Survey of Renewable Chemicals Produced from Lignocellulosic

Total Page:16

File Type:pdf, Size:1020Kb

Survey of Renewable Chemicals Produced from Lignocellulosic Varanasi et al. Biotechnology for Biofuels 2013, 6:14 http://www.biotechnologyforbiofuels.com/content/6/1/14 RESEARCH Open Access Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment Patanjali Varanasi1,2, Priyanka Singh1, Manfred Auer1, Paul D Adams1, Blake A Simmons1,2 and Seema Singh1,2* Abstract Background: Lignin is often overlooked in the valorization of lignocellulosic biomass, but lignin-based materials and chemicals represent potential value-added products for biorefineries that could significantly improve the economics of a biorefinery. Fluctuating crude oil prices and changing fuel specifications are some of the driving factors to develop new technologies that could be used to convert polymeric lignin into low molecular weight lignin and or monomeric aromatic feedstocks to assist in the displacement of the current products associated with the conversion of a whole barrel of oil. We present an approach to produce these chemicals based on the selective breakdown of lignin during ionic liquid pretreatment. Results: The lignin breakdown products generated are found to be dependent on the starting biomass, and significant levels were generated on dissolution at 160°C for 6 hrs. Guaiacol was produced on dissolution of biomass and technical lignins. Vanillin was produced on dissolution of kraft lignin and eucalytpus. Syringol and allyl guaiacol were the major products observed on dissolution of switchgrass and pine, respectively, whereas syringol and allyl syringol were obtained by dissolution of eucalyptus. Furthermore, it was observed that different lignin-derived products could be generated by tuning the process conditions. Conclusions: We have developed an ionic liquid based process that depolymerizes lignin and converts the low molecular weight lignin fractions into a variety of renewable chemicals from biomass. The generated chemicals (phenols, guaiacols, syringols, eugenol, catechols), their oxidized products (vanillin, vanillic acid, syringaldehyde) and their easily derivatized hydrocarbons (benzene, toluene, xylene, styrene, biphenyls and cyclohexane) already have relatively high market value as commodity and specialty chemicals, green building materials, nylons, and resins. Keywords: Lignin valorization, Ionic liquid pretreatment, Renewable chemicals, Biofuels Background phenylpropanoid-based biopolymer, and provides mech- Lignocellulosic biomass is primarily composed of three anical support and water transport to the plant and inhi- biopolymers: cellulose, hemicelluloses and lignin [1]. bits the action of various biological agents (e.g., insects) Holocellulosic biopolymers are considered the most on the plants [6]. It is estimated that 50 million tons of lig- valuable components of lignocellulose and are utilized nin is produced annually from pulp and paper industries for the production of various products including paper worldwide [7]. The high energy content of lignin, the pres- and biofuels [2-4]. Lignin constitutes roughly a third of ence of highly reactive groups, and the fact that it will be the biomass and is typically burned to produce waste heat generated in large quantities as second generation biorefi- and/or electricity within paper mills and biorefineries neries are deployed represents a significant opportunity [1,5]. Lignin is a naturally occurring heterogeneous for the production of a wide range of renewable chemicals and materials that can be sold as co-products (Figure 1). * Correspondence: [email protected] For example, lignin sulfonates produced from kraft 1Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley pulping are currently utilized as phenol-formaldehyde National Laboratory, Emeryville, CA, USA 2Sandia National Laboratories, Biological and Materials Science Center, plastics, binders, adhesives, mud-sand cements in dril- Livermore, CA, USA ling oil-wells, dispersants, or flotation agents, emulsifiers © 2013 Varanasi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Varanasi et al. Biotechnology for Biofuels 2013, 6:14 Page 2 of 9 http://www.biotechnologyforbiofuels.com/content/6/1/14 Figure 1 Schematic depiction of the different routes to convert lignin into renewable materials and chemicals. and stabilizers, grinding agents, electrolytic refining like benzene, phenol, guaiacol, vanillic acid, methanol, agents, protein