The Sporeling of Ceratopteris*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Paper PHYSICOCHEMICAL and PHYTOCHEMICAL CONTENTS of the LEAVES of Acrostichum Aureum L
Journal of Global Biosciences ISSN 2320-1355 Volume 9, Number 4, 2020, pp. 7003-7018 Website: www.mutagens.co.in DOI: www.mutagens.co.in/jgb/vol.09/04/090407.pdf Research Paper PHYSICOCHEMICAL AND PHYTOCHEMICAL CONTENTS OF THE LEAVES OF Acrostichum aureum L. M. Arockia Badhsheeba1 and V. Vadivel2 1Department of UG Biotechnology, Kumararani Meena Muthiah College of Arts and Science, 4 - Crescent Avenue Road, Gandhi Nagar, Adiyar, Chennai – 600 020, Tamil Nadu, India, 2PG and Research Department of Botany, V. O. Chidambaram College, Tuticorin – 628008, Tamil Nadu, India. Abstract The physicochemical parameters are mainly used in judging the purity of the drug. Hence, in the present investigation, moisture content, total ash, water-soluble ash, acid-soluble ash, sulphated ash and different solvent extractive values are determined. Preliminary screening of phytochemicals is a valuable step, in the detection of the bioactive principles present in medicinal plants and subsequently, may lead to drug discovery and development. In the present study, chief phytoconstituents of the Acrostichum aureum L (Fern) medicinal plant of the Pteridaceae family were identified to relate their presence with bioactivities of the plants. These research findings highlight that methanolic extracts of A. aureum leaves had the highest number of phytochemicals compared to other solvent extracts. Hence, methanolic extracts of A. aureum leaves holds the great potential to treat various human diseases and has profound medical applicability. Fluorescence analysis of powder under visible light and UV light helps establish the purity of the drug. Hence, fluorescence analysis of leaf powder is undertaken. Key words: Acrostichum aureum L., Pteridophytes, Physicochemical, Phytochemical Screening, Fluorescence Analysis. -
The Associations Between Pteridophytes and Arthropods
FERN GAZ. 12(1) 1979 29 THE ASSOCIATIONS BETWEEN PTERIDOPHYTES AND ARTHROPODS URI GERSON The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel. ABSTRACT Insects belonging to 12 orders, as well as mites, millipedes, woodlice and tardigrades have been collected from Pterldophyta. Primitive and modern, as well as general and specialist arthropods feed on pteridophytes. Insects and mites may cause slight to severe damage, all plant parts being susceptible. Several arthropods are pests of commercial Pteridophyta, their control being difficult due to the plants' sensitivity to pesticides. Efforts are currently underway to employ insects for the biological control of bracken and water ferns. Although Pteridophyta are believed to be relatively resistant to arthropods, the evidence is inconclusive; pteridophyte phytoecdysones do not appear to inhibit insect feeders. Other secondary compounds of preridophytes, like prunasine, may have a more important role in protecting bracken from herbivores. Several chemicals capable of adversely affecting insects have been extracted from Pteridophyta. The litter of pteridophytes provides a humid habitat for various parasitic arthropods, like the sheep tick. Ants often abound on pteridophytes (especially in the tropics) and may help in protecting these plants while nesting therein. These and other associations are discussed . lt is tenatively suggested that there might be a difference in the spectrum of arthropods attacking ancient as compared to modern Pteridophyta. The Osmundales, which, in contrast to other ancient pteridophytes, contain large amounts of ·phytoecdysones, are more similar to modern Pteridophyta in regard to their arthropod associates. The need for further comparative studies is advocated, with special emphasis on the tropics. -
Plant Development & the Fern Life Cycle Using Ceratopteris Richardii
