Enciclopedia Matematică a Claselor De Numere Întregi
Total Page:16
File Type:pdf, Size:1020Kb
ENCICLOPEDIA MATEMATICĂ A CLASELOR DE NUMERE ÎNTREGI Marius Coman [email protected] 1 Copyright 2013 de Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Recenzenţi: Prof. Univ. dr. ing. Adrian Olaru, Universitea Politehnică, Bucureşti, Romania. Prof. Ion Pătrașcu, “Frații Buzești” National College, Craiova, Romania. Prof. Nicolae Ivăşchescu, Str. Iuliu Cezar, Nr. 26, Craiova, Jud. Dolj, Romania. EAN: 9781599732374 ISBN: 978-1-59973-237-4 2 Introducere Numerele naturale au fascinat dintotdeauna omenirea, ce le-a considerat, pe bună dreptate, ca fiind mai mult decât mijloace de a studia cantităţile, le-a considerat entităţi având o personalitate proprie. Mistica tuturor popoarelor abundă de proprietăţi supranaturale atribuite numerelor. Într-adevăr, pare că, pe măsură ce le cercetezi mai adânc, descoperi că au „consistenţă”, că, departe de a fi o creaţie conceptuală a omului, un simplu instrument la îndemâna sa, se conduc de fapt după legităţi proprii, pe care nu- ţi permit să le influenţezi, ci doar să le descoperi. Printre primii oameni care au simţit acest lucru se numără Pitagora, ce a început prin a cerceta numerele şi a sfârşit prin a întemeia o mişcare religioasă puternic fondată pe simbolistica numerelor. Pasiunea sa pentru numerele naturale era atât de mare (accepta, totuşi, şi existenţa numerelor raţionale, ce sunt, în fond, tot un raport de numere naturale), încât circulă o legendă conform căreia şi-ar fi înecat un discipol pentru „vina” de a-i fi relevat existenţa numerelor iraţionale. Mult mai aproape pe scara istoriei, în secolul XIX, matematicianul german Leopold Kronecker este creditat a fi spus: „Dumnezeu a creat numerele naturale; toate celelalte sunt opera omului”. Departe de considerente de filozofie a matematicii, ne-am limitat enciclopedia la numerele întregi pentru că am considerat că este un domeniu îndeajuns de vast în sine pentru a face obiectul unei astfel de lucrări. Am împărţit enciclopedia în două părţi, „Clase de numere” (se subînţelege, întregi), respectiv „Clase de prime şi pseudoprime”, prima cuprinzând principalele clase de numere cu care se operează actualmente în teoria numerelor (ramura matematicii ce studiază în principal numerele întregi), cea de-a doua câteva tipuri consacrate de prime (numere care au „sfidat” dintotdeauna matematicienii prin rezistenţa lor în a se lăsa înţelese şi ordonate) şi tipurile cunoscute de pseudoprime (o categorie aparte de numere, ce împart însă multe atribute cu numerele prime). Am încercat să folosim noţiuni cât mai simple şi operaţii elementare pentru a nu îndepărta cititorii prin simboluri şi denumiri de funcţii; din acelaşi motiv am definit toate clasele de numere doar în sistemul comun, zecimal, şi nu am considerat clasele de numere care, deşi întregi, se definesc apelând la numere iraţionale sau complexe. Subliniem că lucrarea nu este exhaustivă (deşi se intitulează „enciclopedie”), pe de o parte pentru că unele clase de numere întregi au fost deliberat omise, ca ţinând de ramuri specializate ale matematicii ce depăşesc cadrul pe care ni l-am propus (topologie, combinatorică etc.), iar pe de altă parte pentru că pur şi simplu este imposibil să fii exhaustiv în acest domeniu: OEIS (On-Line Encyclopedia of Integer Sequences), o organizaţie axată exclusiv pe acest domeniu al matematicii, numără în baza de date