L-G-0003934345-0019231381.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

L-G-0003934345-0019231381.Pdf Holger Svensson CABLE-STAYED BRIDGES 40 Years of Experience Worldwide Holger Svensson CABLE-STAYED BRIDGES 40 Years of Experience Worldwide Prof. Dipl.-Ing. Holger Svensson Consulting Engineer Niederlausitzstraße 22 15738 Zeuthen Germany [email protected] Translated by: Prof. Dipl.-Ing. Holger Svensson, Zeuthen, Germany Prof. Dr. Guido Morgenthal, Weimar, Germany (sections on dynamics) Review and Improvement: Paul Beverley, U.K. Cover: Helgeland Bridge over Leirfjord, Sandnessjøen, Norway © Helga Rutzen, Düsseldorf, Germany © 2012 Wilhelm Ernst & Sohn, Verlag für Architektur Library of Congress Card No.: applied for und technische Wissenschaften GmbH & Co. KG, Rotherstr. 21, 10245 Berlin, Germany British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by Production: HillerMedien, Berlin, Germany the Deutsche Nationalbibliothek Coverdesign and Layout: Sophie Bleifuß, Berlin, Germany The Deutsche Nationalbibliothek lists this publication in the Typesetting: Uta-Beate Mutz, Leipzig, Germany Deutsche Nationalbibliografie; detailed bibliographic data is Printing: Medialis, Berlin, Germany available in the Internet at <http://dnb.ddb.de>. Binding: Stein + Lehmann, Berlin, Germany All rights reserved (including those of translation into other Printed in the Federal Republic of Germany. languages). No part of this book may be reproduced in any form – Printed on acid-free paper. by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission Print ISBN: 978-3-433-02992-3 from the publishers. Registered names, trademarks, etc. used in this ePDF ISBN: 978-3-433-60229-4 book, even when not specifically marked as such, are not to be oBook ISBN: 978-3-433-60104-4 considered unprotected by law. Dedicated to my revered Mentor Prof. Fritz Leonhardt and my dear wife Meg in appreciation of their support 5 Introduction Cable-stayed bridges are currently in a fast development, worldwide. have been designed in accordance with various codes, including DIN, While in 1986 about 150 major cable-stayed bridges were known, Eurocode, AASHTO, British Standard and others. The governing their number has increased to more than 1000 today. Their spans factor for the designs are ultimately the laws of nature which are have also increased by leaps. From 1975, when the span record was identical worldwide. 404 m, it jumped to 856 m in 1995 and today has reached 1104 m. A The selection of the cable-stayed bridges highlighted here is quite span limit is not yet in sight, and there are already designs for cable- subjective and consists of: stayed bridges with main spans up to 1800 m. As the economic range – bridges in which the author participated or in which at least for suspension bridges is limited for very long spans, cable-stayed Leonhardt, Andrä and Partners (LAP) were involved, bridges are a focus of interest for bridge engineers worldwide. – bridges with unusual structural details, and This book addresses experienced engineers as well as students. It – bridges with record spans. has been developed from the scripts of the ‘Lectures on cable-stayed In general only completed bridges are treated. The discussion of pro- bridges’, which have been given by the author at the University of posals, as interesting as they may be, would go beyond the scope of Dresden for the 7th and 8th semester for bridge engineering students this book. since 2009. The book contains nearly 1300 figures, mainly in color, in accord- It aims to cover all aspects of the design, construction planning ance with the conviction of the author that a good picture is more and execution on site, dealing with principles that appear important meaningful than any description. This is especially true for the ap- to the author, based on his 40-year experience as a bridge engineer. pearance and for the construction. Additional details are