Benefits of Objective Collapse Models for Cosmology and Quantum Gravity Contents 1 Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
International Centre for Theoretical Physics
XA<? 6 H 0 <! W IC/95/320 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS BOHM'S THEORY VERSUS DYNAMICAL REDUCTION G.C. Ghirardi and INTERNATIONAL ATOMIC ENERGY R. Grassi AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION MIRAMARE-TRIESTE VQL 'l 7 Ha ° 7 IC/95/320 ABSTRACT International Atomic Energy Agency and United Nations Educational scientific and Cultural Organization made that theories which exhibit parameter , INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS BOHM'S THEORY VERSUS DYNAMICAL REDUCTION1 1. Introduction. We share today's widespread opinion that Standard Quantum Mechanics (SQM), in spite of its enormous successes, has failed in giving a G.C. Ghirardi satisfactory picture of the world, as we perceive it. The difficulties about International Centre for Theoretical Physics, Trieste, Italy, the conceptual foundations of the theory arising, as is well known, from and the so-called objectification problem, have stimulated various attempts to Department of Theoretical Physics. University di Trieste, Trieste, Italy overcome them. Among these one should mention the search for a and deterministic completion of the theory, the many worlds and many minds intepretations, the so called environment induced superselection rules, the R. Grassi quantum histories approach and the dynamical reduction program. In this Department of Civil Engineering, University of Udine, Udine, Italy. paper we will focus our attention on the only available and precisely formulated examples of a deterministic completion and of a stochastic and nonlinear modification of SQM, i.e., Bohm's theory and the spontaneous reduction models, respectively. It is useful to stress that while the first theory is fully equivalent, from a predictive point of view, to SQM, the second one qualifies itself as a rival of SQM but with empirical divergence so small that it can claim all the same experimental support. -
A Paradox Regarding Monogamy of Entanglement
A paradox regarding monogamy of entanglement Anna Karlsson1;2 1Institute for Advanced Study, School of Natural Sciences 1 Einstein Drive, Princeton, NJ 08540, USA 2Division of Theoretical Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden Abstract In density matrix theory, entanglement is monogamous. However, we show that qubits can be arbitrarily entangled in a different, recently constructed model of qubit entanglement [1]. We illustrate the differences between these two models, analyse how the density matrix property of monogamy of entanglement originates in assumptions of classical correlations in the construc- tion of that model, and explain the counterexample to monogamy in the alternative model. We conclude that monogamy of entanglement is a theoretical assumption, not necessarily a phys- ical property, and discuss how contemporary theory relies on that assumption. The properties of entanglement entropy are very different in the two models — a priori, the entropy in the alternative model is classical. arXiv:1911.09226v2 [hep-th] 7 Feb 2020 Contents 1 Introduction 1 1.1 Indications of a presence of general entanglement . .2 1.2 Non-signalling and detection of general entanglement . .3 1.3 Summary and overview . .4 2 Analysis of the partial trace 5 3 A counterexample to monogamy of entanglement 5 4 Implications for entangled systems 7 A More details on the different correlation models 9 B Entropy in the orthogonal information model 11 C Correlations vs entanglement: a tolerance for deviations 14 1 Introduction The topic of this article is how to accurately model quantum correlations. In quantum theory, quan- tum systems are currently modelled by density matrices (ρ) and entanglement is recognized to be monogamous [2]. -
Do Black Holes Create Polyamory?