peste 200.000 de articole iar numărul acestora creşte zilnic. Deoarece pentru unii termeni din lucrare nu există corespondenţi larg consacraţi în limba română şi de asemenea pentru o mai uşoară consultare a link-urilor de pe net, majoritatea în limba engleză (vom prezenta la sfârşitul lucrării o listă de astfel de site- uri, enciclopedic matematice sau privind strict teoria numerelor), am înzestrat enciclopedia cu un cuprins bilingv, român-englez. Pentru cei nefamiliarizaţi cu terminologia specifică teoriei numerelor subliniem că în acest domeniu aparenţele înşeală: în spatele unor sintagme aparent frivole precum „numere fericite” sau „numere prietenoase” se ascund noţiuni cât se poate de serioase în timp ce, dimpotrivă, denumirile de „tetradic numbers” sau „dihedral primes”, de exemplu, ce par denumiri „serioase”, desemnează numere ce au doar calităţi pur recreative. Pentru cei ce doresc să aprofundeze ulterior studiul teoriei numerelor, am anexat la sfârşitul lucrării un dicţionar englez-român de termeni uzuali în această materie; în 3 cadrul acestui dicţionar am definit şi noţiuni pe care nu le-am folosit ca atare în enciclopedia propriu-zisă (e.g. „natural density”), de asemenea am expus şi clase de numere întregi pentru definirea cărora este nevoie de numere aparţinând altui sistem de numeraţie decât cel zecimal (e.g. „digitally balanced numbers”) sau care ţin de matematica recreativă (e.g. „strobogrammatic numbers”). Pentru a obişnui cititorii cu simbolurile de operaţii uzitate în principalele programe de matematică sau pe principalele site-uri de teoria numerelor, vom folosi pentru înmulţire simbolul «*» iar pentru ridicarea la putere simbolul «^». Din acelaşi motiv vom folosi în operaţii doar parantezele rotunde, de exemplu (4^2*(5 – 4) – 1)/5 = 3, şi vom folosi parantezele drepte şi acoladele pentru denumirea unei perechi (sau triplet, sau mulţimi) de numere naturale între care există o anumită relaţie – de exemplu [220, 284] este o pereche de numere amiabile; de asemenea, în loc de radical de ordin k dintr-un număr întreg n, vom folosi în operaţii notaţia echivalentă n^(1/k). Considerăm important să exprimăm toate operaţiile doar cu simboluri acceptate de programul Word, fără a apela la programe speciale de redactare de matematică, pentru că aceste simboluri sunt uşor acceptate ca „input” de programele importante de matematică disponibile pe Internet. Pentru a întări acest considerent vom anexa la sfârşitul lucrării o listă cu modele de operare în programul Wolfram Alpha, pentru operaţiile şi funcţiile uzuale în teoria numerelor. Menţionăm că, în afară de operaţiile universal cunoscute, vom mai folosi în lucrare doar câteva funcţii şi operaţii: funcţia factorial: factorialul lui n (sau n factorial) este produsul tuturor numerelor întregi pozitive mai mici sau egale cu n, adică, algebric formulat, n! = 1*2*3* … * n, de exemplu 6! = 1*2*3*4*5*6 = 720; operaţia modulo: r = n modulo m, abreviat r = n mod m, unde m şi n sunt numere întregi pozitive, este restul împărţirii lui n la m; de exemplu 3 = 13 mod 5; congruenţa modulo: m este congruent modulo x cu n şi se notează m ≡ n (mod x) dacă restul împărţirii lui m la x este egal cu restul împărţirii lui n la x, de exemplu 17 ≡ 5(mod 3); funcţia divizor: σ(n) sau sigma(n) reprezintă suma divizorilor unui întreg pozitiv; indicatorul lui Euler (funcţia totient): φ(n) sau phi(n) este numărul de numere întregi pozitive mai mici sau egale cu n ce sunt relativ prime cu n. De asemenea am notat cu C(n, k) coeficienţii binomiali, cu valoarea egală cu n!