Competition Studies of Marine Macroalgae in Laboratory Culture

Total Page:16

File Type:pdf, Size:1020Kb

Competition Studies of Marine Macroalgae in Laboratory Culture / Phycol. 26, 18-24 (1990) MINIREVIEW COMPETITION STUDIES OF MARINE MACROALGAE IN LABORATORY CULTURE Christine A. Maggs Departmetit of Biology, Queen's University of Belfast, Belfast, Northerti Ireland BT7 INN and Donald P. Cheney* Biology Department, Northeastern University, Be)ston, Massachusetts 021 15 Competition for space between different species ever, comes from spore culture studies whose ob- of benthic marine algae or between marine algae jectives were mainly taxonomic or developmetital. and encrusting animals has been primarily examined Nevertheless, these provide considerable insight itito in the field (e.g. Dayton 1971, 1975, Kooistra et al, macroalgal intraspecific interactiotis. Most past work, 1989, Paine 1990). Few studies have been conducted as well as otir own, was conducted on red algae. The in laboratory culture, although such an approach examples we will discuss exhibit several life history can provide several advantages. This paper is in- types, which cati be sutnmari/ed as follows (for ftir- tended to review observations from culture studies ther details see West and Homtnersand 1981): 1) by ourselves and others on the general topic of mac- isomorphic, iti which haploid atid diploid spores re- roalgal competition and interaction. By bringing to- sultitig from meiosis and fertilizatioti, respectively, gether a diversity of observations from macroalgal grow itito trtorphologic ally similar gatnetophytic atul culture studies, we hope this brief review will stim- tetrasporophytic thalli that may be entirely crustcjse ulate their greater u.se to test ecological thecjry on or form erect axes from a crustose holdfast (e.g. ccjmpetition. In particular, we will describe the in- Chondrus, Graciiaria): 2) hetc-romorphic, in which teracticjns that occur when fleshy algal crusts, crus- only the haplcjid, gatnetophytic phase develcjps erect tose holdfasts, or sporelings of the same c)r different axes, atid the diploid tetrasporophyte is crustose (e.g. species grow together. Since these morphologies are Gymnogongrus ?f)atens, Phyllophora traillii); 3) Rliodo- restricted to two-dimensional growth, observations physema-typf. in which crusts are haploid and dip- in laboratory culture allow for easy macro- and mi- loidi/ed carpogotiia divide into tetrasporocytes atid croscopic examination of interaction between indi- regetierative tetrasporatigial stalk cells (e.g. Rhodo- viduals (Pentecost 1980) and estimation of ccjmpet- phy.iema elegans, see Satuiclers et al, 1989), itive success by measurements of areas occupied (Dale The ability of sporelittgs atid crusts of a sitigle 1985). species to grow together atul fortn completely co- Culture techniques were first applied to dedicated alesced masses has been described in several studies investigations of competition between species of ma- of erect atid crustose, fleshy and corallitie red algae. rine algae by Russell and Fielding (1974) and Fletch- We propose here that observations of these phe- er (1975). Russell and Fielding examined interspe- nometia ittdicate that cooperatioti, rather thati com- cific competition among a brown, a red and a green pc'titioti, is the tnost sigtiificant feature of intraspe- filamentous algal species {Ectocarpus siliculosus, Eyth- cific interactiotis of this type. We suggest that the rotrichia carnea and Ulothrix fiacca). Fletcher worked benefits of growitig as completely coalesced groups with a brown crustcjse alga {Ralfsia spongiocarpa) and of crusts cjr platits with crustose holdfasts outweigh twcj red crusts {Porphyrodiscus simulans and Rhodo- the costs associated with crowding. The formatioti physerna elegans). Both studies reported evidence of of intercellular connectiotis