How-To-Do-It Plant Development& the Fern Life Cycle Using Ceratopterisrichardii KarenS. Renzaglia Thomas R.Warne Leslie G. Hickok Plants can make importantcontribu- gametophytic phase of the life cycle. studies (Hickok 1985; Hickok et al. tions in demonstratingbasic biological In particular,phenomena such as ger- 1987). Ceratopterisis an ideal experi- Downloaded from http://online.ucpress.edu/abt/article-pdf/57/7/438/47354/4450034.pdf by guest on 27 September 2021 principles of development, genetics, mination, organogenesis, interactions mental organism because of several physiology and cytology because of between individuals, control of devel- unique features that distinguish it the ease with which they can be cul- opment, fertilization,and embryo de- from other ferns; these include a rapid tured, manipulated and observed. velopment can be investigated using life cycle, the ease of culture and ma- Presently, two flowering plant model very simple techniques. nipulation of both sporophytes and systems, Fast Plants (rapid cycling In this paper, we describe a labora- gametophytes, and the availabilityof a Brassica)and Arabidopsis,are used ex- tory exercise for high school students large variety of specific mutant lines tensively in research and teaching or undergraduatesin General Biology (Hickoket al. 1987). (Williams& Hill 1986; Goldberg 1988; using C. richardii.This exercise ex- Perhaps the most attractivefeature Patrusky 1991). However, the exclu- tends over four weeks, with potential of Ceratopterisis that it can complete its sive focus on angiosperm models con- for continued observation, and fo- life cycle from spore to spore in less tributesto a limited appreciationof the cuses on the development of sexually than 90 days, thus permitting semes- diversity of plant development, mor- mature gametophytes from single- ter use. -
Ceratopteris Pteridoides in China, and Conservation Implications
Ann. Bot. Fennici 47: 34–44 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 10 March 2010 © Finnish Zoological and Botanical Publishing Board 2010 Genetic variation and gene flow in the endangered aquatic fern Ceratopteris pteridoides in China, and conservation implications Yuan-Huo Dong1,*, Robert Wahiti Gituru2 & Qing-Feng Wang3 1) Department of Biologic Technology, College of Life Sciences, Jianghan University, Wuhan 430056, P. R. China (*corresponding author’s e-mail: [email protected]) 2) Botany Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000- 00200, Nairobi, Kenya 3) Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P. R. China Received 27 Mar. 2008, revised version received 3 Dec. 2009, accepted 24 Feb. 2009 Dong, Y. H., Wahiti Gituru, R. & Wang, Q. F. 2010: Genetic variation and gene flow in the endan- gered aquatic fern Ceratopteris pteridoides in China, and conservation implications. — Ann. Bot. Fennici 47: 34–44. Random Amplified Polymorphic DNA (RAPD) markers were used to measure the levels of genetic variation and patterns of the population structure within and among the five remaining populations of Ceratopteris pteridoides, an endangered aquatic fern in China. Fourteen RAPD primers amplified 101 reproducible bands, with 34 (33.66%) of them being polymorphic, indicating low levels of genetic diversity at the species level. The level of genetic diversity within the populations was consider- ably lower, with the percentage of polymorphic bands (PPB) ranging from 16.83% to 24.75%. AMOVA analysis revealed a low level of genetic variation (30.92%) among the populations. The UPGMA cluster of 72 samples detected that individuals from the same population did not form one distinct group, indicating high levels of gene flow between the populations. -
(Polypodiales) Plastomes Reveals Two Hypervariable Regions Maria D
Logacheva et al. BMC Plant Biology 2017, 17(Suppl 2):255 DOI 10.1186/s12870-017-1195-z RESEARCH Open Access Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions Maria D. Logacheva1, Anastasiya A. Krinitsina1, Maxim S. Belenikin1,2, Kamil Khafizov2,3, Evgenii A. Konorov1,4, Sergey V. Kuptsov1 and Anna S. Speranskaya1,3* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. Results: We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns. -
Histochemistry of Spore Mucilage and Inhibition of Spore Adhesion in Champia Parvula, a Marine Alga
