Trees and Ice Storms The

Total Page:16

File Type:pdf, Size:1020Kb

Trees and Ice Storms The TREES AND ICE STORMS THE DEVELOPMENT OF ICE STORM– RESISTANT URBAN TREE POPULATIONS 15 Contents Summary .............................. 2 Introduction ......................... 3 Historical Accounts .............. 5 Tree Features Influencing Ice Storm Susceptibility ........ 6 Tree Features Influencing Ice Storm Resistance ............. 7 Ice Storm Damage in Wooded Areas ....................... 8 Ice Storm Damage Manage- ment and Prevention ............ 9 References ........................... 12 Richard J. Hauer, Mary C. Hruska, and Jeffrey O. Dawson. 1994. Trees and ice storms: The development of ice storm–resistant urban tree populations. Special Publication 94-1, Department of Forestry, University of Illinois at Urbana- Champaign. Urbana, IL 61801. 12pp. Funding for this publication was provided by the technology transfer program of the USDA Forest Service Urban Forestry Center for the Midwestern States. Graphic Designer: Lynn Hawkinson Smith Illustrator: M.R. Greenberg Technical Editor: Molly Bentsen Photo credits: Cover—Reprinted with permission of Joel Dexter; pages 2, 5, 6, 7, 10, 11—Michael R. Jeffords; page 4—(l. to r.) Mary Hruska, Joel Dexter, Michael Brunk, Jim Skiera; pages 8, 9, 12—Lynn Hawkinson Smith 1 The authors gratefully thank Robert Brush, Gina Childs, Robert Miller, and George Ware for their constructive reviews and comments. SUMMARY evere ice storms occur every year in the United States, particularly in the midwestern and eastern regions, result- ing in millions of dollars in monetary losses. Tree species S vary in their resistance to ice accumulation. Certain charac- teristics, such as “included” bark, dead and decaying branches, a broad crown, and fine branching, increase a tree’s susceptibility to ice storm damage. Planting trees resistant to ice storms and performing regular tree mainte- nance to remove structural weaknesses will reduce damage caused by severe ice storms. Management plans for urban trees should incorporate information on the ice storm sus- ceptibility of trees to limit potential ice damage, to reduce hazards resulting from ice damage, and to restore urban tree populations following ice storms. Susceptibility ratings of species commonly planted in urban areas are presented for use in developing and maintaining healthy urban tree populations. 2 Cloud air temperature 35°F 30°F 25°F Cumulus Warm air Stratus Cold air Ordinary Subcooled rain Sleet Snow pellets Snow- Snow Forms of precipitation rain (forms glaze) (frozen rain) (graupel) flakes crystals Figure 1. Forms of INTRODUCTION precipitation that result when a winter warm front slowly advances into ce storms, also referred to as patterns. Ice accumulates when ground layer air at or glaze storms, cause considerable supercooled rain freezes on con- below 0oC and the relationship to cloud air damage every year to trees in tact with surfaces, such as tree temperature (from Lemon, urban and natural areas. They branches, that are at or below 1961). vary considerably in their the freezing point (0oC). This severity and frequency. generally occurs when a winter Figure 2. Ice-loading districtsI in Ice storms are a result of the warm front passes through an the United States for ice ice formation process, which is area after the ground-level accumulation on surfaces (from influenced by general weather temperature reaches or falls National Bureau of Standards, 1948). below freezing (Figure 1). Rain falls through layers of cooler air without freezing, becoming supercooled. Periodically, other climatic events, including stationary, occluded, and cold fronts, also result in ice storms. Conditions that result in ice storms are most prevalent in the midwestern and eastern parts of the United States, as illustrated Loading district Alaska–heavy by the ice-loading districts Hawaii–light Heavy Medium Light 0.50 0.25 0 shown in Figure 2. Radial thickness of ice (in.) 3 Accumulations of ice can potential for damage from ice increase the branch weight of accumulation. trees by 30 times or more. Ice Monetary losses to trees and formation generally ranges from other property can be extensive a trace to 1 inch in additional after an ice storm. In 1990, stem diameter. Accumulations more than a million dollars in between 1/4 and 1/2 inch can damage to parkway trees alone cause small branches and weak occurred as a result of a severe limbs to break, while 1/2-inch ice storm in Urbana, Illinois. to 1-inch accumulations can According to records of the U.S. cause larger branches to break, Federal Emergency Manage- resulting in extensive tree ment Agency, a severe ice storm damage. Branch failure occurs in 1991 in Rochester, Minne- when loading from the weight sota, caused $16.5 million of ice exceeds wood resistance or worth of property damage. In when constant loading further the same year, a widespread ice stresses a weakened area in a storm in Indiana caused $26.8 branch (Figure 3). Strong winds million in property damage. substantially increase the Figure 3. Included bark and woody decay enhance branch breakage and tree damage when