Download File
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
Review of the Geology and Paleontology of the Ellsworth Mountains, Antarctica
U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 107; doi:10.3133/of2007-1047.srp107 Review of the geology and paleontology of the Ellsworth Mountains, Antarctica G.F. Webers¹ and J.F. Splettstoesser² ¹Department of Geology, Macalester College, St. Paul, MN 55108, USA ([email protected]) ²P.O. Box 515, Waconia, MN 55387, USA ([email protected]) Abstract The geology of the Ellsworth Mountains has become known in detail only within the past 40-45 years, and the wealth of paleontologic information within the past 25 years. The mountains are an anomaly, structurally speaking, occurring at right angles to the Transantarctic Mountains, implying a crustal plate rotation to reach the present location. Paleontologic affinities with other parts of Gondwanaland are evident, with nearly 150 fossil species ranging in age from Early Cambrian to Permian, with the majority from the Heritage Range. Trilobites and mollusks comprise most of the fauna discovered and identified, including many new genera and species. A Glossopteris flora of Permian age provides a comparison with other Gondwana floras of similar age. The quartzitic rocks that form much of the Sentinel Range have been sculpted by glacial erosion into spectacular alpine topography, resulting in eight of the highest peaks in Antarctica. Citation: Webers, G.F., and J.F. Splettstoesser (2007), Review of the geology and paleontology of the Ellsworth Mountains, Antarctica, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS Open- File Report 2007-1047, Short Research Paper 107, 5 p.; doi:10.3133/of2007-1047.srp107 Introduction The Ellsworth Mountains are located in West Antarctica (Figure 1) with dimensions of approximately 350 km long and 80 km wide. -
Office of Polar Programs
DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1 -
Isotopic Oxygen-18 Results from Blue-Ice Areas
Isotopic oxygen-18 results Tongue blue-ice field ranges in 8180 from –40.7 to –58.8 parts per thousand. In a 200-meter transect with a sample every 10 from blue-ice areas meters, a 60-meter area of "yellow" or "dirty" ice has an av- erage 8180 value of –42.8 ± 1.4 parts per thousand, while the average for the blue-ice is –54.4 ± 0.3 parts per thousand. P.M. GROOTES and M. STUIVER Lighter 8110 values seem also to be associated with the me- teorite-carrying ice. Detailed sampling on five large sample Quaternary Isotope Laboratory blocks showed no signs of sample contamination and enrich- University of Washington ment. Seattle, Washington 98195 The observed i8O range is more than triple the glacial/in- terglacial 8180 change and the isotopically light ice, therefore, We measured the oxygen isotope abundance ratio oxygen - must have originated in the high interior of East Antarctica. 18/oxygen-16 in three sets of samples from blue-ice ablation The most negative value of –58.8 parts per thousand is, how- areas west of the Transantarctic Mountains. Samples were col- ever, still lighter than present snow accumulating at the Pole lected at the Reckling Moraine (by C. Faure), the Lewis Cliff of Relative Inaccessibility (-57 parts per thousand, Lorius 1983). Ice Tongue (by W.A. Cassidy, submitted by P. Englert), and If this ice had been formed during a glacial period, the source the Allan Hills (by J.O. Annexstad). Most samples were cut area could be closer to the Transantarctic Mountains. -
PDF-TITEL-AA-CHILE-EMPEORSADVENTURE Kopie.Pages