given in the nearly 350 references. The author has named the engineers involved in as many bridges Key aspects of the book are: as possible. This should help to improve the public standing of engin- – the historical development from precursors up to the present day, eers which is otherwise often neglected. The responsible engineers – the structural details of beams, towers and especially the stay are also recognized as authors of the given references. A bridge is, of cables which are a crucial component of cable-stayed bridges, course, never the work of an individual – a whole design team is re- – the preliminary design of cable-stayed bridges which provides the quired, which works in mutual trust with the engineers of the client best understanding of the flow of forces and permits initial sizing and with the engineers on site in order to successfully complete a and independent checking of a design, and bridge project. – the erection of cable-stayed bridges, which is equally as important At the end of the book two DVDs are included, which record the as their final stage. 30 lectures that the author gives at Dresden University. With the exception of the cable sizing, codes are consciously not referred to. The investigated bridges are from all over the world and Holger Svensson, Zeuthen, 2012 Cable-Stayed Bridges. 40 Years of Experience Worldwide. First Edition. Holger Svensson. © 2012 Ernst & Sohn GmbH & Co. KG. Published 2012 by Ernst & Sohn GmbH & Co. KG. 6 7 Acknowledgement The author is grateful to the University of Dresden for the oppor- (Freyssinet, France), Dr. Christian Braun (Maurer, Germany), tunity to hold lectures on cable-stayed bridges subsequently to his Dr. Marcel Poser (BBR, Switzerland), Mr Friedhelm Rentmeister active work, initially arranged by Professor Dr.-Ing. Jürgen Stritzke. (Bridon, UK) and Dr. Yoshito Tanaka (Shinko, Japan). The other The continuing support by Professor Dr.-Ing. Manfred Curbach, material used, especially drawings and photographies, originates Head of the Institute for Concrete Structures, and by Professor from the archives of the author and LAP. Dr.-Ing. Richard Stroetmann, Head of the Institute for Steel and Special thanks go to the author’s long-term colleagues and friends Timber Structures, as well as Dipl.-Ing. Peter Deepe and Dr.-Ing. Dr.-Ing. Imre Kovacs for the preparation of the sections on dynam- Uwe Reuter for the preparation of the video records of the lectures is ics and Dr.-Ing. E. h. Dipl.-Ing. Reiner Saul for the section on cable highly appreciated. sizing. The author is indebted to the following colleagues who generous- The publishers Wilhelm Ernst & Sohn and Wiley-Blackwell pro- ly provided him with information: Dr. Charles Birnstiel, USA, on the vided helpful support through the editor, Dipl.-Ing. Claudia Ozimek, Nienburg Bridge, M. Jacques Combault on the Rion-Antirion Bridge, supported by Ms. Sophie Bleifuß for the layout and Ms. Uta-Beate M. Jean-Marie Crémer on the Ben Ahin and Millau Bridges, Profes- Mutz for preparing the print. sor Dr. Guido Morgenthal on the Stonecutters and Sutong Bridges, The author translated the book into English himself with the ex- Dr.-Ing. Herbert Schambeck on the Metten and Flößer Bridges, ception of the sections on dynamics, which were done by Professor Dr.-Ing. Klaus Stiglat on early cable-stayed bridges in France and Dr. Guido Morgenthal. The translation was reviewed and improved M. Michel Virlogeux on the Normandy Bridge. Information on stay by Mr Paul Beverley, UK. The complete German and English text cables was provided by Dipl.-Ing. Werner Brand (DYWIDAG-Sys- was typed by Ms. Eva Gassmann and all graphics and their conver- tems International, Germany), Mr W. S. Cheung (Cabletek, South- sion into English was done by Ms. Mirela Beutel-Anistoroaiei; to all Korea), Dr. Hans Rudolf Ganz (VSL, Switzerland), M. Erik Mellier these the author is grateful for their indispensable skill and patience. Cable-Stayed Bridges. 