Preliminary Design of the Hybrid Navigation System (HNS) for the CALLISTO RLV Demonstrator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates -
50 Satellite Formation-Flying and Rendezvous
Parkinson, et al.: Global Positioning System: Theory and Applications — Chap. 50 — 2017/11/26 — 19:03 — page 1 1 50 Satellite Formation-Flying and Rendezvous Simone D’Amico1) and J. Russell Carpenter2) 50.1 Introduction to Relative Navigation GNSS has come to play an increasingly important role in satellite formation-flying and rendezvous applications. In the last decades, the use of GNSS measurements has provided the primary method for determining the relative position of cooperative satellites in low Earth orbit. More recently, GNSS data have been successfully used to perform formation-flying in highly elliptical orbits with apogees at tens of Earth radii well above the GNSS constellations. Current research aims at dis- tributed precise relative navigation between tens of swarming nano- and micro-satellites based on GNSS. Similar to terrestrial applications, GNSS relative navigation benefits from a high level of common error cancellation. Furthermore, the integer nature of carrier phase ambiguities can be exploited in carrier phase differential GNSS (CDGNSS). Both aspects enable a substantially higher accuracy in the estimation of the relative motion than can be achieved in single-spacecraft navigation. Following historical remarks and an overview of the state-of-the-art, this chapter addresses the technology and main techniques used for spaceborne relative navigation both for real-time and offline applications. Flight results from missions such as the Space Shuttle, PRISMA, TanDEM-X, and MMS are pre- sented to demonstrate the versatility and broad range of applicability of GNSS relative navigation, from precise baseline determination on-ground (mm-level accuracy), to coarse real-time estimation on-board (m- to cm-level accuracy). -
Vector-Based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-02-03 Vector-based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming Krasovski, Sergey Krasovski, S. (2015). Vector-based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/28635 http://hdl.handle.net/11023/2080 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Vector-based and Ultra-Tight GPS/INS Receiver Performance in the Presence of Continuous Wave Jamming by Sergey Krasovski A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOMATICS ENGINEERING CALGARY, ALBERTA JANUARY, 2015 © Sergey Krasovski 2015 Abstract This thesis investigates the ability of a vector-based Global Positioning System (GPS) receiver and an ultra-tight GPS/inertial receiver to detect and mitigate Continuous Wave (CW) interference in tracking and navigation domains. In this work, an Interference Detector (ID) is incorporated into the tracking domain of a GPS software receiver and a new observation weighting (OW) algorithm is developed to help classify GPS measurements when CW signal is present. -
Galileo FOC-M7 SAT 19-20-21-22
LAUNCH KIT December 2017 VA240 Galileo FOC-M7 SAT 19-20-21-22 VA240 Galileo FOC-M7 SAT 19-20-21-22 ARIANESPACE’S SECOND ARIANE 5 LAUNCH FOR THE GALILEO CONSTELLATION AND EUROPE For its 11th launch of the year, and the sixth Ariane 5 liftoff from the Guiana Space Center (CSG) in French Guiana during 2017, Arianespace will orbit four more satellites for the Galileo constellation. This mission is being performed on behalf of the European Commission under a contract with the European Space Agency (ESA). For the second time, an Ariane 5 ES version will be used to orbit satellites in Europe’s own satellite navigation system. At the completion of this flight, designated Flight VA240 in Arianespace’s launcher family numbering system, 22 Galileo spacecraft will have been launched by Arianespace. Arianespace is proud to deploy its entire family of launch vehicles to address Europe’s needs and guarantee its independent access to space. Galileo, an iconic European program Galileo is Europe’s own global navigation satellite system. Under civilian control, Galileo offers guaranteed high-precision positioning around the world. Its initial services began in December CONTENTS 2016, allowing users equipped with Galileo-enabled devices to combine Galileo and GPS data for better positioning accuracy. The complete Galileo constellation will comprise a total of 24 operational satellites (along with > THE LAUNCH spares); 18 of these satellites already have been orbited by Arianespace. ESA transferred formal responsibility for oversight of Galileo in-orbit operations to the GSA VA240 mission (European GNSS Agency) in July 2017. Page 3 Therefore, as of this launch, the GSA will be in charge of the operation of the Galileo satellite Galileo FOC-M7 satellites navigation systems on behalf of the European Union. -
Corporate Initiative for Space Tourism