University of Rhode Island DigitalCommons@URI Open Access Dissertations 1994 Histochemistry of Spore Mucilage and Inhibition of Spore Adhesion in Champia parvula, A Marine Alga Martha E. Apple University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Apple, Martha E., "Histochemistry of Spore Mucilage and Inhibition of Spore Adhesion in Champia parvula, A Marine Alga" (1994). Open Access Dissertations. Paper 783. https://digitalcommons.uri.edu/oa_diss/783 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. HISTOCHEMISTRY OF SPORE MUCILAGE AND INHIBITION OF SPORE ADHESION IN CHAMPIA PARVULA, A MARINE RED ALGA. BY MARTHA E. APPLE A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 1994 DOCTOR OF PHILOSOPHY DISSERTATION OF MARTHA E. APPLE APPROVED: Dissertation Committee Major Professor DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 1994 Abstract Spores of the marine red alga, Champja parvu!a, attached initially to plastic or glass cover slips by extracellular mucilage. Adhesive rhizoids emerged from germinating spores, provided a further basis of attachment and rhizoidal division formed the holdfast. Mucilage of holdfasts and attached spores stained for sulfated and carboxylated polysaccharides. Rhizoids and holdfast cells but not mucilage stained for protein. Removal of holdfasts with HCI revealed protein anchors in holdfast cell remnants. Spores detached when incubated in the following enzymes: 13-galactosidase, protease, ce!!u!ase, a-amylase, hya!uronidase, sulfatase, and mannosidase. -
Fern Classification
16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed. -
Influence of Abiotic and Biotic Factors On
id26692843 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com DBBecember 2i0i09ooTTeecchhnnoollVolooume g3g Issuyye 4 Trade Science Inc. An Indian Journal FULL PAPER BTAIJ, 3(4), 2009 [242-250] Influence of abiotic and biotic factors on developmental biology of four ferns of Western Ghats, India M.Johnson*1,2, V.S.Manickam1 ’ 1Centre for Biodiversity and Biotechnology, St. Xavier s College (Autonomous), Palayamkottai, TN, (INDIA) 2Post Box no.1501, Biology Department, Bahir Dar University, Bahir Dar, (ETHIOPIA) E-mail : [email protected] Received: 14th November, 2009 ; Accepted: 24th November, 2009 ABSTRACT KEYWORDS The present study examined the influence of age, season and pH on spore Abiotic; germination, early gametophyte development and sporophyte formation Alternation of generations; of four rare and endangered ferns, viz. Cheilanthes viridis (Forssk.) Swartz, Gametophyte; Phlebodium aureum L., Pronephrium triphyllum (Sw.) Holttum and Sporophyte; Sphaerostephanos unitus (L.) (Holttum) of Western Ghats of South India. Isozyme; Highest percentage of spore germination was achieved only in the ma- Zymogram. tured spore inoculated media, whereas the young spores failed to germi- nate. Highest percentage of spore germination was achieved in the spores collected in the month of February for Cheilanthes viridis; July- Phlebodium aureum; March-Pronephrium triphyllum and January for Sphaerostephanos unitus. Germination of spores occurred in a wide range of pH from 4 to 8. For Cheilanthes viridis, highest percentage of spore 5.8. germination (88.8 1.61) occurred on Knudson C Solid medium at pH Mitra liquid medium at pH 5.5 showed highest percentage (81.3 0.84) of spore germination for Phlebodium aureum. -
Between Two Fern Genomes
Sessa et al. GigaScience 2014, 3:15 http://www.gigasciencejournal.com/content/3/1/15 REVIEW Open Access Between Two Fern Genomes Emily B Sessa1,2*, Jo Ann Banks3, Michael S Barker4, Joshua P Der5,15, Aaron M Duffy6, Sean W Graham7, Mitsuyasu Hasebe8, Jane Langdale9, Fay-Wei Li10, D Blaine Marchant1,11, Kathleen M Pryer10, Carl J Rothfels12,16, Stanley J Roux13, Mari L Salmi13, Erin M Sigel10, Douglas E Soltis1,2,11, Pamela S Soltis2,11, Dennis W Stevenson14 and Paul G Wolf6 Abstract Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. Keywords: Azolla, Ceratopteris, Comparative analyses, Ferns, Genomics, Land plants, Monilophytes Introduction numerous traits found in seed plant crops and model spe- Ferns (Monilophyta) are an ancient lineage of land plants cies, such as rice and Arabidopsis [13,14]. -
2010 Literature Citations
