Histochemistry of Spore Mucilage and Inhibition of Spore Adhesion in Champia Parvula, a Marine Alga
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 5 Chapter 1 Introduction I. LIFE CYCLES and DIVERSITY of VASCULAR PLANTS the Subjects of This Thesis Are the Pteri
Chapter 1-15 Chapter 1 Introduction I. LIFE CYCLES AND DIVERSITY OF VASCULAR PLANTS The subjects of this thesis are the pteridophytes and seed plants that are conventionally classified as the vascular plants or tracheophytes. Vascular plants were traditionally defined by the possession of specialized conducting tissues, called phloem and xylem. Mosses are now believed to have inherited their conducting tissues from a common ancestor with the tracheophytes (Mishler & Churchill 1984) but are not considered in this thesis. Vascular plants can be divided into four groups with respect to life cycle. These groups are homosporous pteridophytes, heterosporous pteridophytes, gymnosperms and angiosperms. This is not intended to be a phylogenetic classification. There are about a quarter of a million species of vascular plant alive today. The vast majority are angiosperms and most of the remainder are homosporous pteridophytes. Heterosporous pteridophytes and gymnosperms contribute only a small number of species (Table 1.1). TABLE 1.1 Estimated number of extant species in each of the major groups of vascular plants (data from Parker 1982). Homosporous pteridophytes 12,000 species Heterosporous pteridophytes <1,000 species Gymnosperms <1,000 species Angiosperms >200,000 species A. Homosporous pteridophytes Homosporous pteridophytes produce a single type of spore. Spores are dispersed and develop into photosynthetic or mycoparasitic gametophytes. A gametophyte's gender is indeterminate at the time of spore dispersal, and a single gametophyte may produce eggs and/or sperm. Sperm are motile, and require free water to fertilize eggs. The young sporophyte is nourished by the maternal gametophyte during early development but later becomes Chapter 1-16 nutritionally independent. -
Reproduction in Plants Which But, She Has Never Seen the Seeds We Shall Learn in This Chapter
Reproduction in 12 Plants o produce its kind is a reproduction, new plants are obtained characteristic of all living from seeds. Torganisms. You have already learnt this in Class VI. The production of new individuals from their parents is known as reproduction. But, how do Paheli thought that new plants reproduce? There are different plants always grow from seeds. modes of reproduction in plants which But, she has never seen the seeds we shall learn in this chapter. of sugarcane, potato and rose. She wants to know how these plants 12.1 MODES OF REPRODUCTION reproduce. In Class VI you learnt about different parts of a flowering plant. Try to list the various parts of a plant and write the Asexual reproduction functions of each. Most plants have In asexual reproduction new plants are roots, stems and leaves. These are called obtained without production of seeds. the vegetative parts of a plant. After a certain period of growth, most plants Vegetative propagation bear flowers. You may have seen the It is a type of asexual reproduction in mango trees flowering in spring. It is which new plants are produced from these flowers that give rise to juicy roots, stems, leaves and buds. Since mango fruit we enjoy in summer. We eat reproduction is through the vegetative the fruits and usually discard the seeds. parts of the plant, it is known as Seeds germinate and form new plants. vegetative propagation. So, what is the function of flowers in plants? Flowers perform the function of Activity 12.1 reproduction in plants. Flowers are the Cut a branch of rose or champa with a reproductive parts. -
Heterospory: the Most Iterative Key Innovation in the Evolutionary History of the Plant Kingdom