UNIVERSITY OF LJUBLJANA FACULTY OF ECONOMICS MASTER’S THESIS “OUT OF THIS WORLD” BUSINESS: CORPORATE INITIATIVE FOR SPACE TOURISM Ljubljana, March 2014 JAN KRIŠTOF RAMOVŠ AUTHORSHIP STATEMENT The undersigned Jan K. Ramovš, a student at the University of Ljubljana, Faculty of Economics, (hereafter: FELU), declare that I am the author of the master’s thesis entitled “Out Of This World” Business: Corporate Initiative for Space Tourism, written under supervision of Prof. Dr. Metka Tekavčič. In accordance with the Copyright and Related Rights Act (Official Gazette of the Republic of Slovenia, Nr. 21/1995 with changes and amendments) I allow the text of my master’s thesis to be published on the FELU website. I further declare the text of my master’s thesis to be based on the results of my own research; the text of my master’s thesis to be language-edited and technically in adherence with the FELU’s Technical Guidelines for Written Works which means that I o cited and / or quoted works and opinions of other authors in my master’s thesis in accordance with the FELU’s Technical Guidelines for Written Works and o obtained (and referred to in my master’s thesis) all the necessary permits to use the works of other authors which are entirely (in written or graphical form) used in my text; to be aware of the fact that plagiarism (in written or graphical form) is a criminal offence and can be prosecuted in accordance with the Criminal Code (Official Gazette of the Republic of Slovenia, Nr. 55/2008 with changes and amendments); to be aware of the consequences a proven plagiarism charge based on the submitted master’s thesis could have for my status at the FELU in accordance with the relevant FELU Rules on Master’s Thesis. -
D5.2: Process Map for Autonomous Navigation
Grant Agreement number: 314286 Project acronym: MUNIN Project title: Maritime Unmanned Navigation through Intelligence in Networks Funding Scheme: SST.2012.5.2‐5: E‐guided vessels: the 'autonomous' ship D5.2: Process map for autonomous navigation Due date of deliverable: 2013‐07‐31 Actual submission date: Start date of project: 2012‐09‐01 Project Duration: 36 months Lead partner for deliverable: Fraunhofer CML Distribution date: 2013‐09‐27 Document revision: 1.0 Project co‐funded by the European Commission within the Seventh Framework Programme (2007‐2013) Dissemination Level PU Public Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) MUNIN – FP7 GA‐No 314286 D5.2 ‐ Print date: 14/01/07 Document summary information Deliverable D5.2: Process map for autonomous navigation Classification PU (public) Initials Author Organization Role WB Wilko Bruhn CML Editor HCB Hans‐Christoph Burmeister CML Editor LW Laura Walther CML Contributor JM Jonas Moræus APT Contributor ML Matt Long APT Contributor MS Michèle Schaub HSW Contributor EF Enrico Fentzahn MsoftContributor Rev. Who Date Comment 0.1 WB 2013‐08‐01 First draft 0.2 ØJR 2013‐08‐12 Partner review 0.3 AV 2013‐08‐13 Partner review 0.4 BS 2013‐08‐13 Partner review 0.5 WB 2013‐08‐30 Second draft after comments 1.0 HCB 2013‐08‐27 Formating Internal review needed: [ X ] yes [ ] no Initials Reviewer Approved Not approved FS Fariborz Safari X AV Ari Vésteinsson X Disclaimer The content of the publication herein is the sole responsibility of the publishers and it does not necessarily represent the views expressed by the European Commission or its services. -
Global Maritime Distress and Safety System (GMDSS) Handbook 2018 I CONTENTS
FOREWORD This handbook has been produced by the Australian Maritime Safety Authority (AMSA), and is intended for use on ships that are: • compulsorily equipped with GMDSS radiocommunication installations in accordance with the requirements of the International Convention for the Safety of Life at Sea Convention 1974 (SOLAS) and Commonwealth or State government marine legislation • voluntarily equipped with GMDSS radiocommunication installations. It is the recommended textbook for candidates wishing to qualify for the Australian GMDSS General Operator’s Certificate of Proficiency. This handbook replaces the tenth edition of the GMDSS Handbook published in September 2013, and has been amended to reflect: • changes to regulations adopted by the International Telecommunication Union (ITU) World Radiocommunications Conference (2015) • changes to Inmarsat services • an updated AMSA distress beacon registration form • changes to various ITU Recommendations • changes to the publications published by the ITU • developments in Man Overboard (MOB) devices • clarification of GMDSS radio log procedures • general editorial updating and improvements. Procedures outlined in the handbook are based on the ITU Radio Regulations, on radio procedures used by Australian Maritime Communications Stations and Satellite Earth Stations in the Inmarsat network. Careful observance of the procedures covered by this handbook is essential for the efficient exchange of communications in the marine radiocommunication service, particularly where safety of life at sea is concerned. Special attention should be given to those sections dealing with distress, urgency, and safety. Operators of radiocommunications equipment on vessels not equipped with GMDSS installations should refer to the Marine Radio Operators Handbook published by the Australian Maritime College, Launceston, Tasmania, Australia. No provision of this handbook or the ITU Radio Regulations prevents the use, by a ship in distress, of any means at its disposal to attract attention, make known its position and obtain help. -