ice 4 accumulates on trees (photo by Jim Skiera). HISTORICAL ACCOUNTS n one of the earliest document- of a thunderstorm. Pedestrians ed accounts of an ice storm in kept to the middle of the the United States, Harshberger thoroughfares and many people (1904) reported that there were remained indoors rather than two exceptionally destructive ice risk the uncertainties of the storms around Philadelphia in public streets.” He also reported The air was 1902. One storm was accompa- that where trees had stood close I nied by high winds and did together, streets became com- filled for hours irreparable damage to numerous pletely blocked and passageways with the rifle fruit, forest, and shade trees. had to be chopped out with The other deposited more ice, axes. Abell (1934) reported that report of snap- but because of the lack of wind forests of the southern Appala- ping branches there was less damage. Twelve chian area had been repeatedly years later in eastern Pennsylva- damaged by ice storms. Refer- followed by the nia and western New Jersey, an ring to a storm in western North crash of ice- area of approximately 600 Carolina in 1932, he quoted a square miles was damaged by an mountaineer to have said, “By laden branches ice storm (Illick, 1916). Actual two o’clock Sunday morning smashing to the counts of damaged trees indi- there was no sleeping at all for cated that 90 percent of the the noise of breaking timber.” ground. forest trees either had their More recently, on Valentine’s crowns broken off entirely or Day 1990, a severe ice storm in were damaged so badly that only Urbana, Illinois, damaged at stubs of branches remained. least 26 percent of the city’s Viewed from a distance, the parkway trees (Hauer et al., forests resembled broken masts. 1993). About 5 percent were Reporting on a severe storm severely damaged and required in southern Wisconsin, Rogers immediate removal or repair. (1924) wrote that “great tree The air was filled for hours with branches ripped from their the rifle report of snapping moorings with startling sudden- branches followed by the crash ness came hurtling downward of ice-laden branches smashing through the air to strike the to the ground. Most of the city ground with such force that the was without power, for as long sounds at times resembled those as eight days. 5 The wood strength of sound branches matters less than the ability of a tree to withstand TREE FEATURES INFLUENCING ICE STORM SUSCEPTIBILITY breakage at branch junctures. number of characteristics breakage under ice-loading con- increase a tree species’ suscepti- ditions. For example, ‘Bradford’ bility to ice storms: “included” pear branches often break bark, decaying or dead branches, during ice storms where there is increased surface area of lateral included bark in branch junc- branches, broad crowns, and tures. In contrast, the ‘Aristocrat’ imbalanced crowns (Figure 4). pear has few branches with A Included bark (inset) results included bark and sustains less from in-grown bark in branch damage during ice storms. junctures. This weak connection Decaying or dead branches enhances a tree’s susceptibility to are already weakened and have a Broad crown high probability of breaking Dead and decaying branches when loaded with ice. The surface area of lateral branches increases as the number of branches and the broadness of the crown increase. With an increased surface area, more ice can accumulate on lateral branches; the greater ice load results in greater branch failure. Contrary to popular belief, the wood strength of sound branches matters less than the ability of a tree to withstand breakage at branch junctures and the presence of fine branch- ing or a broad crown that Broken branch enhances ice accumulation. Fine branching Figure 4. Characteristics that increase a tree’s susceptibility Included bark to damage from ice storms. 6 Many broad-leafed tree species, Examples include Siberian elm, when grown in the open, form American elm, hackberry, green broad crowns (decurrent ash, and honey locust. Trees branching), increasing their with imbalanced crowns are also susceptibility to ice storms. more susceptible to ice damage. TREE FEATURES INFLUENCING ICE STORM RESISTANCE uvenile and mature trees that excurrent branching pattern. have excurrent (conical) branch- Some tree species that typically ing patterns, strong branch exhibit a decurrent branching attachments, and low surface pattern have clones with an area of lateral branches are excurrent form, which should generally resistant to ice storms have greater resistance to ice (Figure 5). Many conifers have storm damage. Tree species with J an excurrent branching pattern, strong branch attachments have and many resist greater resistance to breakage Narrow crown ice storm damage. than those with included bark. Some tree species, Trees with coarse branching Coarse branching such as sweet patterns (fewer, thicker gum, have an branches) and, as a conse- excurrent growth quence, lateral branches with habit when young reduced surface area, such as but develop a Kentucky coffee tree, black decurrent growth walnut, and ginkgo, accumulate habit later in life.
