Winter Storm

Total Page:16

File Type:pdf, Size:1020Kb

Winter Storm WINTER STORM HAZARD DESCRIPTION ..................................................................................................... 1 LOCATION .............................................................................................................................. 1 EXTENT................................................................................................................................... 1 HISTORICAL OCCURRENCES .......................................................................................... 3 SIGNIFICANT PAST EVENTS .................................................................................................... 4 PROBABILITY OF FUTURE EVENTS .............................................................................. 5 VULNERABILITY AND IMPACT ....................................................................................... 5 Hazard Description A severe winter storm event is identified as a storm with snow, ice, or freezing rain—all of which can cause significant problems for area residents. Winter storms are associated with freezing or frozen precipitation such as freezing rain, sleet, snow and the combined effects of winter precipitation and strong winds. Wind chill is a function of temperature and wind. Low wind chill is a product of high winds and freezing temperatures. January is the month when snow, sleet or freezing rain is most likely to be observed; yet, winter weather conditions can occur at any time during the winter and early spring months. Location Winter storms vary in location, intensity and duration but are considered rare occurrences in CVCOG communities. It is assumed that all of the jurisdictions are uniformly exposed to winter storm events; therefore, all areas of the counties are equally exposed. Extent Table 11-1 below displays the magnitude of severe winter storms. The wind-chill factor is further described in Figure 11-1. This is an index developed by the National Weather Service, although the chart is not applicable when temperatures are over 50° or winds are calm. C O N C H O V A L L E Y H A Z A R D M I T I G A T I O N P L A N U PDATE Winter Storm Table 11-1. Extent Scale - Winter Weather Alerts WINTER This alert may be issued for a variety of severe conditions. Weather WEATHER advisories may be announced for snow, blowing or drifting snow, ADVISORY freezing drizzle, freezing rain, or a combination of weather events. WINTER STORM Severe winter weather conditions may affect your area (freezing rain, WATCH sleet or heavy snow may occur separately or in combination). WINTER STORM Severe winter weather conditions are imminent. WARNING FREEZING RAIN Rain or drizzle is likely to freeze upon impact, resulting in a coating of OR FREEZING ice glaze on roads and all other exposed objects. DRIZZLE Small particles of ice usually mixed with rain. If enough sleet SLEET accumulates on the ground, it makes travel hazardous. Sustained wind speeds of at least 35 mph are accompanied by BLIZZARD considerable falling or blowing snow. This alert is the most perilous WARNING winter storm with visibility dangerously restricted. FROST/FREEZE Below freezing temperatures are expected and may cause significant WARNING damage to plants, crops and fruit trees. A strong wind combined with a temperature slightly below freezing can have the same chilling effect as a temperature nearly 50 degrees WIND CHILL lower in a calm atmosphere. The combined cooling power of the wind and temperature on exposed flesh is called the wind-chill factor. Wind chill temperature is a measure of how cold the wind makes real air temperature feel to the human body, similar to the heat index for extreme heat (Figure 12-1). Since wind can dramatically accelerate heat loss from the body, a blustery 30°F day would feel just as cold as a calm day with 0°F temperatures. The CVCOG Region has been subject to winter storm watches, warnings, freezing rain, sleet, snow and wind chill. CVCOG | Hazard Mitigation Plan Update | Page 2 Winter Storm Figure 11-1. Wind Chill Chart The Concho Valley Region is part of the Panhandle Plains in Texas for the northern half of the region and the Hill Country for the southern counties. As a whole this region experiences similar winter events. Winter nights for the area commonly see temperatures fall below the freezing mark, or 32 °F. From the past occurrence data, all counties have experienced ice storms, heavy snow, winter storms and winter weather. The average number of cold days are similar for each county. Therefore the intensity of a winter storm event to be mitigated for the area is an ice storm and heavy snow. Historical Occurrences Table 11-2 shows historical occurrences for the area since 1950, as well as the type of event provided by the National Climatic Data Center (NCDC). Although there have been relatively few storms, it is likely that a high number of occurrences have gone unreported. Additionally, historical winter storm information, as