/(n – k)!*k!, cunoscuţi ca şi „combinări de n luate câte k”, iar cu τ(n) sau tau(n) numărul divizorilor lui n. Alte câteva funcţii le-am definit în cadrul prezentării unor clase de numere (de exemplu funcţia multifactorial la articolul „Prime multifactoriale” şi funcţia primorial la articolul „Numere primoriale”). Am mai notat cu cmmdc(k, n), respectiv cmmmc(k, n) cel mai mare divizor comun respectiv cel mai mic multiplu comun al numerelor k şi n iar prin R(n), respectiv S(n) reversul unui număr n respectiv suma cifrelor sale. Apoi, în condiţiile în care între clasa de numere tratată într-un articol din lucrare şi clasa numerelor naturale există corespondenţă biunivocă, am mai notat termenii clasei de numere prin Cn, Dn, Mn (al n- lea număr Catalan, Demlo, Mersenne) etc. Şi, în sfârşit dar nu în cele din urmă, am înţeles prin numerele notate precum „abc” numerele obţinute prin concatenare, unde a, b, c sunt cifre, iar nu produsele „a*b*c” (concatenarea unor numere = operaţia de „alipire cap-coadă” a cifrelor lor). Am enumerat în cadrul fiecărei clase de numere primii câţiva termeni ai seriei – am folosit în lucrare cuvântul „serie” în sensul de mulţime ordonată de numere obţinute printr-o formulă generică („sequence”) şi nu în sensul de sumă a termenilor unui şir („series”) – şi, pentru a nu exista o discrepanţă între spaţiul alocat acestora (primii cinci termeni ai unei serii pot avea fiecare câte 2 cifre sau 20 de cifre) am alocat cca 100 de caractere (cifre plus virgule şi spaţii despărţitoare) fiecărei enumerări (evident, unde s-a putut acest lucru: clasa primelor Wiferich, de exemplu, însumează doar două prime 4 cunoscute, 1093 şi 3511; de asemenea, primii trei temeni ai clasei primelor Smarandache-Wellin însumează 7 cifre, în timp ce al patrulea termen are 355 de cifre). Mai trebuie spus că nu îl considerăm pe 1 prim, pentru a fi în asentimentul majorităţii matematicienilor din secolul XX, potrivit cărora un număr prim are doi divizori (pe 1 şi numărul însuşi) în timp ce numărul 1 are un singur divizor (pe el însuşi); se subînţelege deci că, dacă nu se specifică expres altfel, înţelegem prin divizori ai numărului natural n inclusiv pe 1 şi pe n însuşi. Şi, tot pentru a ne adapta majorităţii definiţiilor (şi a evita controversele privind natura lui zero – vezi articolul „Numere întregi”) am optat pentru sintagma „ număr întreg pozitiv” în detrimentul celei de „număr natural diferit de 0” şi pentru cea de „număr întreg non-negativ” în detrimentul celei de „număr natural incluzându-l pe 0”. Deşi partea a doua a lucrării este intitulată „Clase de prime şi pseudoprime”, am tratat clase de prime şi pseudoprime şi în partea întâi a lucrării, „Clase de numere”. Astfel, de exemplu, primele Mersenne le-am tratat în cadrul articolului „Numere Mersenne”, pentru că primele Mersenne sunt pur şi simplu numere Mersenne ce sunt totodată şi prime. Am procedat în acelaşi fel şi în cazul când, dimpotrivă, acestea nu au aceeaşi formulă generatoare: de exemplu primele Wolstenholme sunt cu totul altceva decât numerele Wolstenholme ce sunt totodată şi prime, nemaivorbind de primele factoriale ce desigur nu pot fi numere factoriale din moment ce acestea din urmă sunt prin definiţie compuse; pe acestea le-am tratat în cadrul aceluiaşi articol tocmai pentru a sublinia diferenţele.