fjetween contiguous in- interspecific inhibition. Fletcher suggested that the dividuals is central to the ability to cooperate. production of antibiotic compounds (allelopathy) by Ralfsia enabled it to inhibit the growth of the two .Sporeling CoalesceJice red algal cru.sts. Antibiotic compounds have also been The most detailed observations to date on spore- implicated in the inhibition of benthic diatom growth litig coalescetice are of the red alga Chondrus crispus in ctikures of crustose germlings af Chondrus crispus (Gigartinaceae), which has an i.somorphic life history (Khfaji and Boney 1979) and may be involved in the involving the formatioti of erect fnjtids frotn basal suppression of cyanobacteria by the red crust Peys- discs of sporelitigs of both phases. The coalescence sonrielia immersa (Maggs, unpubl.). of basal discs of sporelings of each phase has been The principal contribution of culture studies to described by several atithors iticluding Rosenvinge our understanding of macroalgal cc^mpetition, how- (1931), Tveter and Mathieson (1976), Chen and Taylor (1976) and Tveter-Gallagher and Mathiesoti ' Address for reprint requests. (1980). Based oti light (Tveter atid Mathieson 1976) 18 MACROALGAL COMPETTTION IN l.ABORA TORY CULTURE 19 I'l.AtK, II. Ktc.s. 1-4. Se-cond:it) pit coniic-c tions and cell fusions formed between cells of two crustose algal lndtviduals when crust "latgins come into contact. Arrows show dire-ction of growth of each individual; arrowheads indicate cell fusions or secondarv P'pitt oniiectiotis betwc-eti cc-lls ot cliflc-ient th.illi. Scale- bars = 20 tim. Ftc. 1. Gwinogoiigriis tpatens. Secotularv pit connections between cells vvo ge-iu-ticiilly icic-iitit al diploid c rusts grown Irom spores of a single cystocarp. Mativ secondarv pit contiections cKcur between cells «itliin a tluilliis ,md ic-sult in iiiultinuc le.ite- cells. Ft<;. 2, Phytlophora traitlii. Secondary pit connections between cells of geneticallv < itlc-rciK sililiiig basal discs gruuti Irom meiotic tetraspores of a single parent. FtG. 3. Gtow.':tphonia capittans. .^butidant cell fusions oiiiic-d along du- line of junction between two ge-ne-tieallv idetitical crusts derived fVoni tnitotic bispores. FtG. 4. Rhodophysema rtegans. v.cll lusions between two genetically diffc-rent crusts grown ftom meiotic tetraspores. ;nul electron tnicnxscope(Tveter-Gallagher and Ma- pit connectioti (Goff atid Coleman 1986, Pueschel thieson 1980) ob.servatiotis, coalesc c-tue in Chondrus 1988). Botli nuclei persist in binucleate cells btu, as has been cliatac teri/ed as exhibiting the followitig far as we know, there is no evidetice as to whether leatures: vertical atul hori/ontal alignment of cells, one or both titiclei participate iti cellular control. ( uticular contituiity, atid fortiiation of secotulaty pit Meristetnatic dividitig cells do not normally become totitiections between cells of confluent itulividual bitiucleate or nuiltiiuuieate. Some parasitic red al- spotelings. Otuc- two or tiiore sporc-litigs have co- gae form secondary pit connections with host cells ale.scc-d, thc-y may bc-conie indistinguishable. Occa- (Goff and Coletnati 1985). siotially, however, a furrow is left along the junction As yet, very little is known about what effect, if between itidividuals due to cellular damage during am, getietic sitnilaritv and ploicU le\el have upon coalescetu:e. The- degiee of datnage appears to be coalescence and formatioti of secotidarv pit contiec- lelated to the stage- oidc-M-loptiu-nt of the sporelings tiotis. We ha\e exatnitied several members of the at the iiiii(> ol coalescetice, with less damage occtn- Phyllophoraceae with a view to detectitig the effect '•"iR tn vounger platits (1 vetet-Gallagher and Ma- of getietic relatiotiships on the formation c^f second- thteson 1980). SitiiilarcoalesccMiceoi sporelings also ary pit connections betweeti individuals. Secondary has been teportecl in the- red algae- Mastocarpus (as pit cotitiec tions were obsetved betweeti the follow- '"^'•"'"""") stellatus (Petrocelidaceae) (Tveter and ing geneticallv idetitical itidividuals grown from mi- Mathieson 1976, Rueness 1978) and Grncilnria ver- tospores: tetrasporophytic crusts of Gymnogongrus ruco.