Biol. Rej\ (1994). 69, l>p. 345-417 345 Printeii in GrenI Britain HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM BY RICHARD M. BATEMAN' AND WILLIAM A. DiMlCHELE' ' Departments of Earth and Plant Sciences, Oxford University, Parks Road, Oxford OXi 3P/?, U.K. {Present addresses: Royal Botanic Garden Edinburiih, Inverleith Rojv, Edinburgh, EIIT, SLR ; Department of Geology, Royal Museum of Scotland, Chambers Street, Edinburgh EHi ijfF) '" Department of Paleohiology, National Museum of Natural History, Smithsonian Institution, Washington, DC^zo^bo, U.S.A. CONTENTS I. Introduction: the nature of hf^terospon' ......... 345 U. Generalized life history of a homosporous polysporangiophyle: the basis for evolutionary excursions into hetcrospory ............ 348 III, Detection of hcterospory in fossils. .......... 352 (1) The need to extrapolate from sporophyte to gametophyte ..... 352 (2) Spatial criteria and the physiological control of heterospory ..... 351; IV. Iterative evolution of heterospory ........... ^dj V. Inter-cladc comparison of levels of heterospory 374 (1) Zosterophyllopsida 374 (2) Lycopsida 374 (3) Sphenopsida . 377 (4) PtiTopsida 378 (5) f^rogymnospermopsida ............ 380 (6) Gymnospermopsida (including Angiospermales) . 384 (7) Summary: patterns of character acquisition ....... 386 VI. Physiological control of hetcrosporic phenomena ........ 390 VII. How the sporophyte progressively gained control over the gametophyte: a 'just-so' story 391 (1) Introduction: evolutionary antagonism between sporophyte and gametophyte 391 (2) Homosporous systems ............ 394 (3) Heterosporous systems ............ 39(1 (4) Total sporophytic control: seed habit 401 VIII. Summary .... ... 404 IX. .•Acknowledgements 407 X. References 407 I. I.NIRODUCTION: THE NATURE OF HETEROSPORY 'Heterospory' sensu lato has long been one of the most popular re\ie\v topics in organismal botany. -
The Associations Between Pteridophytes and Arthropods
FERN GAZ. 12(1) 1979 29 THE ASSOCIATIONS BETWEEN PTERIDOPHYTES AND ARTHROPODS URI GERSON The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel. ABSTRACT Insects belonging to 12 orders, as well as mites, millipedes, woodlice and tardigrades have been collected from Pterldophyta. Primitive and modern, as well as general and specialist arthropods feed on pteridophytes. Insects and mites may cause slight to severe damage, all plant parts being susceptible. Several arthropods are pests of commercial Pteridophyta, their control being difficult due to the plants' sensitivity to pesticides. Efforts are currently underway to employ insects for the biological control of bracken and water ferns. Although Pteridophyta are believed to be relatively resistant to arthropods, the evidence is inconclusive; pteridophyte phytoecdysones do not appear to inhibit insect feeders. Other secondary compounds of preridophytes, like prunasine, may have a more important role in protecting bracken from herbivores. Several chemicals capable of adversely affecting insects have been extracted from Pteridophyta. The litter of pteridophytes provides a humid habitat for various parasitic arthropods, like the sheep tick. Ants often abound on pteridophytes (especially in the tropics) and may help in protecting these plants while nesting therein. These and other associations are discussed . lt is tenatively suggested that there might be a difference in the spectrum of arthropods attacking ancient as compared to modern Pteridophyta. The Osmundales, which, in contrast to other ancient pteridophytes, contain large amounts of ·phytoecdysones, are more similar to modern Pteridophyta in regard to their arthropod associates. The need for further comparative studies is advocated, with special emphasis on the tropics. -
Spore Reproduction of Japanese Climbing Fern in Florida As a Function of Management Timing
Spore Reproduction of Japanese Climbing Fern in Florida as a Function of Management Timing Candice M. Prince1, Dr. Gregory E. MacDonald1, Dr. Kimberly Bohn2, Ashlynn Smith1, and Dr. Mack Thetford1 1University of Florida, 2Pennsylvania State University Photo Credit: Chris Evans, University of Illinois, Bugwood.org Exotic climbing ferns in Florida Old world climbing fern Japanese climbing fern (Lygodium microphyllum) (Lygodium japonicum) Keith Bradley, Atlas of Florida Vascular Plants Chris Evans, University of Illinois, Bugwood.org Japanese climbing fern (Lygodium japonicum) • Native to temperate and tropical Asia • Climbing habit • Early 1900s: introduced as an ornamental1 • Long-distance dispersal via wind, pine straw bales2,3 Chris Evans, University of Illinois, Bugwood.org Dennis Teague, U.S. Air Force, Bugwood.org Distribution • Established in 9 southeastern states • In FL: present throughout the state, USDA NRCS National Plant Data Team, 2016 but most invasive in northern areas • Winter dieback, re-sprouts from rhizomes1 • Occurs in mesic and temporally hydric areas1 Atlas of Florida Vascular Plants, Institute of Systemic Botany, 2016 Impacts Chris Evans, University of Illinois, Bugwood.org • Smothers and displaces vegetation, fire ladders • Florida Exotic Pest Plant Council: Category I species Chuck Bargeron, University of Georgia, Bugwood.org • Florida Noxious Weed List • Alabama Noxious Weed List (Class B) Japanese climbing fern: life cycle John Tiftickjian, Sigel Lab, University of Delta State University Louisiana at Lafayette -
