PDF Hosted at the Radboud Repository of the Radboud University Nijmegen

Total Page:16

File Type:pdf, Size:1020Kb

PDF Hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/129525 Please be advised that this information was generated on 2021-10-07 and may be subject to change. NEWS FROM AN INACCESSIBLE WORLD: THE HISTORY AND PRESENT CHALLENGES OF DEEP-SEA BIOLOGY News from an inaccessible world: The history and present challenges of deep-sea biology Erik Dücker, 2014 ISBN: 9789461087201 Printed by: Gildeprint Drukkerijen, Enschede, the Netherlands Cover: Umbellula encrinus, the first deep-sea species discovered. Drawing by Ernst Haeckel (1834-1919) from Kunstformen der Natur (1904). NEWS FROM AN INACCESSIBLE WORLD: THE HISTORY AND PRESENT CHALLENGES OF DEEP-SEA BIOLOGY Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 23 september 2014 om 10.30 uur precies door Erik Cornelis Petrus Dücker geboren op 18 mei 1979 te Veldhoven Promotoren Prof. dr. C.H. Lüthy Prof. dr. H.A.E. Zwart Manuscriptcommissie Prof. dr. J.M. van Groenendael (voorzitter) Prof. dr. L.T.G. Theunissen (Universiteit Utrecht) Prof. dr. ir. H.J.W. de Baar (Rijksuniversiteit Groningen) CONTENTS GENERAL INTRODUCTION 11 CHAPTER I THE BIRTH OF DEEP-SEA BIOLOGY 17 CHAPTER II EXPLORING BIODIVERSITY 61 CHAPTER III MAN’S DESCEND 109 CHAPTER IV MODERN BASIC RESEARCH 145 CHAPTER V DEEP-SEA BIOLOGY IN CONTEXT 181 GENERAL CONCLUSIONS 219 SUMMARY 223 SAMENVATTING 227 CURRICULUM VITAE 233 DANKWOORD 235 GENERAL INTRODUCTION HEN we are asked to think about natural life on Earth, the most probable images that emerge are those of the vibrantly coloured life of tropical rainforests and coral reefs, the large iconic mammals that inhabit the African plains, or dolphins swimming through crystal clear oceans near some exotic island. Much less probable is that images emerge of a dark abyss inhabited by fang-toothed fishes, bioluminescent jellyfish and flourishing ecosystems around volcanic vents. The deep sea is unfamiliar to us and does not usually spring to mind when we think of nature and wildlife. Still, if we define as the deep sea all those regions of the ocean that are deeper than 1,000 metres, then the deep sea constitutes around 78.5% of the earth’s biosphere 1, and it is teeming with life at all depths. Estimates state that the deep sea may contain the greatest number of animal species, the greatest biomass and the greatest number of organisms in the living world 2. It is thus the dominant part of our biosphere. And yet we have no relationship with it, it falls outside the scope of our daily life, and we have for a long time imagined any human impact as being inconsequential. Life in the deep sea has only been the subject of study by naturalists, and later by professional scientists, since the nineteenth century. Before that time, there had been some cursory investigations of the physical conditions of the deep sea, most notably in the seventeenth century, but no life was expected to exist since the high hydrostatic pressure and low temperature appeared to prohibit life. It was not until the 1840’s that the first systematic investigations of marine species descended beyond the reach of sunlight. Depths of more than 1,000 metres were not reached until in the 1860’s it had become clear that the deep sea was teeming with life. The definitive start of deep-sea biology as a modern science is marked by the expedition of HMS Challenger (1872-1876), which proved that there was no depth-limit to marine life. We must therefore speak of a very recent field of study when compared to the study of life on land and in coastal areas. However, at various levels the deep sea has over the last decades become more visible, first and foremost at a scientific level. As the deep sea lies so far beyond the boundaries of our daily experience, it is a significant undertaking to explore it at all. As a result, the people 11 GENERAL INTRODUCTION primarily engaged in producing knowledge of the deep sea have been naturalists first, and scientists later. Even today deep-sea exploration is the exclusive domain of professionals, who are uncovering new aspects with almost every dive, every net and every sample taken. In addition, the deep sea has turned out to be rich in traditional resources such as oil, gas and minerals, as well as in biological resources such as genes and proteins. Because the exploitation of such resources has become more viable in recent decades, the deep sea is steadily gaining in economic importance. As a result, human civilization has an increasing impact on these remote ecosystems. Direct human impact does not only occur because of the exploitation of deep-sea biological and mineral resources, but also through the disposal of waste (3-5 and 6 p. 137-224). Indirect impact