precipitants, tanning agents, sequestering acetic acid, and dimethyl sulfoxide (DMSO) [17,18]. These agents, storage battery plates, lime plaster, crystal growth lignin products are considered “value-added” chemicals inhibitor, ingot mold wash and as flame retardants [8,9]. (Figure 2) that could substantially impact the profit mar- Starch-based films incorporated with lignin have higher gins of a lignocellulosic biorefinery, but significant hurdles water resistance and increased elongation that make remain before they can be fully realized. One of the most them effective packaging materials [10]. Lignin is also used significant of these is the realization of an efficient, cost- in the production of conducting polymer lignosulfonic effective, and scalable means of fractionating lignocellu- acid-doped polyamine [11]. Carbon fibers produced from lose into polysaccharide- and lignin-rich streams that lignin based materials require a lower amount of thermo- enable downstream conversion into fuels and chemicals. stabilization and possess high tensile strength [12]. Lignin Recently, some ionic liquids (ILs) have been shown to be has been used to produce various polymers like very effective in the delignification of lignocellulosic ARBOFORM, polyesters and polyurethanes and various biomass and depolymerization of lignin [19-23]. While polymer blends with PVC, polyolefins, and rubbers are much of the focus on ILs in the biomass field has been on being currently developed [13-15]. Lignin has also been their impact on the crystalline nature of cellulose, little at- used as slow release nitrogenous fertilizers for soil and tention has been paid in their potential utility as a means catalyst for the Kraft pulping process [10,16]. Due to its to valorize lignin. hydrophobic nature, lignin can be used in the manufac- Recent efforts in converting lignin to its monomeric ture of gypsum wallboards [10]. products using ILs have focused on the technical lignins In addition to these applications, lignin is a potential re- extracted from lignocellulosic biomass [25-27]. Cox and newable source for many low molecular weight chemicals Ekerdt have shown that during IL dissolution, lignin Varanasi et al. Biotechnology for Biofuels 2013, 6:14 Page 3 of 9 http://www.biotechnologyforbiofuels.com/content/6/1/14 Figure 2 Market price vs. demand for lignin-derived products [24]. depolymerization occurs through breakdown of alkyl-aryl pine, and eucalyptus respectively) and technical lignins ether linkages [26]. But no lignin breakdown products were (kraft and low sulfonate alkali) were treated with reported to be observed during this process. Through [C2mim][OAc] at 160 and 120°C for 6 hrs. Since IL and electro-catalytic oxidative cleavage of lignin, Reichert et al. water are both polar, recovery of polar lignin breakdown produced various aromatic compounds like guaiacol, vanilic products posed significant challenges. Our choice of acid, vanillin, acetovanillone, syringol, syringaldehyde, and extraction solvents for non-polar products included syringic acid from alkali lignin [25]. Though a total yield of pentane, hexane, heptane and benzene. Out of the sol- 6% was observed, no information about the relative quan- vents tried, benzene enabled the most recovery and hence tities of each compound was reported. Stark et al. produce we have included the data on benzene extracted products syringaldehyde and 2,6-dimethoxy-1,4-benzoquinone from in this report. Although yields were not the same using oxidative depolymerization of Beech lignin. Although an different solvents, patterns of lignin degradation and re- impressive yield (66.3%) of the products was obtained the covery were similar for all the solvents tested. Table 1 process utilized high pressure (84 × 105 Pa of air) and very shows the percent biomass recovered for various types long reaction times (24 h) [27]. Lignin cleavage to mono- of biomass pretreated at 160°C. For all the conditions mers has also been accomplished using Bacillus sp. LD003 studied there is a loss of mass observed, indicating that by Bandounas et al., but the incubation times for microbial lignin and other biomass constituents remain solubi- degradation were very long (1–2 days) [28]. In this work, lized in the supernatant. At low biomass loading levels, we investigate the ability of the IL 1-ethyl-3-methylimidazo- low sulfonate alkali lignin showed the maximum lium acetate ([C2mim][OAc]) to depolymerize lignin and solubilization, followed with switchgrass. Percent recov- produce valuable products from a series of technical lignins eries were found to be similar for kraft lignin and euca- (kraft lignin, low sulfonate alkali lignin) as well as samples lyptus. Interestingly, at higher loadings, the extent of of switchgrass, pine and eucalyptus during pretreatment. solubilization was found to be very different and the observed extent of solubilization