provided by the NCDC, shows winter storm activity across a multi-county forecast area for each event. In some instances within the study area, a single record could consist of up to 27 counties including some or all of the ones participating in this risk assessment. Therefore, an appropriate percentage of the total property and crop damage reported for the entire forecast area has been allocated to each participating county impacted by each event. CVCOG | Hazard Mitigation Plan Update | Page 3 Winter Storm Table 11-2. Historical Winter Storm Events by Jurisdiction, 1950-2010) NUMBER OF COUNTY REPORTED TYPES OF EVENTS EVENTS Ice Storm, Heavy Snow, Winter weather/mix, Coke 13 and Winter Storm Ice Storm, Heavy Snow, Winter weather/mix, Concho 9 and Winter Storm Crockett 15 Ice, Ice Storm, Heavy Snow, and Winter Storm Ice Storm, Heavy Snow, Winter weather/mix, Irion 10 and Winter Storm Kimble 12 Ice Storm, Heavy Snow, and Winter Storm Ice Storm, Heavy Snow, Winter weather, and McCulloch 10 Winter Storm Ice Storm, Heavy Snow, Winter weather, and Menard 13 Winter Storm Ice Storm, Heavy Snow, Winter weather, and Reagan 8 Winter Storm Ice, Ice Storm, Heavy Snow, Winter Storm, and Schleicher 13 Winter weather Ice Storm, Heavy Snow, Winter weather/mix, Sterling 12 and Winter Storm Sutton 14 Ice Storm, Heavy Snow, and Winter Storm Ice Storm, Heavy Snow, Winter weather/mix, Tom Green 10 and Winter Storm TOTAL 139 Significant Past Events 24 November 1996 This event affected eight of the twelve counties in the planning area. A vigorous upper level storm system interacted with a cold Canadian air mass to produce snow, sleet, and freezing rain on the Nov 24. Total sleet and snowfall amounts were generally between two and six CVCOG | Hazard Mitigation Plan Update | Page 4 Winter Storm inches over the Concho Valley, northern Edwards Plateau, and northwest Hill Country. The highest amounts were generally in the northwest Hill Country, where eight inches of snow fell at Junction. Icy roads proved hazardous to drivers and numerous accidents occurred throughout the area. There were a few fatalities and several injuries. The cold moisture damaged the unharvested cotton in Tom Green County. 24 February 2003 – McCulloch County An arctic cold front barreled through West Central Texas on the Feb. 23, dropping temperatures into the teens and 20s across all of the area. Strong overrunning began during the morning of the Feb. 24; producing thunderstorms that dropped large amounts of sleet and even hail to one half inch in diameter. The Big Country saw one to three inches of sleet during the afternoon and early evening of the 24th, with the activity slipping to the southeast into the Heartland during the evening of the 24th. One-half to one inch of sleet was reported across the Heartland. With temperatures remaining below freezing until the morning of the 26th, the accumulated ice remained on area roadways, with numerous accidents reported. There were also some minor injuries reported in the Abilene area, due to people slipping and falling down on the ice. Probability of Future Events A total of 24 unique events have impacted the CVCOG Region from 1950 to 2010. Although the counties reported a total of 139 incidents over the 60-year period, indicating that storms can impact the 12-county planning region as frequently as two winter storm events per year. Hence it is likely that the region will experience a winter storm event; an event is probable within the region within the next three years. Vulnerability and Impact All buildings and facilities are considered to be equally exposed and vulnerable to this hazard and could potentially be impacted because winter storm events are widespread within the planning area. Although a winter storm is a slow onset hazard with generally six to twelve hours of warning time, utility disruptions from winter storms can severely impact people and critical infrastructure. Ice and cold temperatures can lead to frozen water pipes and broken power lines due to a buildup of ice or downed trees, all of which can disrupt services. If the disruption continues it can lead to energy shortages and higher prices. While all populations and infrastructure are uniformly exposed in the CVCOG Region, the elderly and those with weakened immune systems are at a greater risk to death from hypothermia in extreme events. Homes with a poor foundation may have cracks or water damage from broken pipes in extreme events and residences with insufficient insulation will see an increased cost for heating. Hospitals and emergency facilities without back-up or emergency
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • February 2021: Extreme Cold, Snow, and Ice in the South Central U.S