40 Years of Experience Worldwide. First Edition. Holger Svensson. © 2012 Ernst & Sohn GmbH & Co. KG. Published 2012 by Ernst & Sohn GmbH & Co. KG. 9 The Author Holger Svensson has extensive experience in the design, construc- tion engineering and on-site supervision of cable-stayed and other long-span bridges all over the world. In Germany he was involved in the checking of the Kocher Valley Bridge and the detailed design of the cable-stayed Flehe Bridge. In the USA he designed several cable-stayed bridges: Pasco- Kennewick (concrete), East Huntington (concrete), Sunshine Skyway (composite alternate), Burlington (composite) and the Houston Ship Channel Crossing at Baytown (composite). In Norway he was in charge of the design for the Helgeland Bridge and in Scotland he advised on the design of the Leven River Bridge, both concrete cable-stayed bridges. In Sweden he was checking engineer for the Höga Kusten suspen- sion bridge (main span 1210 m) and the Sunningesund and Ume Älv Prof. Dipl.-Ing. Holger Svensson composite cable-stayed bridges. P E, C Eng, FI Struct E, In Australia he advised on the design of the cable-stayed Glebe born 1945 near Hamburg, Germany Island concrete bridge in Sidney and on the My Tuan Bridge in 1969 Dipl.-Ing., Stuttgart University Vietnam for AusAID. 2009 – 2011 Lecturer and For the Asian Development Bank he reviewed the design and since 2012 Professor for cable- stayed bridges at the University construction of the record-breaking cable-stayed composite Yang Pu of Dresden, Germany Bridge (main span 602 m) in Shanghai, China. In Hong Kong he advised on the design and construction of the 1970 – 1971 Contractor Grinaker in South Africa and Botswana Kap Shui Mun Bridge to Lantau Airport. 1972 – 2009 Leonhardt, Andrä and He was also responsible for the design of several major girder and Partners, Consulting Engineers arch bridges in Germany and elsewhere. Design and checking of major, mainly cable-stayed bridges 1992 – 2009 Executive Director Registrations 1998 – 2008 Speaker of the Current: Member of the Chamber of Engineers in Berlin, Germany; Executive Board 2009 Chairman of the Board PE in the USA; CEng, FIStructE in Great Britain.
Recommended publications
  • Special Issue – Territorial Information No. 1 What Goes on in Turkey
    IMIA NEWS Special Issue – Territorial Information No. 1 Dec 2013 What goes on in Turkey Construction of the Gebze Izmir Motorway & Gebze Bay Crossing see more on page 4 More info p.2 The Turkish Insurance Market is growing by 24.8% as at end of September 2013. The Engineering Lines overall are growing by 37.7% when compared to the same period of time. When we look at the September results of the insurance companies in Turkey, Machinery Breakdown Insurances have grown by 24%, Electronic Equipment Insurance has grown by 21.2% and the Erection All Risks, together with Construction All Risks Insurances have grown by almost 60%. The major effect in this growth is one specific Project covering the highway construction from Istanbul to Izmir and the bridge to be built in the Izmit Bay. There are many other Engineering projects in the pipeline to come. Here are some examples: 1 THE THIRD BOSPHORUS BRIDGE Bridge of Firsts The 3rd Bridge, which is going to be built on the Bosphorus, Istanbul within the Northern Marmara Motorway Project executed by IC Ictas – Astaldi Consortium, is considered the future of transportation and commerce. The 3rd bridge, which is going to be built on the Bosphorus, Istanbul after the Bogazici Bridge, which started operating in 1972, and the Fatih Sultan Mehmet Bridge, which was completed in 1988, is regarded as the bridge of firsts. 8 lanes of motorway and 2 lanes of railway will be located at the same level on the 3rd Bosphorus Bridge, which will be a product of professional engineering and advanced technology built by a team, most of whom are Turkish engineers.