through biodiversity loss, ocean acidification and climate change also occur, and they appear to be more significant than has previously been assumed (7-9 and 6 p. 176-196). These developments raise questions about the conservation of the deep-sea environment. Deep-sea conservation, however, requires, due to its particular nature 10, more than merely an extension of existing conservation efforts from coastal areas and fisheries into the deep sea. Knowledge of deep-sea life, however, continues to be limited. But if the estimates are correct and the major occurrence of animal life is predominantly found in the deep sea, then the question arises as to why biology, which is after all the study of life, pays so little attention to this vast environment. The primary reason why knowledge of the deep sea progresses at such a slow pace is that any investigation of it requires a huge investment of time, money and resources. These are not generally available to researcher teams. Worse yet, only a few countries have the capability to reach great depths. This capacity requires technology that is expensive to develop and equally expensive to use. Operating costs are typically US $30,000 per day and cruises generally last a few weeks, so that the costs per cruise can quite easily reach US $1 million 4. The remoteness of the deep sea and the technological difficulty of investigating has as a further consequence that the deep-sea biologist is almost the exclusive producer of knowledge of the deep sea. On land there is a multitude of sources of knowledge, ranging from historical descriptions of species distribution over hobby ecologists who enjoy spending their weekends in the woods to people who follow a centuries-old tradition of living in symbiosis with nature, for instance, such as found in the Japanese Satoyama landscapes 11. No such non- scientific sources of knowledge and experience are available for the deep sea, with the possible exception of a few attentive deep-sea fishermen. Due to these circumstances, deep-sea biologists have always had to depend heavily on support from governments and commercial partners. Although this situation renders this discipline quite unique in the life sciences, the consequences of this strong dependence have to date never been examined. Unless I am mistaken, this dissertation is the first monograph dedicated to an examination of the choices and dilemmas of deep-sea biology from its beginnings in the nineteenth century to today. In order to write such a study, it was necessary to combine historical research with philosophical reflection, creating what we might term a ‘philosophical history of deep-sea 12 GENERAL INTRODUCTION biology’. As the history of oceanography, the field to which deep-sea biology is intimately related, is well established, this dissertation draws on the work of such prominent historians of oceanography as Philip Rehbock, Eric L. Mills, Helen Rozwadowski and Naomi Oreskes. It re- evaluates and adjusts their findings in the context of deep-sea biology as being discipline within general biology, rather than oceanography, thereby adding a fresh perspective. Due to my personal background as a biologist, I have been able to incorporate the scientific literature beginning with prominent Victorian naturalists such as Edward Forbes (1815-1854) and ending with the latest scientific publications in the field of deep-sea biology. Along the way I managed to uncover hitherto untreated material, including forgotten nineteenth-century French deep-sea physiological research and recent discoveries of extraordinary deep-sea creatures that are not always acknowledged as important. The historical narrative developed in this dissertation shows how the role of the deep-sea scientist has changed according to the external factors to which it was exposed in each period of its development. Initially, the naturalist exploring the deep sea was a ‘gentleman naturalist’ exploring at his own expense and leisure; the required independent wealth obviously limited access to this science. This role changed as deep-sea biology developed into a professional science supported by government grants. Subsequent transformations of the deep-sea biologists’ role turned them first into fisheries experts and later into cold war allies, and nowadays they must be everything at once: scientists, explorers, advisors and environmental advocates. These new roles raise questions that do not limit themselves to empirical matters, to which the deep-sea biologist nonetheless continues to be sensitive. These new questions will be discussed through the use of case studies of recent developments in deep-sea manganese nodule mining as well as bioprospecting, that is, the search for biological compounds that are of use for commercial purposes.