Antarktis Flug-Expeditionen EMPEROR PENGUINS Besuch der Kaiserpinguin-Kolonie in der Gould-Bucht ex Punta Arenas / Chile via Basecamp Union Glaciar POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de Saison 2021/22 Veranstalter Direkt-Angebote ab-bis Punta Arenas (Chile) für individuelle Planungen alle Abfahrten der Saison inkl. englischsprachiger Termine POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur * Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de EMPEROR PENGUINS A PHOTOGRAPHER’S PARADISE Immerse yourself in the sights and sounds of the Gould Bay Emperor Penguin Colony on the remote coast of the Weddell Sea. Camp on the same sea ice where thousands of birds come to raise and feed their young. Photograph majestic emperors and their chicks against a spectacular backdrop of ice cliffs, pressure ridges, and icebergs. Spot petrels and seals amongst the endless white expanse. Fall asleep to a chorus of trumpeting calls and wake to find curious penguins outside your tent. Our remote field camp offers you unparalleled access to the emperors as you witness their amazing adaptations to the Antarctic environment alongside our expert guides. ITINERARY Arrival Day Punta Arenas, Chile Pre-departure Day Luggage Pick-Up & Briefing Day 1 Fly to Antarctica Day 2 Explore Union Glacier Day 3 Fly to Emperor Colony Day 4-6 Live with the Emperors Day 7 Return to Union Glacier Day 8 Explore Union Glacier Day 9 Return to Chile Flexible Departure Day Fly Home *Subject to change based on weather and flight conditions. -
S. Antarctic Projects Officer Bullet
S. ANTARCTIC PROJECTS OFFICER BULLET VOLUME III NUMBER 8 APRIL 1962 Instructions given by the Lords Commissioners of the Admiralty ti James Clark Ross, Esquire, Captain of HMS EREBUS, 14 September 1839, in J. C. Ross, A Voya ge of Dis- covery_and Research in the Southern and Antarctic Regions, . I, pp. xxiv-xxv: In the following summer, your provisions having been completed and your crews refreshed, you will proceed direct to the southward, in order to determine the position of the magnet- ic pole, and oven to attain to it if pssble, which it is hoped will be one of the remarka- ble and creditable results of this expedition. In the execution, however, of this arduous part of the service entrusted to your enter- prise and to your resources, you are to use your best endoavours to withdraw from the high latitudes in time to prevent the ships being besot with the ice Volume III, No. 8 April 1962 CONTENTS South Magnetic Pole 1 University of Miohigan Glaoiologioal Work on the Ross Ice Shelf, 1961-62 9 by Charles W. M. Swithinbank 2 Little America - Byrd Traverse, by Major Wilbur E. Martin, USA 6 Air Development Squadron SIX, Navy Unit Commendation 16 Geological Reoonnaissanoe of the Ellsworth Mountains, by Paul G. Schmidt 17 Hydrographio Offices Shipboard Marine Geophysical Program, by Alan Ballard and James Q. Tierney 21 Sentinel flange Mapped 23 Antarctic Chronology, 1961-62 24 The Bulletin is pleased to present four firsthand accounts of activities in the Antarctic during the recent season. The Illustration accompanying Major Martins log is an official U.S. -
Rb-Sr Provenance Dates of Feldspar in Glacial Deposits of the Wisconsin Range, Transantarctic Mountains
Rb-Sr provenance dates of feldspar in glacial deposits of the Wisconsin Range, Transantarctic Mountains q F/XUR.E ' I Department of Geology and Mineralogy and Institute of Polar Studies, The Ohio State University, Columbus, J H MERCER ' °hi°43210 ABSTRACT than those of feldspar in the plateau till and range only from 0.46 to 0.66. Nevertheless, three feldspar fractions form a straight line on Glacial deposits in the Wisconsin Range (lat. 85° to 86°30'S, the Rb-Sr isochron diagram, the slope of which indicates a date of long. 120° to 130°W) of the Transantarctic Mountains include a 576 ± 21 Ma. The difference in the date derived from the feldspar of deposit of till on the summit plateau at an elevation of 2,500 m the glaciolacustrine sedimeyt may be caused by the presence of a above sea level and glaciolacustrine sediments along the Reedy component of Precambrian feldspar derived from the East Antarc- Glacier. The plateau till and underlying sediments consist of six tic Shield. units that appear to record the replacement of ice-free, periglacial conditions by ice cap glaciation of pre-Pleistocene age. Alterna- INTRODUCTION tively, the plateau till may have been deposited by the East Antarc- tic ice sheet either when it was thicker than at present or when the The glaciation of Antarctica in Cenozoic time was an important Wisconsin Range was lower in elevation. Feldspar size fractions event in the history of the Earth, the effects of which continue to from the plateau till have Rb/Sr ratios that increase with grain size influence climatic conditions and sea level. -