Recommended publications
  • Lavender- and Lavandin-Distilled Straws: an Untapped Feedstock With
    Lesage‑Meessen et al. Biotechnol Biofuels (2018) 11:217 https://doi.org/10.1186/s13068-018-1218-5 Biotechnology for Biofuels RESEARCH Open Access Lavender‑ and lavandin‑distilled straws: an untapped feedstock with great potential for the production of high‑added value compounds and fungal enzymes Laurence Lesage‑Meessen1, Marine Bou1, Christian Ginies2, Didier Chevret3, David Navarro1, Elodie Drula1,4, Estelle Bonnin5, José C. del Río6, Elise Odinot1, Alexandra Bisotto1, Jean‑Guy Berrin1, Jean‑Claude Sigoillot1, Craig B. Faulds1 and Anne Lomascolo1* Abstract Background: Lavender (Lavandula angustifolia) and lavandin (a sterile hybrid of L. angustifolia L. latifolia) essential oils are among those most commonly used in the world for various industrial purposes, including× perfumes, phar‑ maceuticals and cosmetics. The solid residues from aromatic plant distillation such as lavender- and lavandin-distilled straws are generally considered as wastes, and consequently either left in the felds or burnt. However, lavender- and lavandin-distilled straws are a potentially renewable plant biomass as they are cheap, non-food materials that can be used as raw feedstocks for green chemistry industry. The objective of this work was to assess diferent pathways of valorization of these straws as bio-based platform chemicals and fungal enzymes of interest in biorefnery. Results: Sugar and lignin composition analyses and saccharifcation potential of the straw fractions revealed that these industrial by-products could be suitable for second-generation bioethanol prospective. The solvent extrac‑ tion processes, developed specifcally for these straws, released terpene derivatives (e.g. τ-cadinol, β-caryophyllene), lactones (e.g. coumarin, herniarin) and phenolic compounds of industrial interest, including rosmarinic acid which contributed to the high antioxidant activity of the straw extracts.
    [Show full text]
  • The Analysis of Grapevine Response to Smoke Exposure
    The Analysis of Grapevine Response to Smoke Exposure A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy Lieke van der Hulst BSc, MSc The University of Adelaide School of Agriculture, Food and Wine Thesis submitted for examination: November 2017 Thesis accepted and final submission: January 2018 Table of contents Abstract i Declaration iii Publications iv Symposia v Acknowledgements vii Chapter 1 Literature review and introduction • Literature review and introduction 1 • The occurrence of bushfires and prescribed 2 • Economic impact of bushfires 5 • Smoke derived volatile compounds 6 • Volatile compounds in wine 8 • Glycosylation of volatile phenols in grapes 9 • Previous smoke taint research 11 • Glycosyltransferases 14 • Research aims 18 Chapter 2 Detection and mitigation of smoke taint in the vineyard • Authorship statements 20 • Introduction 22 • Paper: Accumulation of volatile phenol glycoconjugates in grapes, 24 following the application of kaolin and/or smoke to grapevines (Vitis vinifera cv Sauvignon Blanc, Chardonnay and Merlot) • Further investigation into methods for the detection and mitigation of 54 smoke taint in the vineyard Material and Methods 55 Results and discussion part A 57 Results and discussion part B 61 Conclusion 68 Chapter 3 Expression of glycosyltransferases in grapevines following smoke exposure • Authorship statements 71 • Introduction 73 • Paper: Expression profiles of glycosyltransferases in 74 Vitis vinifera following smoke exposure Chapter 4 The effect of smoke exposure to apple • Authorship statements 122 • Introduction 124 • Paper: The effect of smoke exposure to apple (Malus domestica 125 Borkh cv ‘Sundowner’) Chapter 5 Conclusions and future directions • Conclusions 139 • Future directions 142 Appendix • Paper: Impact of bottle aging on smoke-tainted wines from 145 different grape cultivars References 152 Abstract Smoke taint is a fault found in wines made from grapes exposed to bushfire smoke.