Recommended publications
  • Cytogenetic Studies on Marine Ostracods: the Karyotype of Giguntocypris Muellen' Skogsberg, 1920 (Ostracoda, Myodocopida)
    J.micropalaeontol., 4 (2): 159-164, August 1985 Cytogenetic studies on marine ostracods: the karyotype of Giguntocypris muellen’ Skogsberg, 1920 (Ostracoda, Myodocopida) ALICIA MOGUILEVSKY Department of Geology, University College of Wales, Aberystwyth, Dyfed SY23 3DB, U.K. ABSTRACT -The chromosome complement of a bathypelagic myodocopid ostracod, Giganto- cypris muelleri Skogsberg, 1920, is described.The karyotype of this bisexual species consists of 2n = 18 (16A + XX) for the female and 2n = 17 (16A + XO) for the male. These chromosomes are all metacentric and of very similar size, ranging from 19pm to 24km. This is the first description of the karyotype of a marine ostracod. INTRODUCTION Whereas the majority of oceanic planktonic species Most taxonomic studies of Recent species have been release their eggs into the surrounding water, the females concerned solely with carapace and appendage morpho- of G. muelleri retain them in a brood chamber where logy. Although cytogenetic studies on ostracods were they develop before being released as free swimming made as early as 1898 (Woltereck), the knowledge of juveniles. Specimens of Gigantocypris rnuelleri were their karyotypes remains rudimentary. Woltereck (op. collected during cruises of RRS ‘Discovery’ in the N.E. cit.) and other early papers (Schleip, 1909; Schmalz, Atlantic, in June 1981 (Cruise 121, S.W. of Azores) by 1912; Muller-Cale, 1913; Bauer, 1934, 1940) were the author, and in August/September 1983 by Dr. C. mainly concerned with the study of gametogenesis and Ellis (Cruise 140, N.E. and S.E. of Azores). Full station spermatogenesis of freshwater cyprids (Podocopida). data can be obtained from the Cruise Reports (Angel et Although the chromosome complement of some of al., 1981; Herring et al., 1983).
    [Show full text]
  • Midwater Data Sheet
    MIDWATER TRAWL DATA SHEET RESEARCH VESSEL__________________________________(1/20/2013Version*) CLASS__________________;DATE_____________;NAME:_________________________; DEVICE DETAILS___________ LOCATION (OVERBOARD): LAT_______________________; LONG___________________________ LOCATION (AT DEPTH): LAT_______________________; LONG______________________________ LOCATION (START UP): LAT_______________________; LONG______________________________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ BOTTOM DEPTH_________; DEPTH OF SAMPLE:____________; DURATION OF TRAWL___________; TIME: IN_________AT DEPTH________START UP__________SURFACE_________ SHIP SPEED__________; WEATHER__________________; SEA STATE_________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_____________________________ INVERTEBRATES Lensia hostile_______________________ PHYLUM RADIOLARIA Lensia havock______________________ Family Tuscaroridae “Round yellow ones”___ Family Hippopodiidae Vogtia sp.___________________________ PHYLUM CTENOPHORA Family Prayidae Subfamily Nectopyramidinae Class Nuda "Pointed siphonophores"________________ Order Beroida Nectadamas sp._______________________ Family Beroidae Nectopyramis sp.______________________ Beroe abyssicola_____________________ Family Prayidae Beroe forskalii________________________ Subfamily Prayinae Beroe cucumis _______________________ Craseoa lathetica_____________________ Class Tentaculata Desmophyes annectens_________________ Subclass
    [Show full text]
  • Using DNA Sequences to Investigate The