<ia (Gracilariaceae) (joties 1956). fpalens derived frotn a sitigle cvstocarp (Plate II, Fig. The fornuitioti of secotidary pit contirctioiis be- 1): gatnetophytic basal discs of clonal Gymnogongrus 'weeti basal discs of coalesced' red algal sporelings <lri'onien.\ts. The cells linked by secotidarv pit con- ;>nd confluent crusts is probably far tnoif cotiinioti- nections between individual holdfast discs of Gym- Placc- than appreciated iti tlu- lifeiaturc-. Primary pit tiogoiigriis spp. ganic-tophytes (Plate II, Fig. 1) are '•"'itieclions litiking kindic-d cells are chaiacteri.stic hotnokaryotic, coiitaitiitig getieticallv identical nu- 'ms' ^''''''^^'''ophycidae (see Pueschel and Cole clei. Secotidatv p'n cotniections were also formed - 82). Sfcouclaiy pit connections are fotind iti a between genetically differetit, although sibling, ga- great diversity of red algae fVotn many floricleophv- metophytic discs of Phxllophora traillii grown f^"rom <^ean orders. In most species, secondary pit cotinrc- meiotic tettaspotes (see Maggs 1989): the.se resulted ttons develop by ihe uneciual divisionOf an inter- in heteiokaiyotic cells (Plate 11, Fig. 2). Ihis raises ca at y a^ll lo produce a nucleate conjutictor cell that the possibility that coalescetice between genetically fuses with a neighboritig cell. This results in a tini- difTeient individuals cotild result in chimeric mul- nucleate and a biiiuc leate cell linked by a secondary tiaxial axes with filaments of two getiotypes. If co- 20 CHRIS flNE A. MAGGS AND DONALD P. ClfFNFY III. Ftcs. 1-3 Spore-hug coalescetice sec^uence fx-tween germinatitig ganic-t<>|)hylc-s
Recommended publications
  • The Associations Between Pteridophytes and Arthropods
    FERN GAZ. 12(1) 1979 29 THE ASSOCIATIONS BETWEEN PTERIDOPHYTES AND ARTHROPODS URI GERSON The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel. ABSTRACT Insects belonging to 12 orders, as well as mites, millipedes, woodlice and tardigrades have been collected from Pterldophyta. Primitive and modern, as well as general and specialist arthropods feed on pteridophytes. Insects and mites may cause slight to severe damage, all plant parts being susceptible. Several arthropods are pests of commercial Pteridophyta, their control being difficult due to the plants' sensitivity to pesticides. Efforts are currently underway to employ insects for the biological control of bracken and water ferns. Although Pteridophyta are believed to be relatively resistant to arthropods, the evidence is inconclusive; pteridophyte phytoecdysones do not appear to inhibit insect feeders. Other secondary compounds of preridophytes, like prunasine, may have a more important role in protecting bracken from herbivores. Several chemicals capable of adversely affecting insects have been extracted from Pteridophyta. The litter of pteridophytes provides a humid habitat for various parasitic arthropods, like the sheep tick. Ants often abound on pteridophytes (especially in the tropics) and may help in protecting these plants while nesting therein. These and other associations are discussed . lt is tenatively suggested that there might be a difference in the spectrum of arthropods attacking ancient as compared to modern Pteridophyta. The Osmundales, which, in contrast to other ancient pteridophytes, contain large amounts of ·phytoecdysones, are more similar to modern Pteridophyta in regard to their arthropod associates. The need for further comparative studies is advocated, with special emphasis on the tropics.