    [Show full text]
  • Phenolic Components, Antioxidant Activity, and Mineral Analysis of Capparis Spinosa L
    Vol. 12(47), pp. 6643-6649, 20 November, 2013 DOI: 10.5897/AJB2013.13241 ISSN 1684-5315 ©2013 Academic Journals African Journal of Biotechnology http://www.academicjournals.org/AJB Full Length Research Paper Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L Rezzan Aliyazicioglu1*, Ozan Emre Eyupoglu2, Huseyin Sahin2, Oktay Yildiz3, Nimet Baltas4 1Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, 61080 Trabzon, Turkey. 2Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey. 3Maçka Vocational School, Karadeniz Technical University, 61080 Trabzon, Turkey. 4Department of Chemistry, Faculty of Science, Recep Tayyip Erdoğan University, 53100 Rize, Turkey. Accepted 10 October, 2013 In addition to being consumed as food, caper (Capparis spinosa L.) fruits are also used in folk medicine to treat inflammatory disorders, such as rheumatism. C. spinosa L. is rich in phenolic compounds, making it increasingly popular because of its components’ potential benefits to human health. We analyzed a number of individual phenolic compounds and investigated in vitro biological activities of C. spinosa L. Sixteen phenolic constituents were identified using reverse phase-high performance liquid chromatography (RP-HPLC). Total phenolic compounds (TPCs), ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were used as determinants of antioxidant capacity. C. spinosa L. exhibited strong antioxidant activity and contained high levels of antioxidant compounds. Gentisic, sinapic and benzoic acid were detected in C. spinosa L. No gallic acid, proto-catechuic acid, proto-catechuic aldehyde, chlorogenic acid, p-OH benzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, syringaldehyde, p-coumaric acid, ferulic acid or rosmarinic acid were identified.
    [Show full text]
  • CPY Document
    3. eHEMieAL eOMPOSITION OF ALeOHOLie BEVERAGES, ADDITIVES AND eONTAMINANTS 3.1 General aspects Ethanol and water are the main components of most alcoholIc beverages, although in some very sweet liqueurs the sugar content can be higher than the ethanol content. Ethanol (CAS Reg. No. 64-17-5) is present in alcoholic beverages as a consequence of the fermentation of carbohydrates with yeast. It can also be manufactured from ethylene obtained from cracked petroleum hydrocarbons. The a1coholic beverage industry has generally agreed not to use synthetic ethanol manufactured from ethylene for the production of alcoholic beverages, due to the presence of impurities. ln order to determine whether synthetic ethanol has been used to fortify products, the low 14C content of synthetic ethanol, as compared to fermentation ethanol produced from carbohydrates, can be used as a marker in control analyses (McWeeny & Bates, 1980). Some physical and chemical characteristics of anhydrous ethanol are as follows (Windholz, 1983): Description: Clear, colourless liquid Boilng-point: 78.5°C M elting-point: -114.1 °C Density: d¡O 0.789 It is widely used in the laboratory and in industry as a solvent for resins, fats and oils. It also finds use in the manufacture of denatured a1cohol, in pharmaceuticals and cosmetics (lotions, perfumes), as a chemica1 intermediate and as a fuel, either alone or in mixtures with gasolIne. Beer, wine and spirits also contain volatile and nonvolatile flavour compounds. Although the term 'volatile compound' is rather diffuse, most of the compounds that occur in alcoholIc beverages can be grouped according to whether they are distiled with a1cohol and steam, or not.
    [Show full text]
  • The Effects of Combining Guaiacol and Syringol on Their Pyrolysis
    Holzforschung, Vol. 66, pp. 323–330, 2012 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/HF.2011.165 The effects of combining guaiacol and syringol on their pyrolysis Mohd Asmadi, Haruo Kawamoto * and Shiro Saka methods, lignin pyrolysis has been studied based on iso- Graduate School of Energy Science , Kyoto University, lated lignins (Martin et al. 1979 ; Obst 1983 ; Evans et al. Kyoto , Japan 1986 ; Saiz -Jimenez and De Leeuw 1986 ; Faix et al. 1987 ; Genuit et al. 1987 ; Meier and Faix 1992 ; Greenwood et al. * Corresponding author. 2002 ; Hosoya et al. 2007, 2008a,b ; Nakamura et al. 2008 ) Graduate School of Energy Science, Kyoto University, and model compounds (Domburg et al. 1974 ; Bre ž n ý et al. Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan 1983 ; Saiz -Jimenez and De Leeuw 1986 ; Kawamoto et al. Phone/Fax: + 81-75-753-4737 E-mail: [email protected] 2006, 2007, 2008a,b ; Kawamoto and Saka 2007 ; Nakamura et al. 2007, 2008 ; Watanabe et al. 2009 ). Hardwood lignins are known to include both the syringyl (3,5-dimethoxy-4- Abstract hydroxyphenyl)-type (shortly S) and the guaiacyl (4-hydroxy- 3-methoxyphenyl)-type aromatic rings (shortly G), whereas Pyrolysis of guaiacol/syringol mixtures was studied in an softwood lignins contain mainly the G-type units. These dif- ° ferences infl uence the pyrolytic reactivity of hardwoods and ampoule reactor (N 2 /600 C/40 – 600 s) to understand the reactivities of the aromatic nuclei in hardwood lignins. By softwoods (Di Blasi et al. 2001a,b ; Gr ø nli et al.