The Navy Navigation Satellite System (Transit)
ROBERT J. DANCHIK THE NAVY NAVIGATION SATELLITE SYSTEM (TRANSIT) This article provides an update on the status of the Navy Navigation Satellite System (TRANSIT). Some insights are provided on the evolution of the system into its current configuration, as well as a discussion of future plans. BACKGROUND sign goal was never achieved for long in those early In 1958, research scientists at APL solved the orbit days because the satellites had short operational life of the first Russian satellite, Sputnik-I, by analysis of times. The failures largely resulted from inadequate the observed Doppler shift of its transmitted signal. component quality and the large number of wiring in This led immediately to the concept of satellite navi terconnections. However, after OSCAR 2 10 and OS gation and the development of the U.S. Navy Navi CAR 12 were launched in 1966 and 1967, respectively, gation Satellite System (TRANSIT) by APL, under the enough data on the failure mechanisms became avail sponsorship of the Navy's Special Projects Office, to able to APL to achieve the desired advances in reli provide position fixes for the Fleet Ballistic Missile ability. The integrated circuit introduced in OSCAR Weapon System submarines. (The articles in Ref. 1, 10 significantly extended the satellite lifetime by im a previous issue of the fohns Hopkins APL Techni proving component reliability and reducing the num cal Digest devoted to TRANSIT, give the principles ber of interconnections. Subsequently, the last major of operation and early history of the system.) Now, design change made to the solar cell interconnections, 26 years after its conception, the system is mature. -
Systems Engineering Approach to Develop Guidance, Navigation and Control Algorithms for Unmanned Ground Vehicle
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2016-09 Systems engineering approach to develop guidance, navigation and control algorithms for unmanned ground vehicle Lim, Eng Soon Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/50579 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SYSTEMS ENGINEERING APPROACH TO DEVELOP GUIDANCE, NAVIGATION AND CONTROL ALGORITHMS FOR UNMANNED GROUND VEHICLE by Eng Soon Lim September 2016 Thesis Advisor: Oleg A. Yakimenko Second Reader: Fotis A. Papoulias Approved for public release. Distribution is unlimited. THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED (Leave blank) September 2016 Master’s thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS SYSTEMS ENGINEERING APPROACH TO DEVELOP GUIDANCE, NAVIGATION AND CONTROL ALGORITHMS FOR UNMANNED GROUND VEHICLE 6. AUTHOR(S) Eng Soon Lim 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9. -
Supporting the Sustainable Development Goals
UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Cover photo: ©ESA/ATG medialab. Adapted by the European GNSS Agency, contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Vienna, 2018 ST/SPACE/71 © United Nations, January 2018. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concern- ing the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Information on uniform resource locators and links to Internet sites contained in the present pub- lication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Foreword by the Director of the Office for Outer Space Affairs The 2030 Agenda for Sustainable Development came into effect on 1 January 2016. The Agenda is anchored around 17 Sustainable Development Goals (SDGs), which set the targets to be fulfilled by all governments by 2030. -
GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists. -
Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field Taylor N
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-22-2019 Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field Taylor N. Lee Follow this and additional works at: https://scholar.afit.edu/etd Part of the Navigation, Guidance, Control and Dynamics Commons Recommended Citation Lee, Taylor N., "Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field" (2019). Theses and Dissertations. 2268. https://scholar.afit.edu/etd/2268 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Aerial Simultaneous Localization and Mapping Using Earth's Magnetic Anomaly Field THESIS Taylor Lee, 1st Lieutenant, USAF AFIT-ENG-MS-19-M-039 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor by the United States Government, the Department of Defense, or the Air Force Institute of Technology.