    NASA/NOAA NASA/NOAA FEBRUARY 2021: EXTREME COLD,SNOW, AND ICE IN THE SOUTH CENTRAL U.S. APRIL 2021 | DARRIAN BERTRAND AND SIMONE SPEIZER SUGGESTED CITATION Bertrand, D. and S. Speizer, 2021: February 2021: Extreme Cold, Snow, and Ice in the South Central U.S. Southern Climate Impacts Planning Program, 30 pp. http://www.southernclimate.org/documents/Feb2021ExtremeCold.pdf. TABLE OF CONTENTS 1 2 6 INTRODUCTION WEATHER RECORDS & PATTERN CLIMATOLOGY 15 19 ENERGY WATER 10 15 19 20 HEALTH INFRASTRUCTURE COMPARISON IMPACTS TO HISTORIC 21 22 EVENTS ECONOMY ENVIRONMENT 23 SOCIETY 24 25 26 LOCAL HAZARD SUMMARY REFERENCES MITIGATION SUCCESSES PAGE | 01 INTRODUCTION INTRODUCTION February 2021’s weather was a wild ride for many across the U.S. Many records were broken from a strong arctic blast of cold air that extended south of the Mexico border, and wintry precipitation covered much of the country. While the extent of the winter storm traversed coast to coast, this summary will cover the Southern Climate Impacts Planning Program (SCIPP) region of Oklahoma, Texas, Arkansas, and Louisiana (Fig. 1). We'll be diving into the weather pattern, records, the Figure 1. SCIPP Region context of this event relative to climatology, past historic events, impacts, and hazard mitigation successes. EVENTHIGHLIGHTS Extreme Cold Temperature and Snow: Nearly 3,000 long-term temperature records were broken/tied in February in the SCIPP region. All 120 OK Mesonet stations were below 0°F at the same time for the first time. Some areas were below freezing for nearly 2 weeks. This was the coldest event in the region in over 30 years.
    [Show full text]
  • Coastal Hazards Primers
    Coastal Hazards Primers Table of Contents Introduction ............................................................................................................................................................................. 2 Flooding .................................................................................................................................................................................... 2 Background ......................................................................................................................................................................... 2 Flood Mapping .................................................................................................................................................................... 2 Flood Management ........................................................................................................................................................... 2 Flood Mitigation .................................................................................................................................................................. 2 Flood Response and Recovery ............................................................................................................................................ 3 Wind ........................................................................................................................................................................................... 3 Background ........................................................................................................................................................................
    [Show full text]
  • Climate Change Futures Health, Ecological and Economic Dimensions
    Climate Change Futures Health, Ecological and Economic Dimensions A Project of: The Center for Health and the Global Environment Harvard Medical School Sponsored by: Swiss Re United Nations Development Programme IntroNew.qxd 9/27/06 12:40 PM Page 1 CLIMATE CHANGE FUTURES Health, Ecological and Economic Dimensions A Project of: The Center for Health and the Global Environment Harvard Medical School Sponsored by: Swiss Re United Nations Development Programme IntroNew.qxd 9/27/06 12:40 PM Page 2 Published by: The Center for Health and the Global Environment Harvard Medical School With support from: Swiss Re United Nations Development Programme Edited by: Paul R. Epstein and Evan Mills Contributing editors: Kathleen Frith, Eugene Linden, Brian Thomas and Robert Weireter Graphics: Emily Huhn and Rebecca Lincoln Art Directors/Design: Evelyn Pandozi and Juan Pertuz Contributing authors: Pamela Anderson, John Brownstein, Ulisses Confalonieri, Douglas Causey, Nathan Chan, Kristie L. Ebi, Jonathan H. Epstein, J. Scott Greene, Ray Hayes, Eileen Hofmann, Laurence S. Kalkstein, Tord Kjellstrom, Rebecca Lincoln, Anthony J. McMichael, Charles McNeill, David Mills, Avaleigh Milne, Alan D. Perrin, Geetha Ranmuthugala, Christine Rogers, Cynthia Rosenzweig, Colin L. Soskolne, Gary Tabor, Marta Vicarelli, X.B. Yang Reviewers: Frank Ackerman, Adrienne Atwell, Tim Barnett, Virginia Burkett, Colin Butler, Eric Chivian, Richard Clapp, Stephen K. Dishart, Tee L. Guidotti, Elisabet Lindgren, James J. McCarthy, Ivo Menzinger, Richard Murray, David Pimentel, Jan von Overbeck, R.K. Pachauri, Claire L. Parkinson, Kilaparti Ramakrishna, Walter V. Reid, David Rind, Earl Saxon, Ellen-Mosley Thompson, Robert Unsworth, Christopher Walker Additional contributors to the CCF project: Juan Almendares, Peter Bridgewater, Diarmid Campbell-Lendrum, Manuel Cesario, Michael B.