    [Show full text]
  • Lignin for Sustainable Bioproducts and Biofuels
    Demirel, J Biochem Eng Bioprocess Technol 2017, 1:1 Journal of Biochemical Engineering & Bioprocess Technology Editorial a SciTechnol journal and substituted phenols as opposed to methoxy-phenols [7,8]. Type of Lignin for Sustainable particle size of biomass, pyrolysis temperature, reactor type (fluidized bed, ablative, vacuum, and auger), type of condensers (direct and Bioproducts and Biofuels indirect contact) can affect the composition of bio-oil [2,5]. Water Yaşar Demirel* soluble and organic phases are separated as two main streams out of condenser [9]. After condensing the vapor bio-oil is produced with a yield of up to 65 to 75% on a dry basis. Typical bio-oil consists of Keywords (wt% db, except water) acids (3-7), alcohols (1<), aldehydes, ketones, and furans (22-27), sugars (3-6), phenols (2-6), lignin derived fraction Lignin; Bioproducts; Biofuel; Sustainable energy (15-25), and extractives (4-6) [5]. Feedstocks with high extractives content and/or high ash content commonly produce an aqueous Introduction phase, an upper layer, and a decanted heavy oily phase. Bio-oil can be considered a micro emulsion in which the continuous phase is an To meet the goal of replacing 30% of fossil fuel by biofuels around aqueous solution of holocellulose decomposition products and small 2030, approximately 225 million tons of lignin will soon be produced molecules from lignin decomposition. The continuous liquid phase beside the current production of between 40 and 50 million tons per stabilizes a discontinuous phase that contains of pyrolytic lignin year in the paper and pulp industry in the U.S. Yet only about 2% of the macromolecules [2].
    [Show full text]
  • 191222 191222.Pdf (423.8Kb)
    1 A GC-MS based analytical method for detection of smoke taint associated phenols in 2 smoke affected wines. 3 4 Davinder Pal Singh†*, Ayalsew Zerihun #, David Kelly#, Nicole Marie Cain†, Peter 5 Nankervisŧ and Mark Oliver Downey† 6 † 7 Department of Primary Industries Victoria, Mildura, Victoria, 3502, Australia # 8 Department of Environment and Agriculture, Curtin University, Margaret River 9 Education Campus, Margaret River, WA, 6285, Australia 10 Ŧ Agilent Technologies Australia Pty Ltd, 347, Burwood Highway, Forest Hill 11 Victoria, 3131, Australia 12 13 * Corresponding author: Dr. Davinder Singh, Department of Primary Industries 14 Victoria Mildura Centre, PO Box 905 Mildura, Vic. 3502, Australia. Fax: +61 3 5051 15 4523; email: [email protected] 16 17 Email addresses: [email protected] 18 [email protected] 19 [email protected] 20 [email protected] 21 [email protected] 22 23 [email protected] 24 25 26 1 27 ABSTRACT 28 Guaiacol and 4-methylguaiacol are routinely used as markers to determine extent of 29 smoke impact on winegrapes and wines. However, smoke contains a complex group 30 of compounds which may contribute to smoke taint in winegrapes and wine. In this 31 study, a gas chromatography-mass spectrometry (GC-MS) based analytical method 32 was developed and validated for the profiling of various smoke taint compounds in 33 wines made from smoke affected fruit. A total of 22 analytes were separated and 34 identified in the GC-MS chromatogram, all of which were selected to evaluate the 35 samples and precision of the method.