    [Show full text]
  • Histochemistry of Spore Mucilage and Inhibition of Spore Adhesion in Champia Parvula, a Marine Alga
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 1994 Histochemistry of Spore Mucilage and Inhibition of Spore Adhesion in Champia parvula, A Marine Alga Martha E. Apple University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Apple, Martha E., "Histochemistry of Spore Mucilage and Inhibition of Spore Adhesion in Champia parvula, A Marine Alga" (1994). Open Access Dissertations. Paper 783. https://digitalcommons.uri.edu/oa_diss/783 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. HISTOCHEMISTRY OF SPORE MUCILAGE AND INHIBITION OF SPORE ADHESION IN CHAMPIA PARVULA, A MARINE RED ALGA. BY MARTHA E. APPLE A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 1994 DOCTOR OF PHILOSOPHY DISSERTATION OF MARTHA E. APPLE APPROVED: Dissertation Committee Major Professor DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 1994 Abstract Spores of the marine red alga, Champja parvu!a, attached initially to plastic or glass cover slips by extracellular mucilage. Adhesive rhizoids emerged from germinating spores, provided a further basis of attachment and rhizoidal division formed the holdfast. Mucilage of holdfasts and attached spores stained for sulfated and carboxylated polysaccharides. Rhizoids and holdfast cells but not mucilage stained for protein. Removal of holdfasts with HCI revealed protein anchors in holdfast cell remnants. Spores detached when incubated in the following enzymes: 13-galactosidase, protease, ce!!u!ase, a-amylase, hya!uronidase, sulfatase, and mannosidase.
    [Show full text]
  • Influence of Abiotic and Biotic Factors On
    id26692843 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com DBBecember 2i0i09ooTTeecchhnnoollVolooume g3g Issuyye 4 Trade Science Inc. An Indian Journal FULL PAPER BTAIJ, 3(4), 2009 [242-250] Influence of abiotic and biotic factors on developmental biology of four ferns of Western Ghats, India M.Johnson*1,2, V.S.Manickam1 ’ 1Centre for Biodiversity and Biotechnology, St. Xavier s College (Autonomous), Palayamkottai, TN, (INDIA) 2Post Box no.1501, Biology Department, Bahir Dar University, Bahir Dar, (ETHIOPIA) E-mail : [email protected] Received: 14th November, 2009 ; Accepted: 24th November, 2009 ABSTRACT KEYWORDS The present study examined the influence of age, season and pH on spore Abiotic; germination, early gametophyte development and sporophyte formation Alternation of generations; of four rare and endangered ferns, viz. Cheilanthes viridis (Forssk.) Swartz, Gametophyte; Phlebodium aureum L., Pronephrium triphyllum (Sw.) Holttum and Sporophyte; Sphaerostephanos unitus (L.) (Holttum) of Western Ghats of South India. Isozyme; Highest percentage of spore germination was achieved only in the ma- Zymogram. tured spore inoculated media, whereas the young spores failed to germi- nate. Highest percentage of spore germination was achieved in the spores collected in the month of February for Cheilanthes viridis; July- Phlebodium aureum; March-Pronephrium triphyllum and January for Sphaerostephanos unitus. Germination of spores occurred in a wide range of pH from 4 to 8. For Cheilanthes viridis, highest percentage of spore 5.8. germination (88.8 1.61) occurred on Knudson C Solid medium at pH Mitra liquid medium at pH 5.5 showed highest percentage (81.3 0.84) of spore germination for Phlebodium aureum.
    [Show full text]
  • 2010 Literature Citations
    Annual Review of Pteridological Research - 2010 Literature Citations All Citations 1. Abbasi, T. & S. A. Abbasi. 2010. Enhancement in the efficiency of existing oxidation ponds by using aquatic weeds at little or no extra cost to the macrophyte-upgraded oxidation pond (MUOP). Bioremediation Journal 14: 67-80. [India; Salvinia molesta] 2. Abbasi, T. & S. A. Abbasi. 2010. Factors which facilitate waste water treatment by aquatic weeds - the mechanism of the weeds' purifying action. International Journal of Environmental Studies 67: 349-371. [Salvinia] 3. Abeli, T. & M. Mucciarelli. 2010. Notes on the natural history and reproductive biology of Isoetes malinverniana. Amerian Fern Journal 100: 235-237. 4. Abraham, G. & D. W. Dhar. 2010. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. Protoplasma 245: 105-111. 5. Adam, E., O. Mutanga & D. Rugege. 2010. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management 18: 281-296. [Asplenium nidus] 6. Adams, C. Z. 2010. Changes in aquatic plant community structure and species distribution at Caddo Lake. Stephen F. Austin State University, Nacogdoches, Texas USA. [Thesis; Salvinia molesta] 7. Adie, G. U. & O. Osibanjo. 2010. Accumulation of lead and cadmium by four tropical forage weeds found in the premises of an automobile battery manufacturing company in Nigeria. Toxicological and Environmental Chemistry 92: 39-49. [Nephrolepis biserrata] 8. Afshan, N. S., S. H. Iqbal, A. N. Khalid & A. R. Niazi. 2010. A new anamorphic rust fungus with a new record of Uredinales from Azad Kashmir, Pakistan. Mycotaxon 112: 451-456.