Educator Guide
Educator Guide Presented by The Field Museum Education Department INSIDE: s )NTRODUCTION TO "OTANY s 0LANT $IVISIONS AND 2ELATED 2ESEARCH s #URRICULUM #ONNECTIONS s &OCUSED &IELD 4RIP !CTIVITIES s +EY 4ERMS Introduction to Botany Botany is the scientific study of plants and fungi. Botanists (plant scientists) in The Field Museum’s Science and Education Department are interested in learning why there are so many different plants and fungi in the world, how this diversity is distributed across the globe, how best to classify it, and what important roles these organisms play in the environment and in human cultures. The Field Museum acquired its first botanical collections from the World’s Columbian Exposition of 1893 when Charles F. Millspaugh, a physician and avid botanist, began soliciting donations of exhibited collections for the Museum. In 1894, the Museum’s herbarium was established with Millspaugh as the Museum’s first Curator of Botany. He helped to expand the herbarium to 50,000 specimens by 1898, and his early work set the stage for the Museum’s long history of botanical exploration. Today, over 70 major botanical expeditions have established The Field’s herbarium as one of the world’s preeminent repositories of plants and fungi with more than 2.7 million specimens. These collections are used to study biodiversity, evolution, conservation, and ecology, and also serves as a depository for important specimens and material used for drug screening. While flowering plants have been a major focus during much of the department’s history, more recently several staff have distinguished themselves in the areas of economic botany, evolutionary biology and mycology. -
Plant Propagation Lab Exercise Module 2
Plant Propagation Lab Exercise Module 2 PROPAGATION OF SPORE BEARING PLANTS FERNS An introduction to plant propagation laboratory exercises by: Gabriel Campbell-Martinez and Dr. Mack Thetford Plant Propagation Lab Exercise Module 2 PROPAGATION OF SPORE BEARING PLANTS FERNS An introduction to plant propagation laboratory exercises by: Gabriel Campbell-Martinez and Dr. Mack Thetford LAB OBJECTIVES • Introduce students to the life cycle of ferns. • Demonstrate the appropriate use of terms to describe the morphological characteristics for describing the stages of fern development. • Demonstrate techniques for collection, cleaning, and sowing of fern spores. • Provide alternative systems for fern spore germination in home or commercial settings. Fern spore germination Fern relationship to other vascular plants Ferns • Many are rhizomatous and have circinate vernation • Reproduce sexually by spores • Eusporangiate ferns • ~250 species of horsetails, whisk ferns moonworts • Leptosporangiate • ~10,250 species Sporophyte Generation Spores are produced on the mature leaves (fronds) of the sporophyte generation of ferns. The spores are arranged in sporangia which are often inside a structure called a sorus. The sori often have a protective covering of living leaf tissue over them that is called an indusium. As the spores begin to mature the indusium may also go through physical changes such as a change in color or desiccating and becoming smaller as it dries to allow an opening for dispersal. The spores (1n) may be wind dispersed or they may require rain (water) to aid in dispersal. Gametophyte Generation The gametophyte generation is initiated with the germination of the spore (1n). The germinated spore begins to grow and form a heart-shaped structure called a prothallus. -
Influence of Abiotic and Biotic Factors On