Glacier Lake, Saddle, & Blue Ice Trails
Guide to Glacier Lake, Saddle, & Blue Ice Trails in Kachemak Bay State Park Trail Access: Glacier Spit, Saddle, or Humpy Creek Grewingk Tram Spur (1 mile, easy) Allowable Uses: Hiking This spur connects Glacier Distance: 3.2 mi one-way (Glacier Lake Trail) Lake Trail and Emerald Lake Loop Trail. There is a hand- 1.0 mi one way (Saddle Trail) operated cable car pulley 6.7 mi one-way (Glacier Spit to Blue Ice Trail end) system over Grewingk Elevation Gain: 200 ft (Glacier Lake Trail) Creek. Operation requires 200 ft (Glacier Lake to Saddle Trailhead) two people. Maximum capacity of the tram is 500 500 ft (Glacier Spit to Blue Ice Trail end) pounds. If only two people are crossing the Difficulty: Easy; family suitable (Glacier Lake Trail) tram, one person should stay behind and assist in Camping: Moderate (Saddle Trail) pulling the other across. Two people in the tram cart without assistance from others on the plat- Glacier Spit, Grewingk Glacier Lake, Grewingk Creek, Moderate (Blue Ice Trail) form is difficult. Gloves are helpful in operating Tarn Lake, Humpy Creek, Right Beach (accessible at Hiking Time: 1.5 hours (to end Glacier Lake Trail) low tide from Glacier Spit) the tram. 30 minutes (Saddle Trail) Water Availability: 5 hours (Glacier Spit to Blue Ice Trail end) Glacier Lake & Saddle Trails: Grewingk Creek (glacial), Grewingk Glacier Lake A Popular route joins the Saddle and Glacier Lake (glacial), small streams near glacier and on Saddle Tr. Blue Ice Trail: Trails. The Glacier Lake Trail follows flat terrain Safety and Considerations: This is the only developed access to Grewingk through stands of cottonwoods & spruce, and CAUTION: Unless properly trained and outfitted for Glacier. -
Antarctic Surface and Subsurface Snow and Ice Melt Fluxes
15 MAY 2005 L I S T O N A N D W I N THER 1469 Antarctic Surface and Subsurface Snow and Ice Melt Fluxes GLEN E. LISTON Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado JAN-GUNNAR WINTHER Norwegian Polar Institute, Polar Environmental Centre, Tromsø, Norway (Manuscript received 19 April 2004, in final form 22 October 2004) ABSTRACT This paper presents modeled surface and subsurface melt fluxes across near-coastal Antarctica. Simula- tions were performed using a physical-based energy balance model developed in conjunction with detailed field measurements in a mixed snow and blue-ice area of Dronning Maud Land, Antarctica. The model was combined with a satellite-derived map of Antarctic snow and blue-ice areas, 10 yr (1991–2000) of Antarctic meteorological station data, and a high-resolution meteorological distribution model, to provide daily simulated melt values on a 1-km grid covering Antarctica. Model simulations showed that 11.8% and 21.6% of the Antarctic continent experienced surface and subsurface melt, respectively. In addition, the simula- tions produced 10-yr averaged subsurface meltwater production fluxes of 316.5 and 57.4 km3 yrϪ1 for snow-covered and blue-ice areas, respectively. The corresponding figures for surface melt were 46.0 and 2.0 km3 yrϪ1, respectively, thus demonstrating the dominant role of subsurface over surface meltwater pro- duction. In total, computed surface and subsurface meltwater production values equal 31 mm yrϪ1 if evenly distributed over all of Antarctica. While, at any given location, meltwater production rates were highest in blue-ice areas, total annual Antarctic meltwater production was highest for snow-covered areas due to its larger spatial extent. -