    [Show full text]
  • Evolutionary Significance of Bryophytes
    Cambridge University Press 978-0-521-87712-1 - Introduction to Bryophytes Edited by Alain Vanderpoorten and Bernard Goffinet Excerpt More information 1 Evolutionary significance of bryophytes Vascular plants, particularly seed plants, dominate vegetation throughout much of the world today, from the lush rainforests of the tropics harbouring a vast diversity of angiosperms, to the boreal forests of coniferous trees, draping the northern latitudes of the globe. This dominance in the landscape is the result of a long evolutionary history of plants conquering land. Evolution is the result of a suite of incessant attempts to improve fitness and take advantage of opportunities, such as escaping competition and occupying a new habitat. Pilgrims, fleeing the biotic interactions in the aquatic habitat, faced severe abiotic selection forces on land. How many attempts were made to conquer land is not known, but at least one of them led to the successful establishment of a colony. At least one population of one species had acquired a suite of traits that allowed it to complete its life cycle and persist on land. The ancestor to land plants was born. It may have taken another 100 million years for plants to overcome major hurdles, but by the Devonian Period (approximately 400 mya), a diversity of plants adapted to the terrestrial environment and able to absorb water and nutrients, and transport and distribute them throughout their aerial shoots, occupied at least some portions of the land masses. Soon thereafter, plants were freed from the necessity of water for sexual reproduction, by transporting their sperm cells in pollen grains carried by wind or insects to the female sex organs, and seeds protected the newly formed embryo.
    [Show full text]
  • Spore Germination and Young Gametophyte Development of the Endemic Brazilian Hornwort Notothylas Vitalii Udar & Singh
    Acta Botanica Brasilica - 31(2): 313-318. April-June 2017. doi: 10.1590/0102-33062016abb438 Short communication Spore germination and young gametophyte development of the endemic Brazilian hornwort Notothylas vitalii Udar & Singh (Notothyladaceae - Anthocerotophyta), with insights into sporeling evolution Bárbara Azevedo Oliveira1, Anna Flora de Novaes Pereira2, Kátia Cavalcanti Pôrto3 and Adaíses Simone Maciel-Silva1* Received: December 9, 2016 Accepted: March 2, 2017 . ABSTRACT Notothylas vitalii is an endemic Brazilian hornwort species, easily identifi ed by the absence of pseudoelaters and columella, and the presence of yellow spores. Plant material was collected in Recife, Brazil, and the spores were sown onto Knop’s medium, germinating after thirty days only with the presence of light. Germination occurred outside the exospore, and only after the walls had separated into three or four sections did a globose sporeling initiate its development. Following longitudinal and transversal divisions, the initial loose mass of cells became a thalloid gametophyte, subsequently developing into a rosette-like juvenile thallus with fl attened lobes. Additional information concerning sporeling types in key genera of hornworts, such as Folioceros and Phymatoceros, will be crucial for inferring the possible ancestral type and the evolution of this trait among hornworts. Our study supports the necessity of supplementary studies on sporeling development, combined with morphological and phylogenetic investigations, to help elucidate the evolution of the Anthocerotophyta and their distribution patterns. Keywords: bryophytes, exosporous germination, phylogeny, sporeling development, yellow spores Th e earliest developmental stages of diff erent bryophyte cristula (Renzaglia & Bartholomew 1985) and Monoclea species can provide important sources of phylogenetic and gottschei (Bartholomew-Began & Crandall-Stotler 1994), evolutionary information (Nehira 1983; Mishler 1986; mosses Braunia secunda, Hedwigia ciliata, Hedwigidium Duckett et al.