id26692843 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com DBBecember 2i0i09ooTTeecchhnnoollVolooume g3g Issuyye 4 Trade Science Inc. An Indian Journal FULL PAPER BTAIJ, 3(4), 2009 [242-250] Influence of abiotic and biotic factors on developmental biology of four ferns of Western Ghats, India M.Johnson*1,2, V.S.Manickam1 ’ 1Centre for Biodiversity and Biotechnology, St. Xavier s College (Autonomous), Palayamkottai, TN, (INDIA) 2Post Box no.1501, Biology Department, Bahir Dar University, Bahir Dar, (ETHIOPIA) E-mail : [email protected] Received: 14th November, 2009 ; Accepted: 24th November, 2009 ABSTRACT KEYWORDS The present study examined the influence of age, season and pH on spore Abiotic; germination, early gametophyte development and sporophyte formation Alternation of generations; of four rare and endangered ferns, viz. Cheilanthes viridis (Forssk.) Swartz, Gametophyte; Phlebodium aureum L., Pronephrium triphyllum (Sw.) Holttum and Sporophyte; Sphaerostephanos unitus (L.) (Holttum) of Western Ghats of South India. Isozyme; Highest percentage of spore germination was achieved only in the ma- Zymogram. tured spore inoculated media, whereas the young spores failed to germi- nate. Highest percentage of spore germination was achieved in the spores collected in the month of February for Cheilanthes viridis; July- Phlebodium aureum; March-Pronephrium triphyllum and January for Sphaerostephanos unitus. Germination of spores occurred in a wide range of pH from 4 to 8. For Cheilanthes viridis, highest percentage of spore 5.8. germination (88.8 1.61) occurred on Knudson C Solid medium at pH Mitra liquid medium at pH 5.5 showed highest percentage (81.3 0.84) of spore germination for Phlebodium aureum. -
Structure and Function of Spores in the Aquatic Heterosporous Fern Family Marsileaceae
Int. J. Plant Sci. 163(4):485–505. 2002. ᭧ 2002 by The University of Chicago. All rights reserved. 1058-5893/2002/16304-0001$15.00 STRUCTURE AND FUNCTION OF SPORES IN THE AQUATIC HETEROSPOROUS FERN FAMILY MARSILEACEAE Harald Schneider1 and Kathleen M. Pryer2 Department of Botany, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, U.S.A. Spores of the aquatic heterosporous fern family Marsileaceae differ markedly from spores of Salviniaceae, the only other family of heterosporous ferns and sister group to Marsileaceae, and from spores of all ho- mosporous ferns. The marsileaceous outer spore wall (perine) is modified above the aperture into a structure, the acrolamella, and the perine and acrolamella are further modified into a remarkable gelatinous layer that envelops the spore. Observations with light and scanning electron microscopy indicate that the three living marsileaceous fern genera (Marsilea, Pilularia, and Regnellidium) each have distinctive spores, particularly with regard to the perine and acrolamella. Several spore characters support a division of Marsilea into two groups. Spore character evolution is discussed in the context of developmental and possible functional aspects. The gelatinous perine layer acts as a flexible, floating organ that envelops the spores only for a short time and appears to be an adaptation of marsileaceous ferns to amphibious habitats. The gelatinous nature of the perine layer is likely the result of acidic polysaccharide components in the spore wall that have hydrogel (swelling and shrinking) properties. Megaspores floating at the water/air interface form a concave meniscus, at the center of which is the gelatinous acrolamella that encloses a “sperm lake.” This meniscus creates a vortex-like effect that serves as a trap for free-swimming sperm cells, propelling them into the sperm lake. -
81 Vascular Plant Diversity
f 80 CHAPTER 4 EVOLUTION AND DIVERSITY OF VASCULAR PLANTS UNIT II EVOLUTION AND DIVERSITY OF PLANTS 81 LYCOPODIOPHYTA Gleicheniales Polypodiales LYCOPODIOPSIDA Dipteridaceae (2/Il) Aspleniaceae (1—10/700+) Lycopodiaceae (5/300) Gleicheniaceae (6/125) Blechnaceae (9/200) ISOETOPSIDA Matoniaceae (2/4) Davalliaceae (4—5/65) Isoetaceae (1/200) Schizaeales Dennstaedtiaceae (11/170) Selaginellaceae (1/700) Anemiaceae (1/100+) Dryopteridaceae (40—45/1700) EUPHYLLOPHYTA Lygodiaceae (1/25) Lindsaeaceae (8/200) MONILOPHYTA Schizaeaceae (2/30) Lomariopsidaceae (4/70) EQifiSETOPSIDA Salviniales Oleandraceae (1/40) Equisetaceae (1/15) Marsileaceae (3/75) Onocleaceae (4/5) PSILOTOPSIDA Salviniaceae (2/16) Polypodiaceae (56/1200) Ophioglossaceae (4/55—80) Cyatheales Pteridaceae (50/950) Psilotaceae (2/17) Cibotiaceae (1/11) Saccolomataceae (1/12) MARATTIOPSIDA Culcitaceae (1/2) Tectariaceae (3—15/230) Marattiaceae (6/80) Cyatheaceae (4/600+) Thelypteridaceae (5—30/950) POLYPODIOPSIDA Dicksoniaceae (3/30) Woodsiaceae (15/700) Osmundales Loxomataceae (2/2) central vascular cylinder Osmundaceae (3/20) Metaxyaceae (1/2) SPERMATOPHYTA (See Chapter 5) Hymenophyllales Plagiogyriaceae (1/15) FIGURE 4.9 Anatomy of the root, an apomorphy of the vascular plants. A. Root whole mount. B. Root longitudinal-section. C. Whole Hymenophyllaceae (9/600) Thyrsopteridaceae (1/1) root cross-section. D. Close-up of central vascular cylinder, showing tissues. TABLE 4.1 Taxonomic groups of Tracheophyta, vascular plants (minus those of Spermatophyta, seed plants). Classes, orders, and family names after Smith et al. (2006). Higher groups (traditionally treated as phyla) after Cantino et al. (2007). Families in bold are described in found today in the Selaginellaceae of the lycophytes and all the pericycle or endodermis. Lateral roots penetrate the tis detail. -
2010 Literature Citations
Annual Review of Pteridological Research - 2010 Literature Citations All Citations 1. Abbasi, T. & S. A. Abbasi. 2010. Enhancement in the efficiency of existing oxidation ponds by using aquatic weeds at little or no extra cost to the macrophyte-upgraded oxidation pond (MUOP). Bioremediation Journal 14: 67-80. [India; Salvinia molesta] 2. Abbasi, T. & S. A. Abbasi. 2010. Factors which facilitate waste water treatment by aquatic weeds - the mechanism of the weeds' purifying action. International Journal of Environmental Studies 67: 349-371. [Salvinia] 3. Abeli, T. & M. Mucciarelli. 2010. Notes on the natural history and reproductive biology of Isoetes malinverniana. Amerian Fern Journal 100: 235-237. 4. Abraham, G. & D. W. Dhar. 2010. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. Protoplasma 245: 105-111. 5. Adam, E., O. Mutanga & D. Rugege. 2010. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management 18: 281-296. [Asplenium nidus] 6. Adams, C. Z. 2010. Changes in aquatic plant community structure and species distribution at Caddo Lake. Stephen F. Austin State University, Nacogdoches, Texas USA. [Thesis; Salvinia molesta] 7. Adie, G. U. & O. Osibanjo. 2010. Accumulation of lead and cadmium by four tropical forage weeds found in the premises of an automobile battery manufacturing company in Nigeria. Toxicological and Environmental Chemistry 92: 39-49. [Nephrolepis biserrata] 8. Afshan, N. S., S. H. Iqbal, A. N. Khalid & A. R. Niazi. 2010. A new anamorphic rust fungus with a new record of Uredinales from Azad Kashmir, Pakistan. Mycotaxon 112: 451-456. -
Evolutionary Significance of Bryophytes
Cambridge University Press 978-0-521-87712-1 - Introduction to Bryophytes Edited by Alain Vanderpoorten and Bernard Goffinet Excerpt More information 1 Evolutionary significance of bryophytes Vascular plants, particularly seed plants, dominate vegetation throughout much of the world today, from the lush rainforests of the tropics harbouring a vast diversity of angiosperms, to the boreal forests of coniferous trees, draping the northern latitudes of the globe. This dominance in the landscape is the result of a long evolutionary history of plants conquering land. Evolution is the result of a suite of incessant attempts to improve fitness and take advantage of opportunities, such as escaping competition and occupying a new habitat. Pilgrims, fleeing the biotic interactions in the aquatic habitat, faced severe abiotic selection forces on land. How many attempts were made to conquer land is not known, but at least one of them led to the successful establishment of a colony. At least one population of one species had acquired a suite of traits that allowed it to complete its life cycle and persist on land. The ancestor to land plants was born. It may have taken another 100 million years for plants to overcome major hurdles, but by the Devonian Period (approximately 400 mya), a diversity of plants adapted to the terrestrial environment and able to absorb water and nutrients, and transport and distribute them throughout their aerial shoots, occupied at least some portions of the land masses. Soon thereafter, plants were freed from the necessity of water for sexual reproduction, by transporting their sperm cells in pollen grains carried by wind or insects to the female sex organs, and seeds protected the newly formed embryo.