Do black holes create polyamory? Andrzej Grudka1;4, Michael J. W. Hall2, Michał Horodecki3;4, Ryszard Horodecki3;4, Jonathan Oppenheim5, John A. Smolin6 1Faculty of Physics, Adam Mickiewicz University, 61-614 Pozna´n,Poland 2Centre for Quantum Computation and Communication Technology (Australian Research Council), Centre for Quantum Dynamics, Griffith University, Brisbane, QLD 4111, Australia 3Institute of Theoretical Physics and Astrophysics, University of Gda´nsk,Gda´nsk,Poland 4National Quantum Information Center of Gda´nsk,81–824 Sopot, Poland 5University College of London, Department of Physics & Astronomy, London, WC1E 6BT and London Interdisciplinary Network for Quantum Science and 6IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 Of course not, but if one believes that information cannot be destroyed in a theory of quantum gravity, then we run into apparent contradictions with quantum theory when we consider evaporating black holes. Namely that the no-cloning theorem or the principle of entanglement monogamy is violated. Here, we show that neither violation need hold, since, in arguing that black holes lead to cloning or non-monogamy, one needs to assume a tensor product structure between two points in space-time that could instead be viewed as causally connected. In the latter case, one is violating the semi-classical causal structure of space, which is a strictly weaker implication than cloning or non-monogamy. This is because both cloning and non-monogamy also lead to a breakdown of the semi-classical causal structure. We show that the lack of monogamy that can emerge in evaporating space times is one that is allowed in quantum mechanics, and is very naturally related to a lack of monogamy of correlations of outputs of measurements performed at subsequent instances of time of a single system. -
International Centre for Theoretical Physics
... „. •::^i'— IC/94/93 S r- INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS QUANTUM MECHANICS WITH SPONTANEOUS LOCALIZATION AND EXPERIMENTS F. Benatti INTERNATIONAL ATOMIC ENERGY G.C. Ghirardi AGENCY and R. Grassi UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION MIRAMARE-TRIESTE 1 f I \ •» !r 10/94/93 International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization ABSTRACT INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS We examine from an experimental point of v'iew the recently proposed models of spontaneous reduction. We compare their implications about decoherence with those of environmental effects. We discuss the treatment, within the considered models, of the so called quantum telegraph phenomenon and we show that, contrary to what has QUANTUM MECHANICS heen recently stated, no problems are met, Finally, we review recent interesting work WITH SPONTANEOUS LOCALIZATION investigating the implications of dynamical reduction for the proton decay. AND EXPERIMENTS ' F. Heiiatti Dip.irtimento di I-'iska Tcwicii, Univorsita di Trieste. Trieste, July, G.C. (ihirardi 1. INTRODUCTION International Centre for Theoretical Physics, Trieste, Italy One of the most intriguing features of Quantum Mechanics (QM) is that it provides and too good a description of microphenomena to be considered a mere recipe to predict Dipartiniento di Fisica Tc-orica, Univorsita di Trieste, Trieste, Italy probabilities of prospective measurement outcomes from given initial conditions and, and yet, as a fundamental theory of reality, it gives rise to serious conceptual problems, among which the impossibility, in its orthodox interpretation, to think of all physical II. CSrasfli observables of the system under consideration as possessing in all instances definite Dipartiinento di Kisira, Universita di Udinc, Udrne, Italy. -
Firewalls and the Quantum Properties of Black Holes
Firewalls and the Quantum Properties of Black Holes A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the College of William and Mary by Dylan Louis Veyrat Advisor: Marc Sher Senior Research Coordinator: Gina Hoatson Date: May 10, 2015 1 Abstract With the proposal of black hole complementarity as a solution to the information paradox resulting from the existence of black holes, a new problem has become apparent. Complementarity requires a vio- lation of monogamy of entanglement that can be avoided in one of two ways: a violation of Einstein’s equivalence principle, or a reworking of Quantum Field Theory [1]. The existence of a barrier of high-energy quanta - or “firewall” - at the event horizon is the first of these two resolutions, and this paper aims to discuss it, for Schwarzschild as well as Kerr and Reissner-Nordstr¨omblack holes, and to compare it to alternate proposals. 1 Introduction, Hawking Radiation While black holes continue to present problems for the physical theories of today, quite a few steps have been made in the direction of understanding the physics describing them, and, consequently, in the direction of a consistent theory of quantum gravity. Two of the most central concepts in the effort to understand black holes are the black hole information paradox and the existence of Hawking radiation [2]. Perhaps the most apparent result of black holes (which are a consequence of general relativity) that disagrees with quantum principles is the possibility of information loss. Since the only possible direction in which to pass through the event horizon is in, toward the singularity, it would seem that information 2 entering a black hole could never be retrieved. -
The QBIT Theory of Consciousness