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • February 2021: Extreme Cold, Snow, and Ice in the South Central U.S
    NASA/NOAA NASA/NOAA FEBRUARY 2021: EXTREME COLD,SNOW, AND ICE IN THE SOUTH CENTRAL U.S. APRIL 2021 | DARRIAN BERTRAND AND SIMONE SPEIZER SUGGESTED CITATION Bertrand, D. and S. Speizer, 2021: February 2021: Extreme Cold, Snow, and Ice in the South Central U.S. Southern Climate Impacts Planning Program, 30 pp. http://www.southernclimate.org/documents/Feb2021ExtremeCold.pdf. TABLE OF CONTENTS 1 2 6 INTRODUCTION WEATHER RECORDS & PATTERN CLIMATOLOGY 15 19 ENERGY WATER 10 15 19 20 HEALTH INFRASTRUCTURE COMPARISON IMPACTS TO HISTORIC 21 22 EVENTS ECONOMY ENVIRONMENT 23 SOCIETY 24 25 26 LOCAL HAZARD SUMMARY REFERENCES MITIGATION SUCCESSES PAGE | 01 INTRODUCTION INTRODUCTION February 2021’s weather was a wild ride for many across the U.S. Many records were broken from a strong arctic blast of cold air that extended south of the Mexico border, and wintry precipitation covered much of the country. While the extent of the winter storm traversed coast to coast, this summary will cover the Southern Climate Impacts Planning Program (SCIPP) region of Oklahoma, Texas, Arkansas, and Louisiana (Fig. 1). We'll be diving into the weather pattern, records, the Figure 1. SCIPP Region context of this event relative to climatology, past historic events, impacts, and hazard mitigation successes. EVENTHIGHLIGHTS Extreme Cold Temperature and Snow: Nearly 3,000 long-term temperature records were broken/tied in February in the SCIPP region. All 120 OK Mesonet stations were below 0°F at the same time for the first time. Some areas were below freezing for nearly 2 weeks. This was the coldest event in the region in over 30 years.
    [Show full text]
  • Climate Change Futures Health, Ecological and Economic Dimensions
    Climate Change Futures Health, Ecological and Economic Dimensions A Project of: The Center for Health and the Global Environment Harvard Medical School Sponsored by: Swiss Re United Nations Development Programme IntroNew.qxd 9/27/06 12:40 PM Page 1 CLIMATE CHANGE FUTURES Health, Ecological and Economic Dimensions A Project of: The Center for Health and the Global Environment Harvard Medical School Sponsored by: Swiss Re United Nations Development Programme IntroNew.qxd 9/27/06 12:40 PM Page 2 Published by: The Center for Health and the Global Environment Harvard Medical School With support from: Swiss Re United Nations Development Programme Edited by: Paul R. Epstein and Evan Mills Contributing editors: Kathleen Frith, Eugene Linden, Brian Thomas and Robert Weireter Graphics: Emily Huhn and Rebecca Lincoln Art Directors/Design: Evelyn Pandozi and Juan Pertuz Contributing authors: Pamela Anderson, John Brownstein, Ulisses Confalonieri, Douglas Causey, Nathan Chan, Kristie L. Ebi, Jonathan H. Epstein, J. Scott Greene, Ray Hayes, Eileen Hofmann, Laurence S. Kalkstein, Tord Kjellstrom, Rebecca Lincoln, Anthony J. McMichael, Charles McNeill, David Mills, Avaleigh Milne, Alan D. Perrin, Geetha Ranmuthugala, Christine Rogers, Cynthia Rosenzweig, Colin L. Soskolne, Gary Tabor, Marta Vicarelli, X.B. Yang Reviewers: Frank Ackerman, Adrienne Atwell, Tim Barnett, Virginia Burkett, Colin Butler, Eric Chivian, Richard Clapp, Stephen K. Dishart, Tee L. Guidotti, Elisabet Lindgren, James J. McCarthy, Ivo Menzinger, Richard Murray, David Pimentel, Jan von Overbeck, R.K. Pachauri, Claire L. Parkinson, Kilaparti Ramakrishna, Walter V. Reid, David Rind, Earl Saxon, Ellen-Mosley Thompson, Robert Unsworth, Christopher Walker Additional contributors to the CCF project: Juan Almendares, Peter Bridgewater, Diarmid Campbell-Lendrum, Manuel Cesario, Michael B.