Annual Review of Pteridological Research - 2010 Literature Citations All Citations 1. Abbasi, T. & S. A. Abbasi. 2010. Enhancement in the efficiency of existing oxidation ponds by using aquatic weeds at little or no extra cost to the macrophyte-upgraded oxidation pond (MUOP). Bioremediation Journal 14: 67-80. [India; Salvinia molesta] 2. Abbasi, T. & S. A. Abbasi. 2010. Factors which facilitate waste water treatment by aquatic weeds - the mechanism of the weeds' purifying action. International Journal of Environmental Studies 67: 349-371. [Salvinia] 3. Abeli, T. & M. Mucciarelli. 2010. Notes on the natural history and reproductive biology of Isoetes malinverniana. Amerian Fern Journal 100: 235-237. 4. Abraham, G. & D. W. Dhar. 2010. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. Protoplasma 245: 105-111. 5. Adam, E., O. Mutanga & D. Rugege. 2010. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management 18: 281-296. [Asplenium nidus] 6. Adams, C. Z. 2010. Changes in aquatic plant community structure and species distribution at Caddo Lake. Stephen F. Austin State University, Nacogdoches, Texas USA. [Thesis; Salvinia molesta] 7. Adie, G. U. & O. Osibanjo. 2010. Accumulation of lead and cadmium by four tropical forage weeds found in the premises of an automobile battery manufacturing company in Nigeria. Toxicological and Environmental Chemistry 92: 39-49. [Nephrolepis biserrata] 8. Afshan, N. S., S. H. Iqbal, A. N. Khalid & A. R. Niazi. 2010. A new anamorphic rust fungus with a new record of Uredinales from Azad Kashmir, Pakistan. Mycotaxon 112: 451-456. -
Evolutionary Significance of Bryophytes
Cambridge University Press 978-0-521-87712-1 - Introduction to Bryophytes Edited by Alain Vanderpoorten and Bernard Goffinet Excerpt More information 1 Evolutionary significance of bryophytes Vascular plants, particularly seed plants, dominate vegetation throughout much of the world today, from the lush rainforests of the tropics harbouring a vast diversity of angiosperms, to the boreal forests of coniferous trees, draping the northern latitudes of the globe. This dominance in the landscape is the result of a long evolutionary history of plants conquering land. Evolution is the result of a suite of incessant attempts to improve fitness and take advantage of opportunities, such as escaping competition and occupying a new habitat. Pilgrims, fleeing the biotic interactions in the aquatic habitat, faced severe abiotic selection forces on land. How many attempts were made to conquer land is not known, but at least one of them led to the successful establishment of a colony. At least one population of one species had acquired a suite of traits that allowed it to complete its life cycle and persist on land. The ancestor to land plants was born. It may have taken another 100 million years for plants to overcome major hurdles, but by the Devonian Period (approximately 400 mya), a diversity of plants adapted to the terrestrial environment and able to absorb water and nutrients, and transport and distribute them throughout their aerial shoots, occupied at least some portions of the land masses. Soon thereafter, plants were freed from the necessity of water for sexual reproduction, by transporting their sperm cells in pollen grains carried by wind or insects to the female sex organs, and seeds protected the newly formed embryo. -
Phytochrome Diversity in Green Plants and the Origin of Canonical Plant Phytochromes
ARTICLE Received 25 Feb 2015 | Accepted 19 Jun 2015 | Published 28 Jul 2015 DOI: 10.1038/ncomms8852 OPEN Phytochrome diversity in green plants and the origin of canonical plant phytochromes Fay-Wei Li1, Michael Melkonian2, Carl J. Rothfels3, Juan Carlos Villarreal4, Dennis W. Stevenson5, Sean W. Graham6, Gane Ka-Shu Wong7,8,9, Kathleen M. Pryer1 & Sarah Mathews10,w Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. 1 Department of Biology, Duke University, Durham, North Carolina 27708, USA. 2 Botany Department, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany. 3 University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720, USA. 4 Royal Botanic Gardens Edinburgh, Edinburgh EH3 5LR, UK. 5 New York Botanical Garden, Bronx, New York 10458, USA.