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2019 doi:10.20944/preprints201905.0352.v4 The QBIT theory of consciousness Majid Beshkar Tehran University of Medical Sciences [email protected] [email protected] Abstract The QBIT theory is an attempt toward solving the problem of consciousness based on empirical evidence provided by various scientific disciplines including quantum mechanics, biology, information theory, and thermodynamics. This theory formulates the problem of consciousness in the following four questions, and provides preliminary answers for each question: Question 1: What is the nature of qualia? Answer: A quale is a superdense pack of quantum information encoded in maximally entangled pure states. Question 2: How are qualia generated? Answer: When a pack of quantum information is compressed beyond a certain threshold, a quale is generated. Question 3: Why are qualia subjective? Answer: A quale is subjective because a pack of information encoded in maximally entangled pure states are essentially private and unshareable. Question 4: Why does a quale have a particular meaning? Answer: A pack of information within a cognitive system gradually obtains a particular meaning as it undergoes a progressive process of interpretation performed by an internal model installed in the system. This paper introduces the QBIT theory of consciousness, and explains its basic assumptions and conjectures. Keywords: Coherence; Compression; Computation; Consciousness; Entanglement; Free-energy principle; Generative model; Information; Qualia; Quantum; Representation 1 © 2019 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2019 doi:10.20944/preprints201905.0352.v4 Introduction The problem of consciousness is one of the most difficult problems in biology, which has remained unresolved despite several decades of scientific research. -
Symmetrized Persistency of Bell Correlations for Dicke States and GHZ-Based Mixtures: Studying the Limits of Monogamy
Symmetrized persistency of Bell correlations for Dicke states and GHZ-based mixtures: Studying the limits of monogamy Marcin Wieśniak ( [email protected] ) University of Gdańsk Research Article Keywords: quantum correlations, Bell correlations, GHZ mixtures, Dicke states Posted Date: February 26th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-241777/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on July 12th, 2021. See the published version at https://doi.org/10.1038/s41598-021-93786-5. Symmetrized persistency of Bell correlations for Dicke states and GHZ-based mixtures: Studying the limits of monogamy. Marcin Wiesniak´ 1,2,* 1Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics, and Informatics,, University of Gdansk,´ 80-308 Gdansk,´ Poland 2International Centre for Theory of Quantum Techologies, University of Gdansk,´ 80-308 Gdansk,´ Poland *[email protected] ABSTRACT Quantum correlations, in particular those, which enable to violate a Bell inequality1, open a way to advantage in certain communication tasks. However, the main difficulty in harnessing quantumness is its fragility to, e.g, noise or loss of particles. We study the persistency of Bell correlations of GHZ based mixtures and Dicke states. For the former, we consider quantum communication complexity reduction (QCCR) scheme, and propose new Bell inequalities (BIs), which can be used in that scheme for higher persistency in the limit of large number of particles N. In case of Dicke states, we show that persistency can reach 0.482N, significantly more than reported in previous studies. -
Quantum Entanglement in the 21St Century
Quantum entanglement in the 21 st century John Preskill The Quantum Century: 100 Years of the Bohr Atom 3 October 2013 My well-worn copy, bought in 1966 when I was 13. George Gamow, recalling Bohr’s Theoretical Physics Institute 1928-31: Bohr’s Institute quickly became the world center of quantum physics, and to paraphrase the old Romans, “all roads led to Blegdamsvej 17” … The popularity of the institute was due both to the genius of its director and his kind, one might say fatherly, heart … Almost every country in the world has physicists who proudly say: “I used to work with Bohr.” Thirty Years That Shook Physics , 1966, p. 51. George Gamow, recalling Bohr’s Theoretical Physics Institute 1928-31: Bohr, Fru Bohr, Casimir, and I were returning home from the farewell dinner for Oscar Klein on the occasion of his election as a university professor in his native Sweden. At that late hour the streets of the city were empty. On the way home we passed a bank building with walls of large cement blocks. At the corner of the building the crevices between the courses of the blocks were deep enough to give a toehold to a good alpinist. Casimir, an expert climber, scrambled up almost to the third floor. When Cas came down, Bohr, inexperienced as he was, went up to match the deed. When he was hanging precariously on the second-floor level, and Fru Bohr, Casimir, and I were anxiously watching his progress, two Copenhagen policeman approached from behind with their hands on their gun holsters. -
Engineering of Entanglement and Spin State Transfer Via Quantum Chains
www.nature.com/scientificreports OPEN Engineering of entanglement and spin state transfer via quantum chains of atomic spins at large Received: 19 April 2018 Accepted: 29 August 2018 separations Published: xx xx xxxx Dmitry I. Bazhanov1,2,3, Ilia N. Sivkov4 & Valeri S. Stepanyuk1 Several recent experiments have shown that long-range exchange interactions can determine collective magnetic ground states of nanostructures in bulk and on surfaces. The ability to generate and control entanglement in a system with long-range interaction will be of great importance for future quantum technology. An important step forward to reach this goal is the creation of entangled states for spins of distant magnetic atoms. Herein, the generation of long-distance entanglement between remote spins at large separations in bulk and on surface is studied theoretically, based on a quantum spin Hamiltonian and time-dependent Schrödinger equation for experimentally realized conditions. We demonstrate that long-distance entanglement can be generated between remote spins by using an appropriate quantum spin chain (a quantum mediator), composed by sets of antiferromagnetically coupled spin dimers. Ground state properties and quantum spin dynamics of entangled atoms are studied. We demonstrate that one can increase or suppress entanglement by adding a single spin in the mediator. The obtained result is explained by monogamy property of entanglement distribution inside a quantum spin system. We present a novel approach for non-local sensing of remote magnetic adatoms via spin entanglement. In diverse systems, long-range interactions between magnetic adatoms on surfaces were investigated both the- oretically and in experiments1–11. Indirect coupling can be mediated by surface and bulk electrons(RKKY), superexchange or can be of dipole-dipole origin. -