    [Show full text]
  • The Effect of Temperature on the Phenology of Germination of Isoëtes Lacustris
    Preslia 86: 279–292, 2014 279 The effect of temperature on the phenology of germination of Isoëtes lacustris Vliv teploty na fenologii klíčení druhu Isoëtes lacustris Martina Č t v r tlíková1,2, Petr Z n a c h o r1,3 & Jaroslav V r b a1,3 1Biology Centre, Academy of Sciences of the Czech Republic, Institute of Hydrobiology, Na Sádkách 7, CZ–37005 České Budějovice, Czech Republic, e-mail: [email protected]; 2Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-37982 Třeboň, Czech Republic, e-mail: [email protected]; 3Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic, e-mail: [email protected] Čtvrtlíková M., Znachor P. & Vrba J. (2014): The effect of temperature on the phenology of germi- nation of Isoëtes lacustris. – Preslia 86: 279–292. Isoëtes lacustris (quillwort) is an aquatic macrophyte commonly dominating oligotrophic softwater lakes in Europe. Reproductive ecology of a relic population of quillwort based on spore germination was studied in an acidified mountain lake in the Czech Republic. In a four-year experiment, we recorded temperature-related temporal changes in micro- and macrospore germination and sporeling establishment in (i) natural in situ conditions in Černé jezero lake and (ii) in the laboratory at various temperatures. Germination of both micro- and macrospores increased gradually over four consecutive growth seasons. Several annual cohorts of germinating macrospores born together in a sporangium indicate that spores remain viable for up to several years and the formation of a spore bank.
    [Show full text]
  • Bryophyte Biology Second Edition
    This page intentionally left blank Bryophyte Biology Second Edition Bryophyte Biology provides a comprehensive yet succinct overview of the hornworts, liverworts, and mosses: diverse groups of land plants that occupy a great variety of habitats throughout the world. This new edition covers essential aspects of bryophyte biology, from morphology, physiological ecology and conservation, to speciation and genomics. Revised classifications incorporate contributions from recent phylogenetic studies. Six new chapters complement fully updated chapters from the original book to provide a completely up-to-date resource. New chapters focus on the contributions of Physcomitrella to plant genomic research, population ecology of bryophytes, mechanisms of drought tolerance, a phylogenomic perspective on land plant evolution, and problems and progress of bryophyte speciation and conservation. Written by leaders in the field, this book offers an authoritative treatment of bryophyte biology, with rich citation of the current literature, suitable for advanced students and researchers. BERNARD GOFFINET is an Associate Professor in Ecology and Evolutionary Biology at the University of Connecticut and has contributed to nearly 80 publications. His current research spans from chloroplast genome evolution in liverworts and the phylogeny of mosses, to the systematics of lichen-forming fungi. A. JONATHAN SHAW is a Professor at the Biology Department at Duke University, an Associate Editor for several scientific journals, and Chairman for the Board of Directors, Highlands Biological Station. He has published over 130 scientific papers and book chapters. His research interests include the systematics and phylogenetics of mosses and liverworts and population genetics of peat mosses. Bryophyte Biology Second Edition BERNARD GOFFINET University of Connecticut, USA AND A.
    [Show full text]
  • Sporeling Development in Athalamia Pusilla By
    ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Austria) Vol. 14 Fasc. 3 — 4 229-237 28. I. 1972 Contribution from the Department of Botany, University of Lueknow, Lucknow (India), New Series (Bryophyta) No. 69 Sporeling Development in Athalamia pusilla By Ram UDAR & Dinesh. KUMAR *) With 30 Figures Introduction Recent contributions on Indian Sauteriaceae include the sporeling development and regeneration in Athalamia pinguis (UDAR 1958b), its (A. pinguis) morphological features along with the details of life history (UDAR 1960), and a report of A. pusilla from South India (UDAR & SRIVAS- TAVA 1965). The species under consideration (i. e. A. pusilla) has been earlier reported also from several localities in the Western Himalayas (KASHYAP 1929). Amongst the two Indian species of the genus Athalamia, considerably much attention has been laid on A. pinguis. The other species (i. e. A. pusilla) has not been so far worked out in detail as regards its life history and stages in the sporeling development. A detailed investigation concerning the life history of this plant, which includes the stages in the ontogeny of antheridia, archegonia and sporophyte, is under progress. The present paper deals with the early stages of sporeling development in A. pusilla so far undescribed. Materials and methods The specimens of A. pusilla were collected by one of us (R. U.) from Deoban in the North-Western Himalayas at an altitude of ca 8,000 ft. — 9,500 ft. during the last week of September 1969. This is the time when the plants normally complete their life cycle and many plants show dehisced capsules or intact capsules with mature spores.
