Huygens Discovers the Isochrone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 7. the Principle of Least Action
Chapter 7. The Principle of Least Action 7.1 Force Methods vs. Energy Methods We have so far studied two distinct ways of analyzing physics problems: force methods, basically consisting of the application of Newton’s Laws, and energy methods, consisting of the application of the principle of conservation of energy (the conservations of linear and angular momenta can also be considered as part of this). Both have their advantages and disadvantages. More precisely, energy methods often involve scalar quantities (e.g., work, kinetic energy, and potential energy) and are thus easier to handle than forces, which are vectorial in nature. However, forces tell us more. The simple example of a particle subjected to the earth’s gravitation field will clearly illustrate this. We know that when a particle moves from position y0 to y in the earth’s gravitational field, the conservation of energy tells us that ΔK + ΔUgrav = 0 (7.1) 1 2 2 m v − v0 + mg(y − y0 ) = 0, 2 ( ) which implies that the final speed of the particle, of mass m , is 2 v = v0 + 2g(y0 − y). (7.2) Although we know the final speed v of the particle, given its initial speed v0 and the initial and final positions y0 and y , we do not know how its position and velocity (and its speed) evolve with time. On the other hand, if we apply Newton’s Second Law, then we write −mgey = maey dv (7.3) = m e . dt y This equation is easily manipulated to yield t v = dv ∫t0 t = − gdτ + v0 (7.4) ∫t0 = −g(t − t0 ) + v0 , - 138 - where v0 is the initial velocity (it appears in equation (7.4) as a constant of integration). -
The Swinging Spring: Regular and Chaotic Motion
References The Swinging Spring: Regular and Chaotic Motion Leah Ganis May 30th, 2013 Leah Ganis The Swinging Spring: Regular and Chaotic Motion References Outline of Talk I Introduction to Problem I The Basics: Hamiltonian, Equations of Motion, Fixed Points, Stability I Linear Modes I The Progressing Ellipse and Other Regular Motions I Chaotic Motion I References Leah Ganis The Swinging Spring: Regular and Chaotic Motion References Introduction The swinging spring, or elastic pendulum, is a simple mechanical system in which many different types of motion can occur. The system is comprised of a heavy mass, attached to an essentially massless spring which does not deform. The system moves under the force of gravity and in accordance with Hooke's Law. z y r φ x k m Leah Ganis The Swinging Spring: Regular and Chaotic Motion References The Basics We can write down the equations of motion by finding the Lagrangian of the system and using the Euler-Lagrange equations. The Lagrangian, L is given by L = T − V where T is the kinetic energy of the system and V is the potential energy. Leah Ganis The Swinging Spring: Regular and Chaotic Motion References The Basics In Cartesian coordinates, the kinetic energy is given by the following: 1 T = m(_x2 +y _ 2 +z _2) 2 and the potential is given by the sum of gravitational potential and the spring potential: 1 V = mgz + k(r − l )2 2 0 where m is the mass, g is the gravitational constant, k the spring constant, r the stretched length of the spring (px2 + y 2 + z2), and l0 the unstretched length of the spring. -
Engineering Curves – I