    [Show full text]
  • Millau Viaduct, France
    Recent Structures Worldwide: An Introduction Both our regular readers, the IABSE members, as well as it may be. IABSE is the prime professional organization for new readers who may be getting this special issue of “Struc- structural engineers truly committed to the exchange of tural Engineering International” at the Structures Congress knowledge and to the advancement of the practice of struc- 2005 in New York City, will be delighted to go through this tural engineering worldwide, as reflected in this and in every Recent Structures series, aimed at showcasing a wide range of SEI issue, and, if you are not a member yet, I invite you to structures recently completed. They all share common fea- join! tures: they were challenging to design and to build, uncon- This carefully selected group of recent structures, many of ventional in their own way, and innovative. They were built which will be presented by their designers at Structures Con- all over the world, and in many cases by a truly global part- gress 2005, is certain to stimulate our creativity. I invite you to nership of designers, detailers, fabricators and constructors. read the articles, and to attend the Congress. While in New As structural engineers in a world where country borders are York, hometown to some of the best and internationally rec- increasingly just a line on a map, we strive to feed on the ex- ognized structural engineering firms, don’t forget to visit the perience of other engineers, geographically or by specialty local outstanding structures, both new and old. both near and far from us.
    [Show full text]
  • Vincent De Ville De Goyet Chairman of the Board of Directors of GREISCH
    Vincent de Ville de Goyet Chairman of the Board of Directors of GREISCH COORDINATION ET CO-OPERATIVE, of BUREAU D’ETUDES GREISCH PLC and of GREISCH INGÉNIERIE PLC Administrator of BUREAU GREISCH LUXEMBOURG PLC Director for the entire group GREISCH 1956 Born at Huy Belgian nationality Domiciled in Huy Studied construction civil engineering at Liège university Final dissertation entitled "Contribution à l'étude de la resistance ultime dans le plan des poutres en treillis à nœuds rigides" (Contribution to the study of the ultimate strength in the plane of lattice beams with rigid intersections) 1979 Graduated Magna Cum Laude as construction civil engineer Doctorate thesis: "L'analyse statique non linéaire par la méthode des éléments finis des structures spatiales formées de poutres à section non symétrique". (Non-linear static analysis, using the finite element method, of spatial structures formed from beams of non-symmetrical section.) 1988 Graduated Summa Cum Laude as Doctor of Applied Science from Liège university Languages - french: native language, - english: written and spoken knowledge. Additional training - Liège university (Belgium): "Theory of vibrations", Prof. Géradin, - Brussels university (Belgium): "Special civil engineering problems", Mr. Sphel, senior lecturer, - Institute for Computational Engineering (France): "Non-linear Finite Element Analysis", Profs. Th. Hughes and T. Belytschko, - "École Nationale des Ponts et Chaussées" (France): "Designing buildings, bridges and other civil engineering works in an earthquake zone".
    [Show full text]
  • Digital Modelling and Representations: Design and Works by Riccardo Morandi and Sergio Musmeci
    Proceedings of the IMProVe 2011 International conference on Innovative Methods in Product Design June 15 th – 17 th , 2011, Venice, Italy Digital modelling and representations: Design and works by Riccardo Morandi and Sergio Musmeci Curti G. (a) , Polimeni B. (a) , Raschi S. (a) (a) Università degli Studi Mediterranea Reggio Calabria Facoltà di Architettura Article Information Abstract Keywords: Purpose: digital modelling, The purpose of this abstract is as a contribution to research on the representation of flat or representation techniques, variously shaped curves. The study is focused on the ability to model surfaces with traditional traditional CAD systems, CAD systems. ruled surfaces, Method: minimal surfaces. The analysis is focused on the possibility of determining the morphological configurations of architectural coverings and other structures by means of the traditional, CAD, instruments. Corresponding author Result: Gabriella Curti The characteristics of the architecture are highlighted by a process which starts from the Tel.:334-6698169 "pure form" and arrives at the completed, built structure. Fax.:0965-3222235 Discussion & Conclusion: e-mail: [email protected] Our approach requires that a special focus be given to the works of R. Morandi and S. Address:Contrada Melissari-Feo di Musmeci who used shaped surfaces for particular architectural structures in various ways. Vito (RC) communicating the original ideas. Digital modelling 1 Introduction facilitates the awareness of forms and spaces otherwise not easily accessible for "non-experts". This use of the 3D In the field of Digital modeling, there are many Graphic representation methods can increase the programmers who are working on the relationships knowledge of architectural spaces, and can be entered between geometrical and mathematical spaces, from into by a conscious observer, accompany him on a analog to digital representation.