    The Small Picture Approach to the Big Picture: Using DNA 13 Sequences to Investigate the Diversification of Animal Body Plans Lindell Bromham The Adaptive Radiation of the Metazoans The Metazoa (animal kingdom) is divided into approximately three dozen phyla (figure 13.1). The first undisputed fossils of around half of the animal phyla appear in the Cam- brian, the geological period that runs from around 543 million years ago (Myr) to 488 Myr. At least a third of animal phyla have no fossil record to speak of (Valentine 2004), but we can infer from phylogenetic relationships that many of these lineages must be at least Cam- brian in age. On the basis of this fossil evidence, it has been suggested that all of the major kinds of animals were generated in a period of around 10 to 15 million years (e.g., Carroll 2005; Levinton 2001; Valentine 2004). This inferred explosive radiation of animals in the Cambrian has been considered the signature of a phenomenal rise in diversity and com- plexity of animal life, and creating more complex ecosystems (e.g., Bambach, Bush, and Erwin 2007). An earlier Precambrian fauna, known as the ediacarans, were relatively simple, soft- bodied creatures (Xiao and Laflamme 2008). With the possible exception of Kimberella, which has been interpreted as having a muscular foot and scraping radula like a mollusc (Fedonkin and Waggoner 1997), none of the ediacarans show clear evidence of appendages specialized for locomotion, and there are relatively few complex trace fossils (marks made in the sediment) that would bear witness to directed bilaterian movement in the Precam- brian period (Jensen, Droser, and Gehling 2005).
    [Show full text]
  • (Cypridinacea) from the Philippine Islands
    1 LOUIS S. KORNIC Myodocopid Ostracoda (Cypridinacea) from the Philippine Islands SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • 1969 NUMBER 39 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to ^oology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. Each publica- tion is distributed by mailing lists to libraries, laboratories, institutes, and interested specialists throughout the world. Individual copies may be obtained from the Smith- sonian Institution Press as long as stocks are available. S. DILLON RIPLEY Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 39 Louis s.
    [Show full text]
  • Feeding of a Pelagic Chaetognath, Sagitta Nagae ALVARINO in Suruga Bay, Central Japan*
    Journal of the Oceanographical Society of Japan Vol.28, pp.181 to 186, October, 1972 Feeding of a Pelagic Chaetognath, Sagitta nagae ALVARINO in Suruga Bay, Central Japan* Sachiko NAGASAWA**and Ryuzo MARUMO** Abstract: The feeding of Sagitta nagae, the most predominant chaetognath species in Suruga Bay, was studied. Specimens were collected with ORI-100 net (1.0 mm in mesh aperture) and MTD net (0.35 mm in mesh aperture) and were fixed with neutralized formalin. The main food organisms of Sagitta nagae were the copepods, Candacia bipinnata, Calanus pacificus and Pareuchaeta russelli. The food-containing ratio (PIT, %) was higher at night and lower in the daytime. Here, P is the number of Sagitta containing food organisms in the gut and T is the total number of Sagitta examined. P/T was almost constant vertically in the upper 100 m layer. P/T was generally influenced neither by food density nor by the copepod numbers per Sagitta in this study. Sagitta nagae took food throughout life. Food ingested by Sagitta per day was calculated as 37.6 % of Sagitta in dry weight. 1. Introduction Suruga Bay is located about 35•‹N, 138.5•‹E in It has been frequently observed that chaetog- the central area of Honshu, Japan, along the naths feed on zooplankton such as copepods, Pacific coast. The biomass of chaetognaths is amphipods, euphausiids, medusae, siphono- second only to copepods among zooplankton in phores, chaetognaths, Tomopteris, tunicates Sagami Bay which is located near to Suruga and fish larvae (LEBOUR,1922, 1923; BIGELOW, Bay, the two bays having similar characters 1926; THOMSON,1947; SUAREZ-CAABRO,1955; of hydrography and plankton community MURAKAMI, 1957, 1959; ALVARINO, 1962).