Engineering Curves – I 1. Classification 2. Conic sections - explanation 3. Common Definition 4. Ellipse – ( six methods of construction) 5. Parabola – ( Three methods of construction) 6. Hyperbola – ( Three methods of construction ) 7. Methods of drawing Tangents & Normals ( four cases) Engineering Curves – II 1. Classification 2. Definitions 3. Involutes - (five cases) 4. Cycloid 5. Trochoids – (Superior and Inferior) 6. Epic cycloid and Hypo - cycloid 7. Spiral (Two cases) 8. Helix – on cylinder & on cone 9. Methods of drawing Tangents and Normals (Three cases) ENGINEERING CURVES Part- I {Conic Sections} ELLIPSE PARABOLA HYPERBOLA 1.Concentric Circle Method 1.Rectangle Method 1.Rectangular Hyperbola (coordinates given) 2.Rectangle Method 2 Method of Tangents ( Triangle Method) 2 Rectangular Hyperbola 3.Oblong Method (P-V diagram - Equation given) 3.Basic Locus Method 4.Arcs of Circle Method (Directrix – focus) 3.Basic Locus Method (Directrix – focus) 5.Rhombus Metho 6.Basic Locus Method Methods of Drawing (Directrix – focus) Tangents & Normals To These Curves. CONIC SECTIONS ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SECTIONS BECAUSE THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES. OBSERVE ILLUSTRATIONS GIVEN BELOW.. Ellipse Section Plane Section Plane Hyperbola Through Generators Parallel to Axis. Section Plane Parallel to end generator. COMMON DEFINATION OF ELLIPSE, PARABOLA & HYPERBOLA: These are the loci of points moving in a plane such that the ratio of it’s distances from a fixed point And a fixed line always remains constant. The Ratio is called ECCENTRICITY. (E) A) For Ellipse E<1 B) For Parabola E=1 C) For Hyperbola E>1 Refer Problem nos. -
Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda
Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda • Introduction to the elastic pendulum problem • Derivations of the equations of motion • Real-life examples of an elastic pendulum • Trivial cases & equilibrium states • MATLAB models The Elastic Problem (Simple Harmonic Motion) 푑2푥 푑2푥 푘 • 퐹 = 푚 = −푘푥 = − 푥 푛푒푡 푑푡2 푑푡2 푚 • Solve this differential equation to find 푥 푡 = 푐1 cos 휔푡 + 푐2 sin 휔푡 = 퐴푐표푠(휔푡 − 휑) • With velocity and acceleration 푣 푡 = −퐴휔 sin 휔푡 + 휑 푎 푡 = −퐴휔2cos(휔푡 + 휑) • Total energy of the system 퐸 = 퐾 푡 + 푈 푡 1 1 1 = 푚푣푡2 + 푘푥2 = 푘퐴2 2 2 2 The Pendulum Problem (with some assumptions) • With position vector of point mass 푥 = 푙 푠푖푛휃푖 − 푐표푠휃푗 , define 푟 such that 푥 = 푙푟 and 휃 = 푐표푠휃푖 + 푠푖푛휃푗 • Find the first and second derivatives of the position vector: 푑푥 푑휃 = 푙 휃 푑푡 푑푡 2 푑2푥 푑2휃 푑휃 = 푙 휃 − 푙 푟 푑푡2 푑푡2 푑푡 • From Newton’s Law, (neglecting frictional force) 푑2푥 푚 = 퐹 + 퐹 푑푡2 푔 푡 The Pendulum Problem (with some assumptions) Defining force of gravity as 퐹푔 = −푚푔푗 = 푚푔푐표푠휃푟 − 푚푔푠푖푛휃휃 and tension of the string as 퐹푡 = −푇푟 : 2 푑휃 −푚푙 = 푚푔푐표푠휃 − 푇 푑푡 푑2휃 푚푙 = −푚푔푠푖푛휃 푑푡2 Define 휔0 = 푔/푙 to find the solution: 푑2휃 푔 = − 푠푖푛휃 = −휔2푠푖푛휃 푑푡2 푙 0 Derivation of Equations of Motion • m = pendulum mass • mspring = spring mass • l = unstreatched spring length • k = spring constant • g = acceleration due to gravity • Ft = pre-tension of spring 푚푔−퐹 • r = static spring stretch, 푟 = 푡 s 푠 푘 • rd = dynamic spring stretch • r = total spring stretch 푟푠 + 푟푑 Derivation of Equations of Motion -
Polar Coordinates, Arc Length and the Lemniscate Curve
Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Calculus Mathematics via Primary Historical Sources (TRIUMPHS) Summer 2018 Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve Janet Heine Barnett Colorado State University-Pueblo, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_calculus Click here to let us know how access to this document benefits ou.y Recommended Citation Barnett, Janet Heine, "Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve" (2018). Calculus. 