    [Show full text]
  • 2018 Hazard Mitigation Plan Update – Woonsocket, Ri
    2018 HAZARD MITIGATION PLAN UPDATE – WOONSOCKET, RI 2018 Hazard Mitigation Plan Update City of Woonsocket, Rhode Island PREPARED FOR City of Woonsocket, RI City Hall 169 Main Street Woonsocket, RI 02895 401-762-6400 PREPARED BY 1 Cedar Street Suite 400 Providence, RI 02908 401.272.8100 JUNE/JULY 2018 2018 Hazard Mitigation Plan Update – Woonsocket, RI This Page Intentionally Left Blank. Table of Contents Executive Summary ........................................................................................................................................... 1 Introduction ........................................................................................................................................................ 2 Plan Purpose .................................................................................................................................................................................. 2 Hazard Mitigation and Benefits .............................................................................................................................................. 2 Goals.................................................................................................................................................................................................. 4 Background .................................................................................................................................................................................... 5 History .................................................................................................................................................................................
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Severe Weather
    Juniata County Appendix C Multi-Jurisdictional Hazard Mitigation Plan Hazard Profiles Severe Weather General Severe weather affects the entire Commonwealth and can be expected any time of the year. Severe weather for Juniata County is considered to include: blizzards and/or heavy snowfall, heavy fog, hail, heavy precipitation (rain), high winds, ice storms, unseasonable temperature extremes, hurricanes, and severe thunderstorms. (Tornados will be discussed in a separate profile.) Snowstorms occur approximately five times per year. These storms are more prevalent in the northern and western regions of Pennsylvania and include ice and high wind. They are frequently seen in Juniata County. Hurricanes, tropical storms, and windstorms occur in Juniata County in the spring and summer. Most hurricanes that approach Juniata County are downgraded to tropical storms or tropical depressions by the time they reach central Pennsylvania. Heavy rain and flooding produced by a hurricane, tropical storm, or tropical depression will have the greatest impact on the County. Extreme temperatures can be devastating to any area. Extreme heat can cause sunburn, heat cramps, heat exhaustion, and heat/sun stroke. Likewise, extreme cold can cause hypothermia and frost bite. History Juniata County, as well as the entire Commonwealth, is vulnerable to a wide range of natural disasters. Typically, these disasters are caused by severe weather. A summary of disaster declarations from severe weather that affected Juniata County can be seen below. Disaster Declarations
    [Show full text]
  • Cold Wave/Ice Storms
    Cold Wave/Ice Storms ce storms can occur from early fall to late spring depending on the geographic I location. Winter storms can bring heavy snow, wind, freezing rain, ice, and severe cold waves. Temperatures can drop dramatically during a storm and cause serious damage to roadways, personal property, and community services. How it Might Impact Your Utility Service • Loss of power due to downed trees, downed utility poles, and towers. • Loss of communication infrastructure. • Loss of heat. • Damage to water mains and pipes. • Damage to residential and commercial utility lines. • Restricted access to facilities due to debris, snow, and ice resulting in service restoration delays. • Extended cold weather can cause lakes and rivers to freeze. A rise in the water level or thawing afterward can break the ice into large sections that become jammed. -GINEQWGEREGXEWEHEQVIWYPXMRKMRWIZIVIƽSSHMRKERHHIWXVYGXMSRSJLSQIW roadways, and personal property. ALERTS The National Weather Service (NWS) within Automated Weather Alerts: With CivicReady the National Oceanic and Atmospheric %YXSQEXIH;IEXLIV%PIVXWRSXMƼGEXMSRWEVI %HQMRMWXVEXMSR 23%% MWWYIWƼVI[IEXLIV automatically dispersed as soon as an alert watch notices. Wireless Emergency Alerts is activated by the National Weather Service. (WEA): WEAs, made available through the Integrated Public Alert and Warning System Nixle: Almost every city sends out Nixle (IPAWS) infrastructure, are just one of the alerts. They range from simple alerts about [E]WTYFPMGWEJIX]SƾGMEPWGERUYMGOP]ERH crimes and community notices to major effectively alert and warn the public about alerts regarding disasters. It is a good idea serious emergencies. To ensure your device to sign up for all applicable alerts in your is WEA-capable, check with your service area.