    [Show full text]
  • Per Molti Secoli L'uomo Potè Attuare La Trasmissione Di Informazioni A
    UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II” POLI DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI ARCHITETTURA DIPARTIMENTO DI CONFIGURAZIONE ED ATTUAZIONE DELL’ARCHITETTURA Dottorato in Tecnologia e Rappresentazione dell’Architettura e dell’Ambiente XVIII Ciclo Indirizzo: Rilievo e Rappresentazione dell’Architettura e dell’Ambiente - Settore Scientifico Disciplinare: ICAR/17- Tesi di Dottorato di Ricerca COMUNICAZIONE, TRASMISSIONE E SEGNI. LE TORRI EMITTENTI E RICEVENTI. Dottorando Docente Tutor Angelo Vallefuoco Prof. Arch. Mariella dell’Aquila Coordinatore d’indirizzo Coordinatore Prof. Arch. Mariella Dell’Aquila Prof. Arch. Virginia Gangemi 1 2 Indice Premessa 5 Capitolo primo LE TELECOMUNICAZIONI origini e sviluppo 9 1.1 - Le origini 9 1.2 - I primi passi delle comunicazioni elettriche 12 1.3 - Gli esordi delle telecomunicazioni in Italia 17 1.4 - Le telecomunicazioni italiane dal 1925 al 1945 26 1.5 - La ricostruzione degli impianti dopo gli eventi bellici del 1940/45 30 1.6 - Le telecomunicazioni italiane dal 1948 al 1980 31 1.7 - Le nuove frontiere delle telecomunicazioni ai nostri giorni 38 Capitolo secondo SISTEMI PER TRANS-MITTERE apparati emittenti e riceventi 45 2.1 - Sistemi di trasmissione 45 I segnali 46 I canali di comunicazione a distanza 47 Il "rumore" 50 Modello di un sistema di trasmissione 50 Le reti di telecomunicazione 52 Capitolo terzo FORMA E FUNZIONI evoluzione delle architetture per le telecomunicazioni 55 3.1 - I precursori delle torri di telecomunicazioni 55 3.2 - La torre Eiffel: simbolo della tecnica innovatrice del XIX secolo 56 3.3 - La Fernsehturm di Berlino: metafora e ideologia 62 3.4 - Forma e struttura: la torre di Collserola 69 3.5 - Natura e artificio: le torri per le comunicazioni di Calatrava 76 Conclusioni 81 Appendice: Le torri per le comunicazioni 85 Riferimenti bibliografici 129 3 4 Premessa La costruzione di una torre è uno dei sogni più grandi dell’umanità.