The Minimal Modal Interpretation of Quantum Theory
The Minimal Modal Interpretation of Quantum Theory Jacob A. Barandes1, ∗ and David Kagan2, y 1Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138 2Department of Physics, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (Dated: May 5, 2017) We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture of states and Hilbert-space trajectories to the more realistic case of open quantum systems despite the generic development of entanglement. We provide independent justification for the partial-trace operation for density matrices, reformulate wave-function collapse in terms of an underlying interpolating dynamics, derive the Born rule from deeper principles, resolve several open questions regarding ontological stability and dynamics, address a number of familiar no-go theorems, and argue that our interpretation is ultimately compatible with Lorentz invariance. Along the way, we also investigate a number of unexplored features of quantum theory, including an interesting geometrical structure|which we call subsystem space|that we believe merits further study. We conclude with a summary, a list of criteria for future work on quantum foundations, and further research directions. We include an appendix that briefly reviews the traditional Copenhagen interpretation and the measurement problem of quantum theory, as well as the instrumentalist approach and a collection of foundational theorems not otherwise discussed in the main text. -
Interpretations of Quantum Mechanics: a General Purview
Mississippi State University Scholars Junction Collge of Arts and Sciences Publications and Scholarship College of Arts and Sciences 10-1-2020 Interpretations of Quantum Mechanics: A General Purview Prajwal Mohanmurthy Follow this and additional works at: https://scholarsjunction.msstate.edu/cas-publications Recommended Citation Mohanmurthy, Prajwal, "Interpretations of Quantum Mechanics: A General Purview" (2020). Collge of Arts and Sciences Publications and Scholarship. 14. https://scholarsjunction.msstate.edu/cas-publications/14 This Preprint is brought to you for free and open access by the College of Arts and Sciences at Scholars Junction. It has been accepted for inclusion in Collge of Arts and Sciences Publications and Scholarship by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Fall 2020 December 5, 2020 Interpretations of Quantum Mechanics A General Purview Dr. Prajwal MohanMurthy 1 Argonne National Laboratory University of Chicago 9700 S Cass Ave, Lemont, IL 60439, U.S.A Department of Physics and Astronomy Mississippi State University PO Box 5167, Mississippi State, MS 39762, U.S.A Quantum mechanics revolutionized physics in early 20th century and lead to one of the two field theories, the standard model, which is a crowing achievement of our contemporary times. However, paradoxes within the quantum mechanics, were recognized early on. These paradoxes have paved way to multiple interpretations of quantum mechanics over the century. These interpretations do not particularly affect the validity of the empirically established observations and measurements. We will attempt to introduce a few major interpretations of quantum mechanics and present their advantages and disadvantages in a very limited fashion. -
Monogamy of Correlations Versus Monogamy of Entanglement
Quantum Inf Process (2010) 9:273–294 DOI 10.1007/s11128-009-0161-6 Monogamy of correlations versus monogamy of entanglement M. P. Seevinck Received: 31 July 2009 / Accepted: 21 December 2009 / Published online: 16 January 2010 © The Author(s) 2010. This article is published with open access at Springerlink.com Abstract A fruitful way of studying physical theories is via the question whether the possible physical states and different kinds of correlations in each theory can be shared to different parties. Over the past few years it has become clear that both quan- tum entanglement and non-locality (i.e., correlations that violate Bell-type inequali- ties) have limited shareability properties and can sometimes even be monogamous. We give a self-contained review of these results and present new results on the shareability of different kinds of correlations, including local, quantum and no-signalling corre- lations. This includes an alternative simpler proof of the Toner-Verstraete monogamy inequality for quantum correlations, as well as a strengthening thereof. Further, the relationship between sharing non-local quantum correlations and sharing mixed entan- gled states is investigated, and already for the simplest case of bi-partite correlations and qubits this is shown to be non-trivial. Also, a recently proposed new interpretation of Bell’s theorem by Schumacher in terms of shareability of correlations is critically assessed. Finally, the relevance of monogamy of non-local correlations for secure quantum key distribution is pointed out, and in this regard it is stressed that not all non-local correlations are monogamous. Keywords Quantum mechanics · Entanglement · Non-locality · Monogamy · No-signalling · Shareability · Cryptography M.