    [Show full text]
  • Storm Data and Unusual Weather Phenomena ....…….…....………..……
    FEBRUARY 2003 VOLUME 45 NUMBER 2 SSTORMTORM DDATAATA AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION noaa NATIONAL ENVIRONMENTAL SATELLITE, DATA AND INFORMATION SERVICE NATIONAL CLIMATIC DATA CENTER, ASHEVILLE, NC Cover: A complex storm system brought wintery weather across northern Virginia between February 14 and 18th. Nicknamed the “President’s Weekend Snowstorm of 2003”, this storm is listed as the 5th heaviest snowstorm in Washington D.C. since 1870. A total of 16.7 inches of snow and sleet was recorded at Reagan National Airport. Pictured is a wintery scene from Leesburg, VA where snow amounts ranged from 20 to 36 inches. (Photo courtesy: Jim DeCarufel, NWS Forecast Offi ce Baltimore/Washington.) TABLE OF CONTENTS Page Outstanding Storm of the Month …..…………….….........……..…………..…….…..…..... 4 Storm Data and Unusual Weather Phenomena ....…….…....………..……...........…............ 5 Reference Notes .............……...........................……….........…..……............................................. 154 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: William Angel Assistant Editors: Stuart Hinson and Rhonda Mooring STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events re- sulting in deaths, injuries, and damage are compiled by the National Climatic Data Center and the National Weather Service’s (NWS) Storm Prediction Center. STORM DATA contains all confi rmed information on storms available to our staff at the time of publication. Late reports and corrections will be printed in each edition.
    [Show full text]
  • Winter Weather Terminology
    Winter Weather Terminology Watch is issued when the risk of a hazardous winter weather event has increased, but its occurrence, location, and/or timing is still uncertain. Warning or Advisory is issued when a hazardous winter weather event is occurring, is imminent, or has a high probability of occurrence. A warning is used when there is a threat to life or property. An advisory is for less serious conditions that cause inconvenience, and, if caution is not used, could lead to situations that may threaten life or property. Snow criteria for a warning is 6 inches or more in 12 hours or less, OR, 8 inches or more in 24 hours or less. Snow criteria for an advisory is 3 to 5 inches. Winter Storm Warnings and Winter Weather Advisories may be issued for a combination of elements like snow coupled with wind and blowing snow, or snow coupled with sleet and freezing rain. Sleet is pellets of ice. Sleet bounces when it hits the ground. Freezing Rain is rain that freezes when it hits the ground or objects on the ground. It forms a sheet or glaze of ice. Ice Storm is used to describe occasions when the ice from freezing rain is significant enough (1/4 inch thick or more) to cause damage. Blizzard is a storm with winds of 35 mph or higher AND visibility frequently below 1/4 mile in snow and/or blowing snow AND these conditions last three (3) hours or longer. There is no set temperature requirement for a blizzard. Wind Chill is that part of the cooling of a human body caused by moving air.