3. https://digitalcommons.ursinus.edu/triumphs_calculus/3 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Calculus by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve Janet Heine Barnett∗ October 26, 2020 Just prior to his 19th birthday, the mathematical genius Carl Freidrich Gauss (1777{1855) began a \mathematical diary" in which he recorded his mathematical discoveries for nearly 20 years. Among these discoveries is the existence of a beautiful relationship between three particular numbers: • the ratio of the circumference of a circle to its diameter, or π; Z 1 dx • a specific value of a certain (elliptic1) integral, which Gauss denoted2 by $ = 2 p ; and 4 0 1 − x p p • a number called \the arithmetic-geometric mean" of 1 and 2, which he denoted as M( 2; 1). Like many of his discoveries, Gauss uncovered this particular relationship through a combination of the use of analogy and the examination of computational data, a practice that historian Adrian Rice called \Gaussian Guesswork" in his Math Horizons article subtitled \Why 1:19814023473559220744 ::: is such a beautiful number" [Rice, November 2009]. -
The Osculating Circumference Problem
THE OSCULATING CIRCUMFERENCE PROBLEM School I.S.I.S.S. M. Casagrande Pieve di Soligo, Treviso Italy Students Silvia Micheletto (I) Azzurra Soa Pizzolotto (IV) Luca Barisan (II) Simona Sota (IV) Gaia Barella (IV) Paolo Barisan (V) Marco Casagrande (IV) Anna De Biasi (V) Chiara De Rosso (IV) Silvia Giovani (V) Maddalena Favaro (IV) Klara Metaliu (V) Teachers Fabio Breda Francesco Maria Cardano Davide Palma Francesco Zampieri Researcher Alberto Zanardo, University of Padova Italy Year 2019/2020 The osculating circumference problem ISISS M. Casagrande, Pieve di Soligo, Treviso Italy Abstract The aim of the article is to study the osculating circumference i.e. the circumference which best approximates the graph of a curve at one of its points. We will dene this circumference and we will describe several methods to nd it. Finally we will introduce the notions of round points and crossing points, points of the curve where the circumference has interesting properties. ??? Contents Introduction 3 1 The osculating circumference 5 1.1 Particular cases: the formulas cannot be applied . 9 1.2 Curvature . 14 2 Round points 15 3 Beyond round points 22 3.1 Crossing points . 23 4 Osculating circumference of a conic section 25 4.1 The rst method . 25 4.2 The second method . 26 References 31 2 The osculating circumference problem ISISS M. Casagrande, Pieve di Soligo, Treviso Italy Introduction Our research was born from an analytic geometry problem studied during the third year of high school. The problem. Let P : y = x2 be a parabola and A and B two points of the curve symmetrical about the axis of the parabola. -
Pioneers in Optics: Christiaan Huygens
Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means. -
Differential Geometry
Differential Geometry J.B. Cooper 1995 Inhaltsverzeichnis 1 CURVES AND SURFACES—INFORMAL DISCUSSION 2 1.1 Surfaces ................................ 13 2 CURVES IN THE PLANE 16 3 CURVES IN SPACE 29 4 CONSTRUCTION OF CURVES 35 5 SURFACES IN SPACE 41 6 DIFFERENTIABLEMANIFOLDS 59 6.1 Riemannmanifolds .......................... 69 1 1 CURVES AND SURFACES—INFORMAL DISCUSSION We begin with an informal discussion of curves and surfaces, concentrating on methods of describing them. We shall illustrate these with examples of classical curves and surfaces which, we hope, will give more content to the material of the following chapters. In these, we will bring a more rigorous approach. Curves in R2 are usually specified in one of two ways, the direct or parametric representation and the implicit representation. For example, straight lines have a direct representation as tx + (1 t)y : t R { − ∈ } i.e. as the range of the function φ : t tx + (1 t)y → − (here x and y are distinct points on the line) and an implicit representation: (ξ ,ξ ): aξ + bξ + c =0 { 1 2 1 2 } (where a2 + b2 = 0) as the zero set of the function f(ξ ,ξ )= aξ + bξ c. 1 2 1 2 − Similarly, the unit circle has a direct representation (cos t, sin t): t [0, 2π[ { ∈ } as the range of the function t (cos t, sin t) and an implicit representation x : 2 2 → 2 2 { ξ1 + ξ2 =1 as the set of zeros of the function f(x)= ξ1 + ξ2 1. We see from} these examples that the direct representation− displays the curve as the image of a suitable function from R (or a subset thereof, usually an in- terval) into two dimensional space, R2. -
Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. -
On the Isochronism of Galilei's Horologium
IFToMM Workshop on History of MMS – Palermo 2013 On the isochronism of Galilei's horologium Francesco Sorge, Marco Cammalleri, Giuseppe Genchi DICGIM, Università di Palermo, [email protected], [email protected], [email protected] Abstract − Measuring the passage of time has always fascinated the humankind throughout the centuries. It is amazing how the general architecture of clocks has remained almost unchanged in practice to date from the Middle Ages. However, the foremost mechanical developments in clock-making date from the seventeenth century, when the discovery of the isochronism laws of pendular motion by Galilei and Huygens permitted a higher degree of accuracy in the time measure. Keywords: Time Measure, Pendulum, Isochronism Brief Survey on the Art of Clock-Making The first elements of temporal and spatial cognition among the primitive societies were associated with the course of natural events. In practice, the starry heaven played the role of the first huge clock of mankind. According to the philosopher Macrobius (4 th century), even the Latin term hora derives, through the Greek word ‘ώρα , from an Egyptian hieroglyph to be pronounced Heru or Horu , which was Latinized into Horus and was the name of the Egyptian deity of the sun and the sky, who was the son of Osiris and was often represented as a hawk, prince of the sky. Later on, the measure of time began to assume a rudimentary technical connotation and to benefit from the use of more or less ingenious devices. Various kinds of clocks developed to relatively high levels of accuracy through the Egyptian, Assyrian, Greek and Roman civilizations. -
Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-Space E3
Fundamentals of Contemporary Mathematical Sciences (2020) 1(2) 63 { 70 Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-space E3 Abdullah Yıldırım 1,∗ Feryat Kaya 2 1 Harran University, Faculty of Arts and Sciences, Department of Mathematics S¸anlıurfa, T¨urkiye 2 S¸ehit Abdulkadir O˘guzAnatolian Imam Hatip High School S¸anlıurfa, T¨urkiye, [email protected] Received: 29 February 2020 Accepted: 29 June 2020 Abstract: In this study, evolute-involute curves are researched. Characterization of evolute-involute curves lying on the surface are examined according to Darboux frame and some curves are obtained. Keywords: Curve, surface, geodesic, curvature, frame. 1. Introduction The interest of special curves has increased recently. Some of these are associated curves. They are curves where one of the Frenet vectors at opposite points is linearly dependent to the other curve. One of the best examples of these curves is the evolute-involute partner curves. An involute thought known to have been used in his optical work came up in 1658 by C. Huygens. C. Huygens discovered involute curves while trying to make more accurate measurement studies [5]. Many researches have been conducted about evolute-involute partner curves. Some of them conducted recently are Bilici and C¸alı¸skan [4], Ozyılmaz¨ and Yılmaz [9], As and Sarıo˘glugil[2]. Bekta¸sand Y¨uceconsider the notion of the involute-evolute curves lying on the surfaces for a special situation. They determine the special involute-evolute partner D−curves in E3: By using the Darboux frame of the curves they obtain the necessary and sufficient conditions between κg , ∗ − ∗ ∗ τg; κn and κn for a curve to be the special involute partner D curve. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential