Chapter 15 Guided Notes Physical Geography of Russia and The

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 15 Guided Notes Physical Geography of Russia and The __________________________________________________________________________________________ NAME Chapter 15 Guided Notes Physical Geography of Russia and the Republics: A Land of Extremes From the frozen Arctic tundra of Siberia to the deserts of Kazakhstan, size and climate help define Russia and its former republics. Section 1: Landforms and Resources • Flat plains stretch across the western and central areas of the region. In the south and east, the terrain is more mountainous. • Many resources in Russia and the Republics are in hard-to-reach regions with brutal climates. Northern Landforms • Russia and the Republics cover 1/6 of earth’s land surface, three times the land area of U.S., region crosses 11 time zones Northern European Plain West Siberian Plain • Northern European Plain an extensive lowland area, • Ural Mountains—separate Northern European Plain from stretches over 1,000 miles the West Siberian Plains • Plain lies between Urals and Yenisey River • chernozem—world’s most fertile soil, abundant in area Central Siberian Plateau Russian Far East • Central Siberian Plateau between Yenisey and Lena rivers; • East of Lena River is Russian Far East and system of volcanic ranges high plateaus that average 1,000 to 2,000 feet • Kamchatka Peninsula has 120 volcanoes, 20 still active Southern Landforms The Caucasus and Other Mountains • Caucasus Mountains lie between Black Sea and Caspian Sea o border between Russia, Transcaucasia—Armenia, Azerbaijan, Georgia • Central Asia region includes “stan” republics o Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan • Southern border a massive wall of mountains, including the Tian Shan Rivers and Lakes Drainage Basins and Rivers • Ob, Yenisey, and Lena rivers drain over 3 million square miles • Volga River, longest river in Europe (2300 miles), drains Caspian Sea basin; carries 60% of Russia’s river traffic Lakes • Caspian Sea is 750-mile-long (north to south) saltwater lake; largest inland sea in world • Aral Sea, east of Caspian, is also saltwater; has lost 80% of water volume since 1960 due to irrigation Lake Baikal • Deepest lake in world: a mile from surface to bottom at deepest point • 400 miles long, holds 20% of world’s fresh water; very clean lake Regional Resources Abundant Resources Resource Management • Huge reserves of coal, iron ore, other metals • Hard to get at and move resources due to climates, terrain, distances • Region also a leading producer of oil and natural gas o petroleum deposits around Caspian Sea among • many resources are in Siberia—frigid, arctic area of Asia world’s largest • Mining, oil & gas production cause environmental damage • Forests have 1/5 of world’s timber • Hydroelectric plants damage animal/ plant habitats thru: • Large producer of hydroelectric power due to rivers o Damming, discharge of unusually hot water (thermal pollution) Section 2: Climate and Vegetation • Much of Russia and the Republics lie in subarctic and tundra climate zones. • In the region’s southern areas, semiarid and desert climates feature warmer winters and hot summers. A Climate of Extremes Major Climate Regions • Humid continental and subarctic climates dominate region • Distance from sea also creates extreme temperatures o average Siberian temperatures are usually below 50° F; • Continentality—effect the region’s enormous size has on its Siberian temperatures can drop below -90° F climates • Siberians use frozen lakes/rivers as roads for part of year o Distance from sea decreases precipitation; moisture from • Region has permafrost that reaches depths of 1,500 feet Atlantic Ocean is lost further inland • Warmer, semiarid and desert climates in Central Asia • Moist Mediterranean air creates subtropical climate in o southeast mountain wall blocks moist Indian, Pacific Transcaucasia ocean air o region’s health resorts were once tourist destinations Vegetation Regions - The 4 major vegetation regions run east to west in wide strips Tundra Forest • Mostly in Arctic climate zone; only specific vegetation can • South of tundra: taiga—largest forest on earth, mostly survive; mosses, lichen, small herbs, low shrubs coniferous; deciduous trees dominate lower latitudes Steppe Desert • Temperate grassland