    [Show full text]
  • POLITECNICO DI TORINO Repository ISTITUZIONALE
    POLITECNICO DI TORINO Repository ISTITUZIONALE Historic Building Information Modeling: from historical database platform to fully suitable and multidisciplinary design instruments Original Historic Building Information Modeling: from historical database platform to fully suitable and multidisciplinary design instruments / Lo Turco, Massimiliano; Bruno, Edoardo. - ELETTRONICO. - 1(2016), pp. 233-242. ((Intervento presentato al convegno XIV Forum Internazionale di Studi "Le vie dei Mercanti" tenutosi a Napoli - Capri nel 16/18 Giugno 2016. Availability: This version is available at: 11583/2658727 since: 2017-06-06T11:02:18Z Publisher: La Scuola di Pitagora Editrice Published DOI: Terms of use: openAccess This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 04 August 2020 Fabbrica della Conoscenza Le XIV Forum Internazionale di Studi Vie dei Mercanti Carmine Gambardella WORLD HERITAGE and DEGRADATION Smart Design, Planning and Technologies La Scuola di Pitagora editrice Fabbrica della Conoscenza numero 61 Collana fondata e diretta da Carmine Gambardella Fabbrica della Conoscenza Collana fondata e diretta da Carmine Gambardella Scientific Committee: Carmine Gambardella, President and CEO Benecon, UNESCO Chair in Cultural Heritage, Landscape and Territorial Governance Federico Casalegno, Professor, Massachusetts Institute of Technology, USA Massimo Giovannini, Professor and Rector, University “Mediterranea” of
    [Show full text]
  • Libro 1.Indb
    Universidad Politécnica de Madrid Escuela Técnica Superior de Arquitectura de Madrid DEL EMPIRISMO A LA INVENCIÓN cálculo y proyecto en la arquitectura moderna Tesis Doctoral Ausías González Lisorge Arquitecto y Máster en Estructuras de la Edifi cación 2015 Del empirismo a la invención y la vía paralela II.1 3 4 II.1 Del empirismo a la invención y la vía paralela Departamento de Composición Arquitectónica Escuela Técnica Superior de Arquitectura de Madrid DEL EMPIRISMO A LA INVENCIÓN cálculo y proyecto en la arquitectura moderna Ausías González Lisorge Arquitecto y Máster en Estructuras de la Edifi cación Directores: Miguel Ángel Baldellou Santolaria Doctor Arquitecto Ana Esteban Maluenda Arquitecta y Doctora en Teoría e Historia de la Arquitectura 2015 7ULEXQDOQRPEUDGRSRUHO0DJIFR\([FPR6U5HFWRUGHOD8QLYHUVLGDG3ROLWpFQLFDGH 0DGULG HOGtDGH GH 3UHVLGHQWH 9RFDO 9RFDO 9RFDO 6HFUHWDULR 6XSOHQWH 6XSOHQWH 5HDOL]DGRHODFWRGHGHIHQVD\OHFWXUDGHOD7HVLVHOGtDGH HQOD(VFXHOD7pFQLFD6XSHULRUGH$UTXLWHFWXUDGH0DGULG &DOLILFDFLyQ«««««««««««« (O35(6,'(17( /2692&$/(6 (/6(&5(7$5,2 A mis padres, Antonio y Nieves, por su genero- sidad. A mi compañera, Diana, por su comprensión y paciencia. Agradecimientos Querría agradecer, en primer lugar, a Miguel Ángel Baldellou haberme de- dicado parte de su tiempo y haberme enseñado a dudar. También agradez- co a Ana Esteban sus consejos, ayudas y sus orientaciones. Esta Tesis no hubiera sido posible sin ellos. Asimismo, agradezco a Mattia Marzaro que hiciese las veces de tutor en mi estancia en Venecia y Trieste, así como sus consejos y que me dedicase su tiempo y su ayuda desinteresadamente. Doy las gracias a Giovanni Marras por sus siempre bien recibidas correc- ciones y puntualizaciones y a Giuseppina Scavuzzo por su interés en mi investigación y por su ayuda.