    [Show full text]
  • The Natural Resources of Monterey Bay National Marine Sanctuary
    Marine Sanctuaries Conservation Series ONMS-13-05 The Natural Resources of Monterey Bay National Marine Sanctuary: A Focus on Federal Waters Final Report June 2013 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service Office of National Marine Sanctuaries June 2013 About the Marine Sanctuaries Conservation Series The National Oceanic and Atmospheric Administration’s National Ocean Service (NOS) administers the Office of National Marine Sanctuaries (ONMS). Its mission is to identify, designate, protect and manage the ecological, recreational, research, educational, historical, and aesthetic resources and qualities of nationally significant coastal and marine areas. The existing marine sanctuaries differ widely in their natural and historical resources and include nearshore and open ocean areas ranging in size from less than one to over 5,000 square miles. Protected habitats include rocky coasts, kelp forests, coral reefs, sea grass beds, estuarine habitats, hard and soft bottom habitats, segments of whale migration routes, and shipwrecks. Because of considerable differences in settings, resources, and threats, each marine sanctuary has a tailored management plan. Conservation, education, research, monitoring and enforcement programs vary accordingly. The integration of these programs is fundamental to marine protected area management. The Marine Sanctuaries Conservation Series reflects and supports this integration by providing a forum for publication and discussion of the complex issues currently facing the sanctuary system. Topics of published reports vary substantially and may include descriptions of educational programs, discussions on resource management issues, and results of scientific research and monitoring projects. The series facilitates integration of natural sciences, socioeconomic and cultural sciences, education, and policy development to accomplish the diverse needs of NOAA’s resource protection mandate.
    [Show full text]
  • A Gigantic Marine Ostracod (Crustacea: Myodocopa) Trapped in Mid-Cretaceous Burmese Amber Received: 16 November 2017 Lida Xing 1,2, Benjamin Sames 3,4, Ryan C
    www.nature.com/scientificreports OPEN A gigantic marine ostracod (Crustacea: Myodocopa) trapped in mid-Cretaceous Burmese amber Received: 16 November 2017 Lida Xing 1,2, Benjamin Sames 3,4, Ryan C. McKellar5,6, Dangpeng Xi1,2, Ming Bai7 & Accepted: 9 January 2018 Xiaoqiao Wan1,2 Published: xx xx xxxx The mid-Cretaceous Burmese amber (~99 Ma, Myanmar), widely known for exquisite preservation of theropods, also yields microfossils, which can provide important contextual information on paleoenvironment and amber formation. We report the frst Cretaceous ostracod in amber—the gigantic (12.9 mm) right valve of an exclusively marine group (Myodocopa: Myodocopida) preserved in Burmese amber. Ostracods are usually small (0.5–2 mm), with well-calcifed carapaces that provide an excellent fossil record extending to at least the Ordovician (~485 million years ago), but they are rarely encountered in amber. The new specimen efectively doubles the age of the ostracod amber record, ofering the frst representative of the Myodocopa, a weakly calcifed group with a poor fossil record. Its carapace morphology is atypical and likely plesiomorphic. The preserved valve appears to be either a moulted exuvium or a dead and disarticulated specimen, and subsequent resin fows contain forest foor inclusions with terrestrial arthropods, i.e., fragmentary remains of spiders, and insect frass. These features resolve an enigmatic taphonomic pathway, and support a marginal marine setting for resin production. Ostracods are aquatic microcrustaceans, with a calcareous, bivalved shell (carapace) that can enclose the whole body and all appendages. Few Mesozoic to Recent taxa exceed 3 mm in size and these are termed ‘gigantic’ ostra- cods, such as species of the living marine planktonic genus Gigantocypris (subclass Myodocopa, up to around 30 mm), or of the non-marine genus Megalocypris (subclass Podocopa, 5–8 mm in size).