    [Show full text]
  • Survey of Renewable Chemicals Produced from Lignocellulosic Biomass During Ionic Liquid Pretreatment
    Lawrence Berkeley National Laboratory Recent Work Title Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Permalink https://escholarship.org/uc/item/71d9d3rw Journal Biotechnology for biofuels, 6(1) ISSN 1754-6834 Authors Varanasi, Patanjali Singh, Priyanka Auer, Manfred et al. Publication Date 2013-01-28 DOI 10.1186/1754-6834-6-14 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Varanasi et al. Biotechnology for Biofuels 2013, 6:14 http://www.biotechnologyforbiofuels.com/content/6/1/14 RESEARCH Open Access Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment Patanjali Varanasi1,2, Priyanka Singh1, Manfred Auer1, Paul D Adams1, Blake A Simmons1,2 and Seema Singh1,2* Abstract Background: Lignin is often overlooked in the valorization of lignocellulosic biomass, but lignin-based materials and chemicals represent potential value-added products for biorefineries that could significantly improve the economics of a biorefinery. Fluctuating crude oil prices and changing fuel specifications are some of the driving factors to develop new technologies that could be used to convert polymeric lignin into low molecular weight lignin and or monomeric aromatic feedstocks to assist in the displacement of the current products associated with the conversion of a whole barrel of oil. We present an approach to produce these chemicals based on the selective breakdown of lignin during ionic liquid pretreatment. Results: The lignin breakdown products generated are found to be dependent on the starting biomass, and significant levels were generated on dissolution at 160°C for 6 hrs. Guaiacol was produced on dissolution of biomass and technical lignins.
    [Show full text]
  • Evaluation and Products Characterization of Mango Seed Shell and Kernel Conventional Pyrolysis
    EVALUATION AND PRODUCTS CHARACTERIZATION OF MANGO SEED SHELL AND KERNEL CONVENTIONAL PYROLYSIS Thesis By JUAN CAMILO MAHECHA RIVAS Presented in the Engineering Faculty of Universidad de los Andes In fulfillment of the requirements for the Degree of CHEMICAL ENGINEER Approved by: Advisor, Rocio Sierra Ramírez, Ph.D. Chemical Engineering Department Bogotá, Colombia January 2020 Evaluation and products characterization of mango seed shell and kernel conventional pyrolysis Juan C. Mahecha-Rivas Department of Chemical Engineering, University of Los Andes, Bogotá, Colombia GENERAL OBJECTIVE To characterize mango seed’s conventional pyrolysis products at optimal conditions for further valorization SPECIFICS OBJECTIVES - To evaluate the influence of temperature of conventional pyrolysis in bio-oil, biochar and biogas yields - To compare the pyrolysis’s yields from kernel, shell and kernel/shell mixture fed. - To characterize biochar, bio-oil, and biogas from mango seed’s kernel and shell pyrolysis - To determine the feasibility of mango seed bio-oil as a biodiesel precursor or additive i TABLE OF CONTENTS Abstract ................................................................................................................................... 1 1. Introduction .................................................................................................................... 1 2. Methods .......................................................................................................................... 4 2.1. Materials and sample preparation
    [Show full text]
  • Lignin from Bark As a Resource for Aromatics Production by Hydrothermal Liquefaction
    Received: 24 April 2018 | Revised: 25 July 2018 | Accepted: 3 August 2018 DOI: 10.1111/gcbb.12562 ORIGINAL RESEARCH Lignin from bark as a resource for aromatics production by hydrothermal liquefaction Julia Schuler1 | Ursel Hornung1 | Nicolaus Dahmen1 | Jörg Sauer1 Institute for Catalysis Research and Technology, Karlsruhe Institute of Abstract Technology (KIT), Eggenstein‐ Biorefineries, which are using mostly unused side streams of other existing pro- Leopoldshafen, Germany cesses like bark or lignin, have a huge potential to open new resources, for exam- Correspondence ple, chemicals. But with new resources new challenges will be met along the Julia Schuler, Institute for Catalysis way. These challenges must be addressed and discussed to build a solid and far‐ Research and Technology, Karlsruhe sighted process. This work focuses on the formation of monocyclic compounds Institute of Technology (KIT), Eggenstein‐ Leopoldshafen, Germany. like catechol as a valuable product during the hydrothermal liquefaction of beech Email: [email protected] wood bark as well as Kraft lignin from pine wood like Indulin AT. The focus is Funding information to get a better knowledge of the behavior of bark during hydrothermal liquefac- Ministry of Science, Research and the tion for depolymerization aiming at the production of aromatic building blocks Arts of Baden‐Württemberg, Grant/Award for chemicals. Therefore, the influence, for example, of temperature and reaction Number: 200007 time, the chemical reaction pathways, and the therefore necessary analytics need to be understood. Several limitations and challenges of common analytical meth- ods are discussed and compared for bark and Kraft lignin, which is relatively well investigated and can act as a reference material to build a common ground and make it possible to build standards for all bioeconomic processes.
    [Show full text]
  • Redalyc.Determination of Gallic Acid in Commercial Brandies Using High
    Ciencia y Tecnología Alimentaria ISSN: 1135-8122 [email protected] Sociedad Mexicana de Nutrición y Tecnología de Alimentos México Giménez, R.; Villalón, M.; López, H.; Navarro, M.; Cabrera, C.; Olalla, M.; Quesada, J.J.; López, M.C. Determination of gallic acid in commercial brandies using high performance liquid chromatography Ciencia y Tecnología Alimentaria, vol. 3, núm. 1, diciembre, 2000, pp. 13-20 Sociedad Mexicana de Nutrición y Tecnología de Alimentos Reynosa, México Available in: http://www.redalyc.org/articulo.oa?id=72430202 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Cienc. Tecnol. Aliment. Vol. 3, No. 1, pp. 13-20, 2000 Copyright 2000 Asociación de Licenciados en Ciencia y Tecnología de los Alimentos de Galicia (ALTAGA). ISSN 1135-8122 DETERMINATION OF GALLIC ACID IN COMMERCIAL BRANDIES USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY DETERMINACIÓN DE ÁCIDO GÁLICO EN BRANDIES COMERCIALES MEDIANTE CROMATOGRAFÍA LÍQUIDA DE ALTA EFICACIA DETERMINACIÓN DE ÁCIDO GALICO EN BRANDIES COMERCIAIS MEDIANTE CROMATOGRAFÍA LÍQUIDA DE ALTA EFICACIA Giménez, R.*; Villalón, M.; López, H.; Navarro, M.; Cabrera, C.; Olalla, M.; Quesada, J.J.; López, M.C. Departamento de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Granada, Campus Universitario de Cartuja sn. 18012 Granada (España) * Autor para la correspondencia. E-mail: [email protected] Recibido: 10 de Octubre de 2000; recibida versión revisada: 22 de Octubre de 2000; aceptado: 23 de Octubre de 2000 Received: 10 October 2000; revised version received: 22 October 2000; accepted: 23 October 2000 Abstract One of the components presents in oak wood is gallic acid, which brandies extract during their aging process.
    [Show full text]
  • Production of Phenol-Formaldehyde Adhesives from Catalytic Pyrolysis Oil
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2017 Production of Phenol-formaldehyde Adhesives from Catalytic Pyrolysis Oil Angela M. Akude Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biological Engineering Commons Recommended Citation Akude, Angela M., "Production of Phenol-formaldehyde Adhesives from Catalytic Pyrolysis Oil" (2017). All Graduate Theses and Dissertations. 5612. https://digitalcommons.usu.edu/etd/5612 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. PRODUCTION OF PHENOL-FORMALDEHYDE ADHESIVES FROM CATALYTIC PYROLYSIS OIL by Angela M. Akude A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biological Engineering Approved: ______________________ ____________________ Foster Agblevor, Ph.D. Ronald Sims, Ph.D. Major Professor Committee Member ______________________ ____________________ Yujie Sun, Ph.D. Mark McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright © Angela M. Akude 2017 All Rights Reserved iii ABSTRACT Production of Phenol-formaldehyde Adhesives from Catalytic Pyrolysis Oil by Angela M. Akude, Master of Science Utah State University, 2017 Major Professor: Dr. Foster Agblevor Department: Biological Engineering Phenol-formaldehyde adhesives are important adhesives known to have superior water resistance capacity and high mechanical strength when utilized in wood-based applications. Due to unsustainability and environmental issues associated with the use of fossil fuels, there is an urgent need to look for alternative raw materials, which are renewable in nature.
    [Show full text]