSs are particularly suitable for engineering recom- Asp-Phe dipeptide were detected, the expected a-Asp-Phe binant proteins for the production of novel peptides with and the by-product b-Asp-Phe. Dependent on the turn- interesting properties. In order to compare different over rates ranging from 0.01–0.7 min)1, the amount of strategies of domain assembling and module fusions we a-Asp-Phe was between 75 and 100% of overall product, focused on the selective construction of a set of peptide indicating a direct correlation between the turnover synthetases that catalyze the formation of the dipeptide numbers and the ratios of a-Asp-Phe to b-Asp-Phe. a-L-aspartyl-L-phenylalanine (Asp-Phe), the precursor of Taken together these results provide useful guidelines for the high-intensity sweetener a-L-aspartyl-L-phenylalanine the rational construction of hybrid peptide synthetases.
    [Show full text]
  • Corrado Battisti Gianluca Poeta Giuliano Fanelli
    Environmental Science Corrado Battisti Gianluca Poeta Giuliano Fanelli An Introduction to Disturbance Ecology A Road Map for Wildlife Management and Conservation Environmental Science and Engineering Environmental Science Series editors Ulrich Förstner, Hamburg, Germany Wim H. Rulkens, Wageningen, The Netherlands Wim Salomons, Haren, The Netherlands More information about this series at http://www.springer.com/series/3234 Corrado Battisti • Gianluca Poeta Giuliano Fanelli An Introduction to Disturbance Ecology A Road Map for Wildlife Management and Conservation 123 Corrado Battisti Gianluca Poeta Protected Areas Service Department of Science Città Metropolitana di Roma Capitale University of Rome III Rome Rome Italy Italy and Giuliano Fanelli Department of Biology Department of Science University of Rome II Tor Vergata University of Rome III Rome Rome Italy Italy ISSN 1863-5520 ISSN 1863-5539 (electronic) Environmental Science and Engineering ISSN 1431-6250 Environmental Science ISBN 978-3-319-32475-3 ISBN 978-3-319-32476-0 (eBook) DOI 10.1007/978-3-319-32476-0 Library of Congress Control Number: 2016941307 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Nonribosomal Peptides Synthetases and Their Applications in Industry Mario Alberto Martínez‑Núñez1,2* and Víctor Eric López Y López3
    Martínez‑Núñez and López Sustain Chem Process (2016) 4:13 DOI 10.1186/s40508-016-0057-6 REVIEW Open Access Nonribosomal peptides synthetases and their applications in industry Mario Alberto Martínez‑Núñez1,2* and Víctor Eric López y López3 Abstract Nonribosomal peptides are products that fall into the class of secondary metabolites with a diverse properties as toxins, siderophores, pigments, or antibiotics, among others. Unlike other proteins, its biosynthesis is independent of ribosomal machinery. Nonribosomal peptides are synthesized on large nonribosomal peptide synthetase (NRPS) enzyme complexes. NRPSs are defined as multimodular enzymes, consisting of repeated modules. The NRPS enzymes are at operons and their regulation can be positive or negative at transcriptional or post-translational level. The pres‑ ence of NRPS enzymes has been reported in the three domains of life, being prevalent in bacteria. Nonribosomal pep‑ tides are use in human medicine, crop protection, or environment restoration; and their use as commercial products has been approved by the U. S Food and Drug Administration (FDA) and the U. S. Environmental Protection Agency (EPA). The key features of nonribosomal peptides and NRPS enzymes, and some of their applications in industry are summarized. Keywords: Nonribosomal peptides, Nonribosomal peptides synthetases, Environmental restoration, Human healt Background half of the NRPS enzymes found in a genome-mining Nonribosomal peptides is a diverse family of natural study of 2699 genomes by Wang et al. [1] are nonmodular products fall into the class of secondary metabolites with NRPS enzymes. Nonmodular NRPS enzymes are found a diverse properties as toxins, siderophores, pigments, in siderophore biosynthetic pathways like EntE and antibiotics, cytostatics, immunosuppressants or antican- VibH in enterobactin, and VibE in vibriobactin [5] or as cer agents [1, 2]; and have a particularity: their synthesis a stand-alone peptidyl carrier protein such as BlmI from is independent of ribosomal machinery.