    [Show full text]
  • February 2021 Historical Winter Storm Event South-Central Texas
    Austin/San Antonio Weather Forecast Office WEATHER EVENT SUMMARY February 2021 Historical Winter Storm Event South-Central Texas 10-18 February 2021 A Snow-Covered Texas. GeoColor satellite image from the morning of 15 February, 2021. February 2021 South Central Texas Historical Winter Storm Event South-Central Texas Winter Storm Event February 10-18, 2021 Event Summary Overview An unprecedented and historical eight-day period of winter weather occurred between 10 February and 18 February across South-Central Texas. The first push of arctic air arrived in the area on 10 February, with the cold air dropping temperatures into the 20s and 30s across most of the area. The first of several frozen precipitation events occurred on the morning of 11 February where up to 0.75 inches of freezing rain accumulated on surfaces in Llano and Burnet Counties and 0.25-0.50 inches of freezing rain accumulated across the Austin metropolitan area with lesser amounts in portions of the Hill Country and New Braunfels area. For several days, the cold air mass remained in place across South-Central Texas, but a much colder air mass remained stationary across the Northern Plains. This record-breaking arctic air was able to finally move south into the region late on 14 February and into 15 February as a strong upper level low-pressure system moved through the Southern Plains. As this system moved through the region, snow began to fall and temperatures quickly fell into the single digits and teens. Most areas of South-Central Texas picked up at least an inch of snow with the highest amounts seen from Del Rio and Eagle Pass extending to the northeast into the Austin and San Antonio areas.
    [Show full text]
  • How to Prepare for a Winter Storm
    Hurricane Safety Tips The 2015 hurricane season will be one of the quietest seasons since the mid 20th century, according to Dr. Phillip J. Klotzbach, leader of tropical forecasting, from Colorado State University. The numbers: 7 named storms, 3 hurricanes, and 1 major hurricane (category 3 or higher). It appears quite likely that an El Nino of at least moderate strength will develop this summer and fall. The tropical and subtropical Atlantic is quite cool at present. He anticipates a below-average probability for major hurricanes making landfall along the United States coastline and in the Caribbean. Despite the forecast for below- average activity, coastal residents are reminded that it only takes one hurricane making landfall to make it an active season for them. People should prepare the same for every season, regardless of how much activity is predicted. Even though a below-average season is expected, it is worth noting that Hurricane Andrew, a category 5 storm that devastated Florida in 1992, occurred in an inconsequential year with only 7 storms for the season. For your information, a tropical storm has sustained winds of 39 mph; it becomes a hurricane when its winds reach 74 mph. The Atlantic hurricane season starts June 1and lasts until November 30. The following names will be used for named storms that form in the Atlantic Ocean in 2015. The first name to be used this season is Ana, followed by Bill, Claudette, Erika, Fred, Grace, Henri, Ida, Joaquin, Kate, Larry, Mindy, Nicholas, Odette, Peter, Rose, Sam, Teresa, Victor, and Wanda. What is a hurricane? A hurricane is a type of tropical cyclone, the general term for all circulating weather systems over tropical waters.