    [Show full text]
  • Marchantiophyta
    Glime, J. M. 2017. Marchantiophyta. Chapt. 2-3. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-3-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 9 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-3 MARCHANTIOPHYTA TABLE OF CONTENTS Distinguishing Marchantiophyta ......................................................................................................................... 2-3-2 Elaters .......................................................................................................................................................... 2-3-3 Leafy or Thallose? ....................................................................................................................................... 2-3-5 Class Marchantiopsida ........................................................................................................................................ 2-3-5 Thallus Construction .................................................................................................................................... 2-3-5 Sexual Structures ......................................................................................................................................... 2-3-6 Sperm Dispersal ........................................................................................................................................... 2-3-8 Class Jungermanniopsida .................................................................................................................................
    [Show full text]
  • The Sporeling of Ceratopteris*
    3~ THE SPORELING OF CERATOPTERIS* by YOU-LONG CHIANG and SU-HWA CHIANG Department of Botanv, National Taiwan University, Taipei ABSTRACT CHIANG, Y. Land SU-HWA CHIANG. (National Taiwan University, Taipei) The <,poreling of Ceratopteris. Taiwania 8: 35-50. 1962. The organography and anatomy of the sporeling of Ceratopteris (C. thaiictrotdes and C. pteri· doides) are described. Unlike the adult sporophyte which has a greatly reduced stem known as the leafy stem, the sporeling of this fern has an elongated, more or less erect stem with nodes and internodes. It is snggested that light is an important factor affecting the internode elongation. The major parts of the plant body in the sporeling are: primary root, adventitious root, node. internode, hypocotyl. epicotyl. cotyledon, leaf. and terminal bud. The vascular system is extremely simple; only a single strand of vascular tissnes runs through the whole plant body except in the laminum where the bundle forms a network. The stele is a protostele. Evidence is presented showing that the plant body of the sporeling is an aggregation of phytons. The adult phytons, each of which has a complete set of the three fundamental parts (i.e., leaf. stem, and root), are joined one after another with the short interconnecting strand of vascular tissues. The nature and origin of the interconnecting vascular strand are described. The stem of the phyton, which is morphologically the basal part of the leaf, contributes as an internode to constitute the whole plant body. The sporophyte of this fern is thus considered to be a complex organism. The new phytons are derived from the apical phyton initial.
    [Show full text]
  • Bryophyte Ecology Glossary
    Glime, J. M. and Chavoutier, L. 2017. Glossary. In: Glime, J. M. Bryophyte Ecology. Ebook sponsored by Michigan Technological G-1 University and the International Association of Bryologists. Last updated 16 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. GLOSSARY JANICE GLIME AND LEICA CHAVOUTIER 1n: having only one set of chromosomes s.s.: Latin sensu stricto, meaning strict sense sp.: species 2n: having two sets of chromosomes spp.: more than one species 2,4-D: 2,4-dichlorophenoxyacetic acid; herbicide that mimics ssp.: subspecies IAA var.: variety 6-methoxybenzoxazolinone (6-MBOA): glycoside derivative; insect antifeedant; can stimulate reproductive activity in some small mammals that eat them by providing growth abiosis: absence or lack of life; nonviable state substances abiotic: referring to non-living and including dust and other >>: much greater particles gained from atmosphere, organic leachates from bryophytes (and host trees for epiphytes), decaying ♀: sign meaning female, i.e. bearing archegonia bryophyte parts, and remains of dead inhabitants; usually ♂: symbol meaning male includes substrate abortive: having development that is incomplete, abnormal, A stopped before maturity α-amylase: enzyme that hydrolyses alpha bonds of large, alpha- abscisic acid: ABA; plant hormone (growth regulator) linked polysaccharides, such as starch and glycogen, yielding abscission: process where plant organs are shed; e.g. deciduous glucose and maltose leaves in autumn A horizon: dark-colored soil layer with organic
    [Show full text]