Glacier Mass Balance This Summary Follows the Terminology Proposed by Cogley Et Al
Summer school in Glaciology, McCarthy 5-15 June 2018 Regine Hock Geophysical Institute, University of Alaska, Fairbanks Glacier Mass Balance This summary follows the terminology proposed by Cogley et al. (2011) 1. Introduction: Definitions and processes Definition: Mass balance is the change in the mass of a glacier, or part of the glacier, over a stated span of time: t . ΔM = ∫ Mdt t1 The term mass budget is a synonym. The span of time is often a year or a season. A seasonal mass balance is nearly always either a winter balance or a summer balance, although other kinds of seasons are appropriate in some climates, such as those of the tropics. The definition of “year” depends on the measurement method€ (see Chap. 4). The mass balance, b, is the sum of accumulation, c, and ablation, a (the ablation is defined here as negative). The symbol, b (for point balances) and B (for glacier-wide balances) has traditionally been used in studies of surface mass balance of valley glaciers. t . b = c + a = ∫ (c+ a)dt t1 Mass balance is often treated as a rate, b dot or B dot. Accumulation Definition: € 1. All processes that add to the mass of the glacier. 2. The mass gained by the operation of any of the processes of sense 1, expressed as a positive number. Components: • Snow fall (usually the most important). • Deposition of hoar (a layer of ice crystals, usually cup-shaped and facetted, formed by vapour transfer (sublimation followed by deposition) within dry snow beneath the snow surface), freezing rain, solid precipitation in forms other than snow (re-sublimation composes 5-10% of the accumulation on Ross Ice Shelf, Antarctica). -
Build-Up and Chronology of Blue Ice Moraines in Queen Maud Land, Antarctica
Research Collection Journal Article Build-up and chronology of blue ice moraines in Queen Maud Land, Antarctica Author(s): Akçar, Naki; Yeşilyurt, Serdar; Hippe, Kristina; Christl, Marcus; Vockenhuber, Christof; Yavuz, Vural; Özsoy, Burcu Publication Date: 2020-10 Permanent Link: https://doi.org/10.3929/ethz-b-000444919 Originally published in: Quaternary Science Advances 2, http://doi.org/10.1016/j.qsa.2020.100012 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Quaternary Science Advances 2 (2020) 100012 Contents lists available at ScienceDirect Quaternary Science Advances journal homepage: www.journals.elsevier.com/quaternary-science-advances Build-up and chronology of blue ice moraines in Queen Maud Land, Antarctica Naki Akçar a,b,*, Serdar Yes¸ilyurt a,c, Kristina Hippe d, Marcus Christl d, Christof Vockenhuber d, Vural Yavuz e, Burcu Ozsoy€ b,f a Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, 3012, Bern, Switzerland b Polar Research Institute, TÜBITAK Marmara Research Center, Gebze, Istanbul, Turkey c Department of Geography, Ankara University, Sıhhiye, 06100, Ankara, Turkey d Laboratory of Ion Beam Physics (LIP), ETH Zurich, Otto-Stern-Weg 5, 8093, Zurich, Switzerland e Faculty of Engineering, Turkish-German University, 34820, Beykoz, Istanbul, Turkey f Maritime Faculty, Istanbul Technical University Tuzla Campus, Istanbul, Turkey -
Mid-Holocene Pulse of Thinning in the Weddell Sea Sector of the West Antarctic Ice Sheet
ARTICLE Received 9 Feb 2016 | Accepted 9 Jul 2016 | Published 22 Aug 2016 DOI: 10.1038/ncomms12511 OPEN Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet Andrew S. Hein1, Shasta M. Marrero1, John Woodward2, Stuart A. Dunning2,3, Kate Winter2, Matthew J. Westoby2, Stewart P.H.T. Freeman4, Richard P. Shanks4 & David E. Sugden1 Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall B400 m to the present level at 6.5–3.5 ka, and could have contributed 1.4–2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet. 1 School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK. 2 Department of Geography, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, UK. 3 School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.