    [Show full text]
  • The Winter Season December 1, 1982-February 28, 1983
    CONTINENTAL SURVEY The Winter Season December 1, 1982--February 28, 1983 Abbreviations frequently used in Regional Reports ad.: adult, Am.: American, c.: central, C: Celsius, CBC: Reservoir, not Reservation,R.: River, S.P.: State Park, sp.: Christmas Bird Count, Cr.: Creek, Com.: Common, Co.: species,spp.: speciesplural, ssp.: subspecies,Twp.: Town- County, Cos.: Counties,et al.: and others,E.: Eastern(bird ship, W.: Western(bird name), W.M.A.: Wildlife Manage- name),Eur.: European,Eurasian, F: Fahrenheit,fide:reported ment Area, v.o.: various observers, N,S,W,E,: direction of by, F.&W.S.: Fish& Wildlife Service,Ft.: Fort, imm.: imma- motion, n., s., w., e.,: direction of location, >: more than, <: ture, 1.: lsland,Is.: Islands,Isles, Jct.: Junction,juv.: juvenile, fewerthan, +: approximately,or estimatednumber, c•: male, L.: Lake, m.ob.: manyobservers, Mt.: Mountain, Mts.: Moun- q?:female, 0: imm.or female,*: specimen,ph.: photographed, tains, N.F.: National Forest, N.M.: National Monument, ?: documented,ft: feet, mi: miles, m: meters,kin: kilometers, N.P.: National Park, N.W.R.: Nat'l Wildlife Refuge, N.: date with a + (e.g., Mar. 4+): recordedbeyond that date. Northern(bird name), Par.: Parish,Pen.: Peninsula,P.P.: Pro- Editorsmay also abbreviateoften-cited locations or organiza- vincial Park, Pt.: Point, not Port, Ref.: Refuge, Res.: tions. NORTHEASTERN MARITIME REGION /Richard S. Heil This wasthe year that winter largely passed us by in the Northeast. Decemberand early Januaryaveraged exceptionally mild and bare groundand open water were the rolerather than the exceptions.As a result,waterfowl and gullslingered in the northand inlandin good numbers,while passerinesapparently remained widely dispersed throughoutthe Region, rotbet than concentrating at feeders or in shel- teredthickets.
    [Show full text]
  • 2018 Hazard Mitigation Plan Update – Woonsocket, Ri
    2018 HAZARD MITIGATION PLAN UPDATE – WOONSOCKET, RI 2018 Hazard Mitigation Plan Update City of Woonsocket, Rhode Island PREPARED FOR City of Woonsocket, RI City Hall 169 Main Street Woonsocket, RI 02895 401-762-6400 PREPARED BY 1 Cedar Street Suite 400 Providence, RI 02908 401.272.8100 JUNE/JULY 2018 2018 Hazard Mitigation Plan Update – Woonsocket, RI This Page Intentionally Left Blank. Table of Contents Executive Summary ........................................................................................................................................... 1 Introduction ........................................................................................................................................................ 2 Plan Purpose .................................................................................................................................................................................. 2 Hazard Mitigation and Benefits .............................................................................................................................................. 2 Goals.................................................................................................................................................................................................. 4 Background .................................................................................................................................................................................... 5 History .................................................................................................................................................................................
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Severe Weather
    Juniata County Appendix C Multi-Jurisdictional Hazard Mitigation Plan Hazard Profiles Severe Weather General Severe weather affects the entire Commonwealth and can be expected any time of the year. Severe weather for Juniata County is considered to include: blizzards and/or heavy snowfall, heavy fog, hail, heavy precipitation (rain), high winds, ice storms, unseasonable temperature extremes, hurricanes, and severe thunderstorms. (Tornados will be discussed in a separate profile.) Snowstorms occur approximately five times per year. These storms are more prevalent in the northern and western regions of Pennsylvania and include ice and high wind. They are frequently seen in Juniata County. Hurricanes, tropical storms, and windstorms occur in Juniata County in the spring and summer. Most hurricanes that approach Juniata County are downgraded to tropical storms or tropical depressions by the time they reach central Pennsylvania. Heavy rain and flooding produced by a hurricane, tropical storm, or tropical depression will have the greatest impact on the County. Extreme temperatures can be devastating to any area. Extreme heat can cause sunburn, heat cramps, heat exhaustion, and heat/sun stroke. Likewise, extreme cold can cause hypothermia and frost bite. History Juniata County, as well as the entire Commonwealth, is vulnerable to a wide range of natural disasters. Typically, these disasters are caused by severe weather. A summary of disaster declarations from severe weather that affected Juniata County can be seen below. Disaster Declarations
    [Show full text]
  • Cold Wave/Ice Storms
    Cold Wave/Ice Storms ce storms can occur from early fall to late spring depending on the geographic I location. Winter storms can bring heavy snow, wind, freezing rain, ice, and severe cold waves. Temperatures can drop dramatically during a storm and cause serious damage to roadways, personal property, and community services. How it Might Impact Your Utility Service • Loss of power due to downed trees, downed utility poles, and towers. • Loss of communication infrastructure. • Loss of heat. • Damage to water mains and pipes. • Damage to residential and commercial utility lines. • Restricted access to facilities due to debris, snow, and ice resulting in service restoration delays. • Extended cold weather can cause lakes and rivers to freeze. A rise in the water level or thawing afterward can break the ice into large sections that become jammed. -GINEQWGEREGXEWEHEQVIWYPXMRKMRWIZIVIƽSSHMRKERHHIWXVYGXMSRSJLSQIW roadways, and personal property. ALERTS The National Weather Service (NWS) within Automated Weather Alerts: With CivicReady the National Oceanic and Atmospheric %YXSQEXIH;IEXLIV%PIVXWRSXMƼGEXMSRWEVI %HQMRMWXVEXMSR 23%% MWWYIWƼVI[IEXLIV automatically dispersed as soon as an alert watch notices. Wireless Emergency Alerts is activated by the National Weather Service. (WEA): WEAs, made available through the Integrated Public Alert and Warning System Nixle: Almost every city sends out Nixle (IPAWS) infrastructure, are just one of the alerts. They range from simple alerts about [E]WTYFPMGWEJIX]SƾGMEPWGERUYMGOP]ERH crimes and community notices to major effectively alert and warn the public about alerts regarding disasters. It is a good idea serious emergencies. To ensure your device to sign up for all applicable alerts in your is WEA-capable, check with your service area.
    [Show full text]
  • Storm Data and Unusual Weather Phenomena ....…….…....………..……
    FEBRUARY 2003 VOLUME 45 NUMBER 2 SSTORMTORM DDATAATA AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION noaa NATIONAL ENVIRONMENTAL SATELLITE, DATA AND INFORMATION SERVICE NATIONAL CLIMATIC DATA CENTER, ASHEVILLE, NC Cover: A complex storm system brought wintery weather across northern Virginia between February 14 and 18th. Nicknamed the “President’s Weekend Snowstorm of 2003”, this storm is listed as the 5th heaviest snowstorm in Washington D.C. since 1870. A total of 16.7 inches of snow and sleet was recorded at Reagan National Airport. Pictured is a wintery scene from Leesburg, VA where snow amounts ranged from 20 to 36 inches. (Photo courtesy: Jim DeCarufel, NWS Forecast Offi ce Baltimore/Washington.) TABLE OF CONTENTS Page Outstanding Storm of the Month …..…………….….........……..…………..…….…..…..... 4 Storm Data and Unusual Weather Phenomena ....…….…....………..……...........…............ 5 Reference Notes .............……...........................……….........…..……............................................. 154 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: William Angel Assistant Editors: Stuart Hinson and Rhonda Mooring STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events re- sulting in deaths, injuries, and damage are compiled by the National Climatic Data Center and the National Weather Service’s (NWS) Storm Prediction Center. STORM DATA contains all confi rmed information on storms available to our staff at the time of publication. Late reports and corrections will be printed in each edition.
    [Show full text]