    [Show full text]
  • Eminent Structural Engineer: Dr Fritz Leonhardt (1909–1999)
    Eminent Structural Engineer: Dr Fritz Leonhardt (1909–1999) Reiner Saul, Dr, Eng. E. h.; Holger S. Svensson, Eng.; Hans-Peter Andrä, Dr, Eng.; Leonhardt, Andrä und Partner, Beratende Ingenieure VBI, GmbH, Stuttgart, Germany Prologue to the construction – tests on the cable clamps, the friction of the abutments, The most difficult part while writing aerodynamic stability etc. this article was to compile 90 years of an exceptionally creative life into In 1948, Leonhardt designed, again in a concise text. The authors apologise Cologne, a continuous steel box girder the absence of some important names with a main span of 184,5 m and slen- within this text, particularly those who derness ratios of L/56 in the span and played an important role in Dr Leon- L/24 over the piers. Also in 1948, Leon- hardt’s life. hardt designed with Willi Baur his first bridge from prestressed concrete with a span of 30 m, prestressed by concen- Brief CV trated tendons. In 1964, Leonhardt and Baur designed 12.07.1907 Born in Stuttgart a 480 m long bridge with spans of 90 m 1927–1931 Student of Civil Engi- across the Caroni River in Venezuela. neering at the Stuttgart The bridge was built completely be- University (Emil Mörsch, hind the abutment and than launched, Otto Graf) a world novelty for concrete bridges. 1932–1933 Graduate studies at the From this the incremental launching Purdue Universtiy bridges developed, built behind the abutments in length of about 25 m and 1934–1938 Bridge Engineer for Fig. 1: Dr Fritz Leonhardt (1999) Highway Bridges in Stu- then launched.
    [Show full text]
  • Michel Virlogeux Consultant.Com
    He has been expert for the Moosou bridge in Ivory Coast and the Edea bridge in Cameroon, consultant for the Evripos bridge in Greece and many important bridges in France, specially on the A75 Motorway, such as the Truyère Viaduct at Garabit, the Piou and Rioulong viaducts, the bridge over the river Lot at la Mothe, and took part in the preliminary design of the Tanus viaduct over the river Viaur. With his team he also controlled the execution design of several important bridges in addition to those of which he developed the project : the bridge over the river Marne and the Neuilly Plaisance viaducts and later the Ru de Maubuée viaduct for the Marne-la-Vallée line of the Paris Mass Transit System, the viaducts over the Gouet and Gouedic at Saint-Brieuc, the Fontenoy viaduct over the river Moselle, the Meylan and Illhof pedestrian cable-stayed bridges, the Tricastin bridge over the Donzère-Mondragon canal and the experimental bridges at La Ferté-Saint-Aubin, Cognac, Arbois and Charolles. He contributed to some technical evolutions, such as for external prestressing, cable-stayed bridges and composite structures. Between January, 1994, and January, 1995, he worked as consultant for the Highways Direction at the Ecole Nationale des Ponts et Chaussées. Since February, 1995 he works as a private consultant. As such he developed the conceptual design of the Avignon viaducts for the French Railways (for the High Speed Train) and was later Michel VIRLOGEUX consultant of the French railways for its erection, and he leaded the control of the design of the Vasco de Gama Bridge for the Portuguese administration (GATTEL).
    [Show full text]
  • Yavuz Sultan Selim Bridge Third Bosphorus Bridge (BB3)
    Yavuz Sultan Selim Bridge Third Bosphorus Bridge (BB3) North of Istanbul across the Bosphorus near the Black Sea (TR) General calculations of the steel structure, construction methods studies, dynamic studies (wind, earthquake, trains) Owner Designers Cost of the works Studies KGM - Turkish ministry of trans- Michel Virlogeux and € 700 M excl. vat. 2012 - 2016 port - Highways department Jean-François Kleïn Execution 2013 - 2016 OA In the central span, the deck is in steel with an orthotropic plate (total steel weight : 45 000 tons). In the side spans, the deck is in concrete. The preliminary design is the result of a competition won by Michel Virlogeux (France) and Jean-François Klein (Switzer- land). The final design is made by T-Ingénierie (Switzerland) and Greisch (Belgium) on behalf of the joint venture Içtas and Astaldi S.P.a. Mission : - global calculations of the structure during its service life; - proposals for construction methods; - design of the steel deck in the main span; Suspended bridge with a main span length of 1 408 m and a - dynamic studies necessary to verify the behaviour of the glo- total length of 2 240 m located at the north of Istanbul near the bal structure: Black Sea. > under the wind (during the service life and the construc- tionstages - verifications made with numerical simulations Like the Brooklyn bridge, the main span is partially suspended and by tests in wind tunnel laboratory), at the pylons by stiffening cables and at the main cables with > under the earthquake and/or the passages of trains. vertical hangers. The top of the pylons is located at 320 m, they are composed of 2 concrete shafts (77 000 tons).