from southern Ukraine to Altay Mtns. • Wide plains in west and central areas of Central Asia • Highly fertile chernozem soil; region is major source of grain • Two main deserts together cover 230,000 square miles: for Russia and the Republics Kara Kum (Turkmenistan), Kyzyl Kum (Uzbekistan) Section 3: Human-Environment Interaction • The region’s harsh climate has been both an obstacle and an advantage to its inhabitants. The Shrinking Aral Sea A Disappearing Lake • Aral Sea gets water from Amu Darya and Syr Darya rivers • In ’50s, rivers are drawn on to irrigate Central Asian cotton fields; rivers becomes a trickle, sea begins to evaporate The Effects of Agriculture • Pesticides and fertilizers for cotton are picked up by runoff (rainfall not absorbed by soil, runs into streams and rivers) • Retreating sea waters expose fertilizers, pesticides, salt; windstorms blow them onto nearby populations • Substances increase diseases: throat cancer, typhoid, hepatitis; Central Asia child mortality rates are among highest in world Saving the Aral • To maintain present lake level, 9 of 18 million farm acres have to go; would cause great hardship for farmers The Russian Winter Coping in Siberia • 32 million Siberians live with the earth’s most variable temperature • City of Verkhoyansk can be -90° F in winter, 94° F in summer; most of the time it is cold • Warm weather melts ice, forms pools, swamps that become breeding grounds for mosquitoes, black flies • Buildings on permafrost sink and fall when their heat thaws ground; buildings must be set off ground on concrete pillars War and “General Winter” • Harsh climate has helped Russia fight off invaders; In early 1800s, French leader Napoleon Bonaparte conquers Europe • Bonaparte invades Russia from Poland in 1812; arrives in Moscow in September, as winter begins • Muscovites burn the city leaving no shelter; Napoleon retreats; cold helps doom 90% of his 100,000 men Crossing the “Wild East” -- The Trans-Siberian Railroad • In late 1800s, Siberia is like U.S. “Wild West”; travel is dangerous, slow • Emperor orders 5,700-mile Trans-Siberian Railroad built; links Moscow to Pacific port of Vladivostok An Enormous Project • From 1891 to 1903, 70,000 workers move 77 million cubic feet of earth, clear 100,000 acres of forest; bridge many rivers Resource Wealth in Siberia • Railroad helps populate area so resources can yield profit • In first 10 years, 5 million people use railway to settle Siberia; begin mining coal, iron ore .
Recommended publications
  • Place Names: an Analysis of Published Materials
    DOCUMENT RESUME ED 319 675 SO 020 925 AUTHOR Anderson, Paul S. TITLE Seeking a Core of Wo' -'d Regional Geography Place Names: An Analysis of Published Materials. PUB DATE 14 Oct 89 NOTE 18p.; Paper presentel at the Annual Meeting of the National Council for Geographic Education (Hershey, PA, October 11-14, 1989). Updated April 1990. PUB TYPE Speeches/Conference Papers (150) -- Reference Materials - Geographic Materials (133) -- Information Analyses (070) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS Elementary Secondary Education; *Geographic Location; *Geography Instruction; *Minimum Competencies; *Physical Geography IDENTIFIERS Place Names ABSTRACT Knowing place names is not the essence of geography, but some knowledge of names of geographical locations is widely considered to be basic information. Whether used in general cultural literacy, lighthearted Trivial Pursuit, educational sixth grade social studies, or serious debates on world events, place names and their locations are assumed to be known. At the college level of world regional geography courses, five books with lists of place names are in print by geographers: Fuson; MacKinnon; Pontius and Woodward; DiLisio; and Stoltman. Those five sources plus place name lists by P.S. Anderson and from Hirsch reveal similarities and diversities in their content. A core list of place names is presented with several cross-classifications by region, type of geographic feature, and grade level of students. The results reveal a logical progression of complexity that could assist geography educators to increase student learning and avoid duplication of efforts. There will never be complete agreement about any listing of the core geographical place names, but the presented lists are intended to stimulate discussion along constructive avenues.