    [Show full text]
  • Metabolism of Antarctic Micronektonic Crustacea As a Function of Depth of Occurrence and Season
    MARINE ECOLOGY PROGRESS SERIES Vol. 113: 207-219.1994 Published October 27 Mar. Ecol. Prog. Ser. Metabolism of Antarctic micronektonic Crustacea as a function of depth of occurrence and season J. J. Torres', A.V. ~arset~,J. Donnellyl, T. L. ~opkins',T. M. Lancraftl, D. G. Ainley3 'Dept of Marine Science, University of South Florida, 140 Seventh Ave. South, St. Petersburg, Florida 33701, USA 'Lilleveien 5, N-6006 hesund, Norway 3Point Reyes Bird Observatory, 4990 Shoreline Hwy, Stinson Beach, California 94970, USA ABSTRACT: Oxygen consun~ptionrates were determined on 21 species of crustaceans typical of the Southern Ocean micronektonic crustacean assemblage during spring (November),fall (March),and winter (June-August). Specimens were collected in the Scotia-Weddell Sea region in the vicinity of 60" S, 40" W in the upper 1000 m of the water column. Respiration (y, p1 O2 mg' wet mass h-') declined with depth of occurrence (X, m) according to the equation y = 0.125 x-~-~~~'~~~~(p < 0.05) despite the isothermal character of the water column, suggesting that lower metabolic rates are a temperature- independent adaptation to life in the deep sea. Three species of Crustacea showed a lowered meta- bolism during the winter season: the krill Euphausia superba and the 2 hyperiid amphipods Cyllopus lucasii and Vibilia stebbingi. Critical oxygen partial pressure (Pc) varied between 29 and 52 mm Hg, well below the lowest PO, found in the water column. It is suggested that the long nights of the Ant- arctic winter decrease the effectiveness of visual predation in the epipelagic zone, allowing lowered metabolic rates to be a viable overwintering strategy for some species.
    [Show full text]
  • Transcriptome Phylogenies Support Ancient Evolutionary Transitions in Bioluminescence Traits of Cypridinid Ostracods
    bioRxiv preprint doi: https://doi.org/10.1101/2021.09.03.458903; this version posted September 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Transcriptome phylogenies support ancient evolutionary transitions in bioluminescence traits of cypridinid ostracods Authors: Emily A. Ellis1,2*, Jessica A. Goodheart1,3*, Nicholai M. Hensley1,4, Vanessa L. González5, Nicholas J. Reda6, Trevor J. Rivers7, James G. Morin8, Elizabeth Torres9, Gretchen A. Gerrish6,10, Todd H. Oakley1 * Equal authorship 1 Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106, USA 2 Current address: Illumina, California, USA 3 Current address: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA 4 Current address: Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850, USA 5 Global Genome Initiative, Smithsonian Institution, National Museum of Natural History, 10th and Constitution NW, Washington, DC 20560-0105, USA 6 Biology Department, University of Wisconsin–La Crosse, La Crosse, Wisconsin 54601, USA 7 Department of Ecology and Evolutionary Biology, University of Kansas 8 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14850 9 Department of Biological Sciences, California State University Los Angeles 10 Current address: Trout Lake Station, Center for Limnology, University of Wisconsin - Madison 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.09.03.458903; this version posted September 5, 2021.
    [Show full text]
  • The Genome Sizes of Ostracod Crustaceans Correlate with Body Size and Phylogeny 2 3 Nicholas W
    bioRxiv preprint doi: https://doi.org/10.1101/114660; this version posted March 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 The genome sizes of ostracod crustaceans correlate with body size and phylogeny 2 3 Nicholas W. Jeffery1*, Emily A. Ellis2, Todd H. Oakley2, T. Ryan Gregory1 4 5 *Present address: Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, 6 Nova Scotia 7 8 1Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada. N1G 2W1 9 2University of California Santa Barbara, Santa Barbara, California, USA. 93106 10 11 Corresponding author email: [email protected] 12 13 14 Keywords: Ostracod, genome size, C-value, body size, phylogeny 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 bioRxiv preprint doi: https://doi.org/10.1101/114660; this version posted March 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 46 Abstract 47 48 Within animals a positive correlation between genome size and body size has been detected in 49 several taxa but not in others, such that it remains unknown how pervasive this pattern may be.
