The weight of collapse: dynamical reduction models in general relativistic contexts Elias Okon Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México Circuito Maestro Mario de la Cueva s/n, Distrito Federal, 04510, Mexico E-mail:
[email protected] Daniel Sudarsky Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Apartado Postal 70-543, Distrito Federal, 04510, México E-mail:
[email protected] Abstract: Inspired by possible connections between gravity and foundational question in quantum theory, we consider an approach for the adaptation of objective collapse models to a general relativistic context. We apply these ideas to a list of open problems in cosmology and quantum gravity, such as the emergence of seeds of cosmic structure, the black hole information issue, the problem of time in quantum gravity and, in a more speculative manner, to the nature of dark energy and the origin of the very special initial state of the universe. We conclude that objective collapse models offer a rather promising path to deal with all of these issues. 1 Introduction The project of constructing a quantum theory of gravity is often regarded as entirely independent of the one devoted to clarifying foundational questions within standard quantum theory—the latter, a task mostly performed in the non-relativistic domain. There are, however, very suggestive indications that the two topics are intimately connected. To begin with, the standard interpretation of quantum mechanics, crucially dependent on the notions of measurement or observer, seems ill-suited to be applied to non-standard contexts, such as radiating black holes or the early universe.