    [Show full text]
  • Article of a Given In- with Postdepositional Erosion
    Earth Surf. Dynam., 8, 769–787, 2020 https://doi.org/10.5194/esurf-8-769-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Timing of exotic, far-traveled boulder emplacement and paleo-outburst flooding in the central Himalayas Marius L. Huber1,a, Maarten Lupker1, Sean F. Gallen2, Marcus Christl3, and Ananta P. Gajurel4 1Geological Institute, Department of Earth Sciences, ETH Zurich, Zurich 8092, Switzerland 2Department of Geosciences, Colorado State University, Fort Collins, Colorado 80523, USA 3Laboratory of Ion Beam Physics (LIP), Department of Physics, ETH Zurich, Zurich 8093, Switzerland 4Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal acurrent address: Université de Lorraine, CNRS, CRPG, 54000 Nancy, France Correspondence: Marius L. Huber ([email protected]) Received: 28 February 2020 – Discussion started: 20 March 2020 Revised: 21 July 2020 – Accepted: 11 August 2020 – Published: 22 September 2020 Abstract. Large boulders, ca. 10 m in diameter or more, commonly linger in Himalayan river channels. In many cases, their lithology is consistent with source areas located more than 10 km upstream, suggesting long trans- port distances. The mechanisms and timing of “exotic” boulder emplacement are poorly constrained, but their presence hints at processes that are relevant for landscape evolution and geohazard assessments in mountainous regions. We surveyed river reaches of the Trishuli and Sunkoshi, two trans-Himalayan rivers in central Nepal, to improve our understanding of the processes responsible for exotic boulder transport and the timing of em- placement. Boulder size and channel hydraulic geometry were used to constrain paleo-flood discharge assuming turbulent, Newtonian fluid flow conditions, and boulder exposure ages were determined using cosmogenic nu- clide exposure dating.
    [Show full text]
  • Canada GREENLAND 80°W
    DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-B Module 7 70°N 30°W 20°W 170°W 180° 70°N 160°W Canada GREENLAND 80°W 90°W 150°W 100°W (DENMARK) 120°W 140°W 110°W 60°W 130°W 70°W ARCTIC Essential Question OCEANDo Canada’s many regional differences strengthen or weaken the country? Alaska Baffin 160°W (UNITED STATES) Bay ic ct r le Y A c ir u C k o National capital n M R a 60°N Provincial capital . c k e Other cities n 150°W z 0 200 400 Miles i Iqaluit 60°N e 50°N R YUKON . 0 200 400 Kilometers Labrador Projection: Lambert Azimuthal TERRITORY NUNAVUT Equal-Area NORTHWEST Sea Whitehorse TERRITORIES Yellowknife NEWFOUNDLAND AND LABRADOR Hudson N A Bay ATLANTIC 140°W W E St. John’s OCEAN 40°W BRITISH H C 40°N COLUMBIA T QUEBEC HMH Middle School World Geography A MANITOBA 50°N ALBERTA K MS_SNLESE668737_059M_K.ai . S PRINCE EDWARD ISLAND R Edmonton A r Canada legend n N e a S chew E s kat Lake a as . Charlottetown r S R Winnipeg F Color Alts Vancouver Calgary ONTARIO Fredericton W S Island NOVA SCOTIA 50°WFirst proof: 3/20/17 Regina Halifax Vancouver Quebec . R 2nd proof: 4/6/17 e c Final: 4/12/17 Victoria Winnipeg Montreal n 130°W e NEW BRUNSWICK Lake r w Huron a Ottawa L PACIFIC . t S OCEAN Lake 60°W Superior Toronto Lake Lake Ontario UNITED STATES Lake Michigan Windsor 100°W Erie 90°W 40°N 80°W 70°W 120°W 110°W In this module, you will learn about Canada, our neighbor to the north, Explore ONLINE! including its history, diverse culture, and natural beauty and resources.
    [Show full text]
  • Sediment Transport to the Laptev Sea-Hydrology and Geochemistry of the Lena River
    Sediment transport to the Laptev Sea-hydrology and geochemistry of the Lena River V. RACHOLD, A. ALABYAN, H.-W. HUBBERTEN, V. N. KOROTAEV and A. A, ZAITSEV Rachold, V., Alabyan, A., Hubberten, H.-W., Korotaev, V. N. & Zaitsev, A. A. 1996: Sediment transport to the Laptev Sea-hydrology and geochemistry of the Lena River. Polar Research 15(2), 183-196. This study focuses on the fluvial sediment input to the Laptev Sea and concentrates on the hydrology of the Lena basin and the geochemistry of the suspended particulate material. The paper presents data on annual water discharge, sediment transport and seasonal variations of sediment transport. The data are based on daily measurements of hydrometeorological stations and additional analyses of the SPM concentrations carried out during expeditions from 1975 to 1981. Samples of the SPM collected during an expedition in 1994 were analysed for major, trace, and rare earth elements by ICP-OES and ICP-MS. Approximately 700 h3freshwater and 27 x lo6 tons of sediment per year are supplied to the Laptev Sea by Siberian rivers, mainly by the Lena River. Due to the climatic situation of the drainage area, almost the entire material is transported between June and September. However, only a minor part of the sediments transported by the Lena River enters the Laptev Sea shelf through the main channels of the delta, while the rest is dispersed within the network of the Lena Delta. Because the Lena River drains a large basin of 2.5 x lo6 km2,the chemical composition of the SPM shows a very uniform composition.