    [Show full text]
  • France Millau Viaduct Viaduc De Millau
    BARTLETT SCHOOL OF PLANNING France Millau Viaduct Viaduc de Millau LATTS 1 This report was compiled by the French OMEGA Team, Ecole Nationales Ponts et Chaussees, Paris, France. Please Note: This Project Profile has been prepared as part of the ongoing OMEGA Centre of Excellence work on Mega Urban Transport Projects. The information presented in the Profile is essentially a 'work in progress' and will be updated/amended as necessary as work proceeds. Readers are therefore advised to periodically check for any updates or revisions. The Centre and its collaborators/partners have obtained data from sources believed to be reliable and have made every reasonable effort to ensure its accuracy. However, the Centre and its collaborators/partners cannot assume responsibility for errors and omissions in the data nor in the documentation accompanying them. 2 CONTENTS Project timeline and decision making process A INTRODUCTION Type of project Current status and parent project: the Highway 75 (A75.) Location Technical attributes: from Normandy Bridge to Millau Viaduct B BACKGROUND TO PROJECTS Principal project objectives Project story line Main actors Key enabling mechanism Outcome Local economic development C MAIN CHARACTERISTICS OF THE PROJECT The choice of the route: integrating local and environmental interests (1988-1990) The project: difficult choice and thorough investigations (1991-1996) Choosing between the high and low solution Definition of the project Competition for the design Selection of the design Conception of the project: elaborating
    [Show full text]
  • Cable-Stayed Bridges
    Cable-Stayed Bridges (Schrägseilbrücken) 31.05.2021 ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures 1 The contents of this Chapter, authored by George Klonaris, are largely based on the lecturer’s tenure with the eminent bridge design firms T.Y. Lin International (5 yrs) and COWI North America (formerly Buckland & Taylor) (6 yrs). Experience and knowledge gained on the analysis, design and construction of cable-stayed bridges through formal training and on-the-job mentoring is reflected herein. Special acknowledgements go to the following individuals: David Goodyear, PE, SE, PEng, NAE (form. Senior Vice President & Chief Bridge Engineer at TYLI) Michael Lamont, PE, SE (Major Bridges Technical Director at HDR, form. at TYLI) Don Bergman, PEng (Vice President and Major Projects Director at COWI North America) Armin Schemmann, PhD, PEng (Senior Bridge Specialist at COWI North America) Dusan Radojevic, PhD, PEng (Northwest Regional Director at TYLI, form. COWI) Andrew Griezic, PhD, PEng, PE (Senior Bridge Specialist at COWI North America) 1 Common aspects Suspension bridges Overview Structural Response Cable-stayed bridges Conceptual Design Construction 31.05.2021 ETH Zürich | Chair of Concrete Structures and Bridge Design | Bridge Design Lectures 2 Recommended References: Podolny, W. & Scalzi, J.B. (1986), “Construction and Design of Cable-Stayed Bridges“, Wiley. Walther, R., Houriet, B., Isler, W., Moïa, P. & Klein, J.F. (1999), “Cable-Stayed Bridges,” 2nd Edition, Thomas Telford. Gimsing, N.J. & Georgakis, C.T. (2012), “Cable Supported Bridges“, Wiley. Svensson, H. (2012), “Cable-Stayed Bridges – 40 Years of Experience Worldwide,” Ernst & Sohn. Setra (2002), Cable Stays – Recommendations of French international commission on Prestressing PTI (2018), DC45.1-18: Recommendations for Stay Cable Design, Testing, and Installation, Post- Tensioning Institute.
    [Show full text]