    [Show full text]
  • Are You Winter Weather Ready? Notable Ice Storms
    Winter is Here! Are you Winter Weather Ready? Although NOAA and the National Weather Service define winter as the months of December, January and February, winter in eastern New York and western New England often runs from November through April, especially in the higher terrain. November and early December is known as the “Brown Season” as the vegetation has gone into the dormant stage. By mid-December, the threat of heavy lake effect snow and heavy snow from powerful nor’easters increases. The threat of significant ice storms also increases across the region with significant ice storms recorded from November through April. Periods of extreme cold and windy conditions and the threat of winter storms continue through the winter into spring. The following is a list of notable winter storms with some links for reference. This is not meant to be an all- inclusive list, but a list to give an idea of what weather conditions to be prepared for in the winter so you can be winter weather ready. Notable Ice Storms: December 11-12, 2008 Up to an inch of ice accretion in the Albany Forecast Area. Widespread power outages from downed trees and wires in New York, Vermont, Massachusetts and Connecticut. In the Albany Forecast Area, over 200,000 customers lost power with some residents without power for 5 to 7 days. Lots of basement flooding from sump pump backup-battery failure during prolonged power outages. Storm produced moderate river flooding from heavy rain and power outages from glaze breaking trees and wires at the same time in Litchfield County, CT.
    [Show full text]
  • Ice Storm Learning Module
    Ice Storm Learning Module In the United States there are over 1.4 million car accidents each year that occur due to freezing precipitation. From these accidents, there are over 600,000 injuries and 7,000 deaths. Freezing precipitation is responsible for about 20% of all weather- related fatalities, and thus it is abundantly clear why we must learn how freezing rain forms in winter low pressure systems 1. Our goal in this learning module is to first uncover the meteorology of ice storms and then discuss winter storm safety. Figure 1. Images from an ice storm in Arkansas in 2009. Source Introduction The National Weather Service will issue a freezing rain warning on the forecast of at least ¼ inch accumulation of ice. Aside from making automobile travel treacherous, ice is extremely heavy when it accumulates on trees and power lines. In fact, a ½” coating of ice on a single, standard length (300 ft) power line in a residential area can add nearly 300 lbs of weight. Put an inch of ice on the same power line and you will add 800 lbs! It is easy to see why the power lines are down in the images in Figure 1. As an interesting side note, at the University of Illinois all power lines are buried beneath the ground to protect the university’s power infrastructure in the event of a major ice storm. Before we dig into the meteorology behind an ice storm, let’s take a few minutes to learn some important facts about ice. 1. Liquid water is more dense than ice.
    [Show full text]
  • Wicksteed - Naturally
    Storm Modular Play System Age range 6 to adult Wicksteed - Naturally 37 Storm Modular Play System Age range 6 to adult Ice Storm Sandstorm The Storm modular multi-play system Product code 801-ICES Product code 801-SAND is designed for agile youngsters or those towards the higher age range. Storm is extra challenging, with 13 Play Features 5 Play Features features that stretch even the fittest of • Two High Towers Low Tower with Roof children, putting their physical skills to • the test. • Low Tower with Roof • Centipede Climber • Three Lookout Barriers • Low Double Arch Pole Slide Deck heights: 1110mm and • Two High Climbing Walls Lookout Barrier 1665mm • • Low Open Slide • Low Climbing Wall • High Bannister Slide Log Access Climber • 2642mm 3585mm • Mini Inclined Scoop Link 10279mm 1183mm • Trapeze Crossing Wet Pour Safety Surfacing 2.6m FFH: 16m2 x 100mm 2.2m FFH: 15m2 x 80mm 1.2m FFH: 24m2 x 40mm Wet Pour Safety Surfacing 2.0m FFH: 13m2 x 70mm 1.2m FFH: 11m2 x 40mm 38 2139 Storm Modular Play System Age range 6 to adult Firestorm Product code 801-FIRE 17 Play Features • High Tower • Three Low Towers • Two Lookout Barriers • Three Semi-Scoop Barriers • Scoop Access Climber • Max Wave Link • High Climbing Wall • Mini Inclined Scoop Link • Net Link • Log Access Climber • Low Open Slide • Low Climbing Wall 6500mm Wet Pour Safety Surfacing 2 5326mm 2.6m FFH: 16m x 100mm 1.2m FFH: 37m2 x 40mm Whirlwind Product code 801-WHIR 9 Play Features • High Tower • Low Tower • Two Semi-Scoop Barriers • Lookout Barrier • High Arch Pole Slide • Max Wave
    [Show full text]