    [Show full text]
  • 34. Information Sheet on Ramsar Wetlands Categories Approved by Recommendation 4.7 of the Conference of the Contracting Parties
    34. Information Sheet on Ramsar Wetlands Categories approved by Recommendation 4.7 of the Conference of the Contracting Parties. NOTE: It is important that you read the accompanying Explanatory Note and Guidelines document before completing this form. 1. Date this sheet was FOR OFFICE USE ONLY. completed/updated: DD MM YY September 1997 Designation date Site Reference Number 2. Country: Russian Federation 3. Name of wetland: Brekhovsky Islands in the Yenisei estuary 4. Geographical coordinates: 70°30'N, 82°45'E 5. Altitude: floodplain and islands: < 10 m; 6. Area: c. 1,400,000 ha bedrock coast: up to 118 m a.s.l. 7. Overview: An estuarine wetland complex, incorporating a network of rivers, streams, channels and lakes, as well as islands, floodplains and terraces covered with tundra vegetation. The area is internationally important for breeding, staging and moulting birds, in particular for red-breasted goose Branta ruficollis. 8. Wetland Type (please circle the applicable codes for wetland types as listed in Annex I of the Explanatory Note and Guidelines document.) marine-coastal: A • B • C • D • E • F • G • H • I • J • K inland: L • M • N • O • P • Q • R • Sp • Ss • Tp • Ts U • Va • Vt • W • Xf • Xp • Y • Zg • Zk man-made: 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 Please now rank these wetland types by listing them from the most to the least dominant: L,Ts,U,W,O,M . 9. Ramsar Criteria: (please circle the applicable criteria; see point 12, next page.) 1a • 1b • 1c • 1d │ 2a • 2b • 2c • 2d │ 3a • 3b • 3c │ 4a • 4b Please specify the most significant criterion applicable to the site: 1c 10.
    [Show full text]
  • Taiga Plains
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta.
    [Show full text]
  • Molecular Evidence for Pervasive Riverine Export of Soil Organic Matter from the Central Himalaya
    EGU2020-9017 https://doi.org/10.5194/egusphere-egu2020-9017 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Molecular evidence for pervasive riverine export of soil organic matter from the Central Himalaya Lena Märki1, Maarten Lupker1, Ananta Gajurel2, Hannah Gies1, Negar Haghipour1,3, Sean Gallen4, Christian France-Lanord5, Jérôme Lavé5, and Timothy Eglinton1 1ETH Zurich, Geological Institute, Department of Earth Sciences, Zurich, Switzerland ([email protected]) 2Tribhuvan University, Department of Geology, Kathmandu, Nepal 3ETH Zurich, Ion Beam Physics, Zurich, Switzerland 4Colorado State University, Department of Geosciences, Fort Collins, USA 5CNRS – Université de Lorraine, Centre de Recherches Pétrographiques et Géochimiques, Vandœuvre-lès-Nancy, France Soil erosion in high mountain ranges plays an important role in redistributing soil organic carbon across landscapes and may influence the global climate on different timescales [1, 2]. Here, we investigate the dynamics of soil organic matter export in the steep mountain belt of the Himalaya by tracing the provenance of soil-derived lipids in riverine sediments from nested catchments with areas ranging from 370 to 57700 km2. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a suite of lipids that occur ubiquitously in soils [3, 4]. Their isomer distribution depends on environmental parameters such as the mean annual temperature of the local environment [3]. In this study, we explore the use of brGDGT distributions as a proxy for the altitudinal provenance of soil organic matter in riverine sediments of the Central Himalaya of Nepal. BrGDGT distributions in soils collected along an altitudinal profile, spanning elevations from 200 to 4450 m asl, yield a robust calibration of soil signatures as a function of elevation.
    [Show full text]
  • The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer Tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects
    animals Article The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects Larisa A. Ilina 1,*, Valentina A. Filippova 1 , Evgeni A. Brazhnik 1 , Andrey V. Dubrovin 1, Elena A. Yildirim 1 , Timur P. Dunyashev 1, Georgiy Y. Laptev 1, Natalia I. Novikova 1, Dmitriy V. Sobolev 1, Aleksandr A. Yuzhakov 2 and Kasim A. Laishev 2 1 BIOTROF + Ltd., 8 Malinovskaya St, Liter A, 7-N, Pushkin, 196602 St. Petersburg, Russia; fi[email protected] (V.A.F.); [email protected] (E.A.B.); [email protected] (A.V.D.); [email protected] (E.A.Y.); [email protected] (T.P.D.); [email protected] (G.Y.L.); [email protected] (N.I.N.); [email protected] (D.V.S.) 2 Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, 7, Sh. Podbel’skogo, Pushkin, 196608 St. Petersburg, Russia; [email protected] (A.A.Y.); [email protected] (K.A.L.) * Correspondence: [email protected] Simple Summary: The reindeer (Rangifer tarandus) is a unique ruminant that lives in arctic areas characterized by severe living conditions. Low temperatures and a scarce diet containing a high Citation: Ilina, L.A.; Filippova, V.A.; proportion of hard-to-digest components have contributed to the development of several adaptations Brazhnik, E.A.; Dubrovin, A.V.; that allow reindeer to have a successful existence in the Far North region. These adaptations include Yildirim, E.A.; Dunyashev, T.P.; Laptev, G.Y.; Novikova, N.I.; Sobolev, the microbiome of the rumen—a digestive organ in ruminants that is responsible for crude fiber D.V.; Yuzhakov, A.A.; et al.
    [Show full text]
  • NATIONAL PROTECTED AREAS of the RUSSIAN FEDERATION: of the RUSSIAN FEDERATION: AREAS PROTECTED NATIONAL Vladimir Krever, Mikhail Stishov, Irina Onufrenya
    WWF WWF is one of the world’s largest and most experienced independent conservation WWF-Russia organizations, with almost 5 million supporters and a global network active in more than 19, bld.3 Nikoloyamskaya St., 100 countries. 109240 Moscow WWF’s mission is to stop the degradation of the planet’s natural environment and to build a Russia future in which humans live in harmony with nature, by: Tel.: +7 495 727 09 39 • conserving the world’s biological diversity Fax: +7 495 727 09 38 • ensuring that the use of renewable natural resources is sustainable [email protected] • promoting the reduction of pollution and wasteful consumption. http://www.wwf.ru The Nature Conservancy The Nature Conservancy - the leading conservation organization working around the world to The Nature Conservancy protect ecologically important lands and waters for nature and people. Worldwide Office The mission of The Nature Conservancy is to preserve the plants, animals and natural 4245 North Fairfax Drive, Suite 100 NNATIONALATIONAL PPROTECTEDROTECTED AAREASREAS communities that represent the diversity of life on Earth by protecting the lands and waters Arlington, VA 22203-1606 they need to survive. Tel: +1 (703) 841-5300 http://www.nature.org OOFF TTHEHE RRUSSIANUSSIAN FFEDERATION:EDERATION: MAVA The mission of the Foundation is to contribute to maintaining terrestrial and aquatic Fondation pour la ecosystems, both qualitatively and quantitatively, with a view to preserving their biodiversity. Protection de la Nature GGAPAP AANALYSISNALYSIS To this end, it promotes scientific research, training and integrated management practices Le Petit Essert whose effectiveness has been proved, while securing a future for local populations in cultural, 1147 Montricher, Suisse economic and ecological terms.