    [Show full text]
  • The Role of Trophic and Oceanographic Conditions in the Ecology of Deep-Sea Nematodes
    The Role of Trophic and Oceanographic Conditions in the Ecology of Deep-Sea Nematodes by Katja Guilini The Role of Trophic and Oceanographic Conditions in the Ecology of Deep-Sea Nematodes ISBN 9789090265360 EAN 9789090265360 Cover design: Valerie Smets and Katja Guilini Lay-out: Valerie Smets and Katja Guilini Printed by: QualiCopy bvba, Maaltebruggestraat 169, 9000 Gent Marine Biology Research Group Campus Sterre - S8 Krijgslaan 281 B-9000 Gent Belgium Publically defended on December 6th, 2011 Chairman at the defense: Prof. Dr. Koen Sabbe For citation to published work reprinted in this thesis, please refer to the original publications. Guilini K (2011) The role of trophic and oceanographic conditions in the ecology of deep-sea nematodes. Ghent Uinversity (UGent), 307 pp. The research leading to this thesis received funding from the European Community’s Sixth Framework Program under the Hotspot Ecosystem Research on the Margins of European Seas project (HERMES, contract number GOCE-CT-2005-511234), from the European Community’s Seventh Framework Program under the Hotspot Ecosystem Research and Man’s Impact on European Seas project (HERMIONE, grant agreement number 226354), and from the Flanders Fund for Scientific Research (FWO, project number 3G0346) and Special Research Fund (BOF, the relation between function and biodiversity of Nematoda in the deep sea [FUNDEEP], project number 01J14909). The Role of Trophic and Oceanographic Conditions in the Ecology of Deep-Sea Nematodes De Rol van Trofische en Oceanografische Condities in de Ecologie van Diepzeenematoden by Katja Guilini Promotor: Prof. Dr. Ann Vanreusel Academic year 2011 - 2012 Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science: Marine Sciences Members of the examination committee Members of the reading committee * Prof.
    [Show full text]
  • Southern Indian Ocean Seamounts, Cruise Report
    Final cruise report: Southern Indian Ocean Seamounts 2009 Cruise Report “Dr. Fridtjof Nansen” Southern Indian Ocean Seamounts (IUCN/ GEF/ UNDP/ ZSL/ ASCLME/ NERC/ EAF Nansen Project/ ECOMAR/ ACEP 2009 Cruise 410) 12th November – 19th December, 2009 By A.D. Rogers1, O. Alvheim2, E. Bemanaja3, D. Benivary4, P.H. Boersch-Supan1,5, T. Bornman6, R. Cedras7, N. Du Plessis8, S. Gotheil9, A. Hoines2, K. Kemp1, J. Kristiansen2, T. Letessier5, V. Mangar10, N. Mazungula6, T. Mørk2, P. Pinet11, J. Read12, T. Sonnekus6 1)Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, United Kingdom. 2) Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway. 3) IHSM Institut Halieutique et des Sciences Marines, Madagascar. 4) University of Tuléar, Madagascar. 5) Pelagic Ecology Research Group, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, United Kingdom. 6) South African Institute for Aquatic Biodiversity, Pbag 1015, Grahamstown 6140, South Africa. 7) University of the Western Cape, Dept. of Biodiversity & Conservation Biology, Private Bag X17, Bellville 7535, South Africa. 8) University of Cape Town, Department of Oceanography, Rondebosch 7701, Cape Town, South Africa. 9) International Union for Conservation of Nature (IUCN), Rue Mauvernay 28, 1196 Gland, Switzerland. 10) Albion Fisheries Research Centre, Mauritius. 11) ECOMAR Laboratory, Université de La Réunion, 15 avenue René Cassin, Saint Denis, 97715, France. 12) National Oceanography Centre, European Way, Southampton, SO14 3ZH, United Kingdom. 1 Final cruise report: Southern Indian Ocean Seamounts 2009 Contents 1.0 The South West Indian Ocean ........................................................................................................... 6 1.1 Regional fisheries management arrangements....................................................................................... 6 1.2 Fisheries for deep-sea species in the South West Indian Ocean ............................................................
    [Show full text]