    [Show full text]
  • Biosynthesis and Engineering of Cyclomarin and Cyclomarazine: Prenylated, Non-Ribosomal Cyclic Peptides of Marine Actinobacterial Origin
    UC San Diego Research Theses and Dissertations Title Biosynthesis and Engineering of Cyclomarin and Cyclomarazine: Prenylated, Non-Ribosomal Cyclic Peptides of Marine Actinobacterial Origin Permalink https://escholarship.org/uc/item/21b965z8 Author Schultz, Andrew W. Publication Date 2010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Biosynthesis and Engineering of Cyclomarin and Cyclomarazine: Prenylated, Non-Ribosomal Cyclic Peptides of Marine Actinobacterial Origin A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Andrew William Schultz Committee in charge: Professor Bradley Moore, Chair Professor Eric Allen Professor Pieter Dorrestein Professor William Fenical Professor William Gerwick 2010 Copyright Andrew William Schultz, 2010 All rights reserved. The Dissertation of Andrew William Schultz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Chair University of California, San Diego 2010 iii DEDICATION To my wife Elizabeth and our son Orion and To my parents Dale and Mary Thank you for your never ending love and support iv TABLE OF CONTENTS Signature Page ....................................................................................................
    [Show full text]
  • The Inducers 1,3-Diaminopropane and Spermidine Cause The
    JOURNAL OF PROTEOMICS 85 (2013) 129– 159 Available online at www.sciencedirect.com www.elsevier.com/locate/jprot The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction Carlos García-Estradaa,⁎, Carlos Barreiroa, Mohammad-Saeid Jamia, Jorge Martín-Gonzáleza, Juan-Francisco Martínb,⁎⁎ aINBIOTEC, Instituto de Biotecnología de León, Avda. Real no. 1, Parque Científico de León, 24006 León, Spain bÁrea de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n; 24071 León, Spain ARTICLE INFO ABSTRACT Article history: In this article we studied the differential protein abundance of Penicillium chrysogenum in Received 21 February 2013 response to either 1,3-diaminopropane (1,3-DAP) or spermidine, which behave as inducers Accepted 15 April 2013 of the penicillin production process. Proteins were resolved in 2-DE gels and identified by Available online 30 April 2013 tandem MS spectrometry. Both inducers produced largely identical changes in the proteome, suggesting that they may be interconverted and act by the same mechanism. Keywords: The addition of either 1,3-DAP or spermidine led to the overrepresentation of the last 1,3-diaminopropane enzyme of the penicillin pathway, isopenicillin N acyltransferase (IAT). A modified form of Spermidine the IAT protein was newly detected in the polyamine-supplemented cultures. Both Penicillin inducers produced a rearrangement of the proteome resulting in an overrepresentation of Penicillium chrysogenum enzymes involved in the biosynthesis of valine and other precursors (e.g. coenzyme A) of Vesicles penicillin. Interestingly, two enzymes of the homogentisate pathway involved in the degradation of phenylacetic acid (a well-known precursor of benzylpenicillin) were reduced following the addition of either of these two inducers, allowing an increase of the phenylacetic acid availability.
    [Show full text]
  • Structural Basis for the Activation of Phenylalanine in the Non-Ribosomal Biosynthesis of Gramicidin S
    The EMBO Journal Vol.16 No.14 pp.4174–4183, 1997 Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S Elena Conti1,2, Torsten Stachelhaus3, the peptide product. Each amino acid is activated by Mohamed A.Marahiel3 and Peter Brick1,4 adenylation of its carboxylate group with ATP and then transferred to the thiol group of an enzyme-bound phospho- 1Biophysics Section, Blackett Laboratory, Imperial College, pantetheine cofactor for possible modification and the 3 London SW7 2BZ, UK and Biochemie/Fachbereich Chemie, elongation reaction (Stachelhaus and Marahiel, 1995a; Philipps-Universita¨t Marburg, D-35032 Marburg, Germany Kleinkauf and von Do¨hren, 1996). 2 Present address: Laboratory of Molecular Biophysics, The cloning and sequencing of several peptide synthe- Rockefeller University, New York, NY10021, USA tase genes have revealed a conserved and ordered modular 4Corresponding author organization. Each module encodes a functional building unit containing ~1000 amino acids, which specifically The non-ribosomal synthesis of the cyclic peptide recognizes a single amino acid. Within such a protein antibiotic gramicidin S is accomplished by two large template-directed peptide biosynthesis, the occurrence and multifunctional enzymes, the peptide synthetases 1 and specific order of the modules in the genomic DNA dictate 2. The enzyme complex contains five conserved subunits the number and sequence of the amino acids to be of ~60 kDa which carry out ATP-dependent activation incorporated into the resulting oligopeptide. The modular of specific amino acids and share extensive regions of arrangement of peptide synthetases closely parallels the sequence similarity with adenylating enzymes such multienzyme complexes responsible for the biogenesis of as firefly luciferases and acyl-CoA ligases.
    [Show full text]