    [Show full text]
  • Water Policy Reforms in Eastern Europe, the Caucasus and Central Asia Achievements of the European Union Water Initiative, 2006-16 September 2016
    Water Policy Reforms in Eastern Europe, the Caucasus and Central Asia Achievements of the European Union Water Initiative, 2006-16 September 2016 EUWI EU WATER INITIATIVE EECCA Foreword People’s wellbeing and economic development are increasingly dependent “Ten years after the EUWI upon water. Water scarcity is already a matter of daily struggle for more than launch, we are glad to 40 percent of people around the world. Our vulnerability to water stress is and will be more and more exacerbated by climate change. Improved water see more robust national governance is therefore crucial for accommodating a growing demand for policy frameworks, targeted water in the context of important scarcities. Without efforts to rethink and invesments and improved adjust the way we manage waters, an eventual water crisis will have daunting effects, including conflicts and forced migration. water management practices in countries of Eastern Europe, The European Commission has made water governance one of the priorities of its work, including in the context of international co-operation. The Caucasus and Central Asia.” European Union’s Water Initiative (EUWI), launched in 2006, has been an important avenue for sharing experience, addressing common challenges, and identifying opportunities that would enable our partners to meet water use demands in an environmentally sustainable manner. As part of its Neighbourhood and Development policies, the EU has closely involved the countries of Eastern Europe, Caucasus and Central Asia in this initiative. The EUWI has been a political undertaking that has helped participating countries improve their legislation in the water sector through the design and the implementation of national policy reforms.
    [Show full text]
  • Is the Geography of Russia a Curse Or Benefit? Year 8
    IS THE GEOGRAPHY OF RUSSIA A CURSE OR BENEFIT? YEAR 8 Biomes in Russia: What is development? What Continent is Russia in? The biomes (areas of distinctive plant and animal groups, which are adapted to that The degree of wealth and material comfort Economy of Russia: particular environment) are very diverse in Russia. available to a person or community. High Russia is within the continents Europe and literacy Good Tundra: There is very little rainfall in the tundra. levels health Primary Sector - This is the process of Asia. Eurasia is the combined continental care HDI – a group of all countries development getting the raw materials together – landmass of Europe and Asia. The country There are shrubs and animals will include reindeer and Muscox. rates - In 2013, Russia had the world’s 55th 9.4% of jobs High shares its international boundaries with Use of Taiga: The taiga is characterized by a cold, harsh highest score. average sixteen sovereign republics of the world. 77% advanced climate, low rate of precipitation, and short Life expectancy – The amount of time people income technology Secondary Sector - This is the using the of the total landmass of Russia is in Asia while growing season. There are coniferous trees and are expected to live – In Russia it is 64 years. raw materials to create a new product – the rest is in Europe. animals include the Siberian Tiger. GDP – Gross domestic product - A measure Political 27.6% of jobs Ecosystem = an interconnected Living rights Steppe: Warm summers and really cold winters. of the total value of all the final goods and community of all of the living things - longer and Tertiary Sector - Using or selling this new Animals include rabbits and foxes.
    [Show full text]
  • The North Caucasus Region As a Blind Spot in the “European Green Deal”: Energy Supply Security and Energy Superpower Russia
    energies Article The North Caucasus Region as a Blind Spot in the “European Green Deal”: Energy Supply Security and Energy Superpower Russia José Antonio Peña-Ramos 1,* , Philipp Bagus 2 and Dmitri Amirov-Belova 3 1 Faculty of Social Sciences and Humanities, Universidad Autónoma de Chile, Providencia 7500912, Chile 2 Department of Applied Economics I and History of Economic Institutions (and Moral Philosophy), Rey Juan Carlos University, 28032 Madrid, Spain; [email protected] 3 Postgraduate Studies Centre, Pablo de Olavide University, 41013 Sevilla, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-657219669 Abstract: The “European Green Deal” has ambitious aims, such as net-zero greenhouse gas emissions by 2050. While the European Union aims to make its energies greener, Russia pursues power-goals based on its status as a geo-energy superpower. A successful “European Green Deal” would have the up-to-now underestimated geopolitical advantage of making the European Union less dependent on Russian hydrocarbons. In this article, we illustrate Russian power-politics and its geopolitical implications by analyzing the illustrative case of the North Caucasus, which has been traditionally a strategic region for Russia. The present article describes and analyses the impact of Russian intervention in the North Caucasian secessionist conflict since 1991 and its importance in terms of natural resources, especially hydrocarbons. The geopolitical power secured by Russia in the North Caucasian conflict has important implications for European Union’s energy supply security and could be regarded as a strong argument in favor of the “European Green Deal”. Keywords: North Caucasus; post-soviet conflicts; Russia; oil; natural gas; global economics and Citation: Peña-Ramos, J.A.; Bagus, P.; cross-cultural management; energy studies; renewable energies; energy markets; clean energies Amirov-Belova, D.
    [Show full text]