Lichenicolous Fungi from Florida Growing on Graphidales

Total Page:16

File Type:pdf, Size:1020Kb

Lichenicolous Fungi from Florida Growing on Graphidales © 2019 W. Szafer Institute of Botany Polish Academy of Sciences Plant and Fungal Systematics 64(2): 249–282, 2019 ISSN 2544-7459 (print) DOI: 10.2478/pfs-2019-0021 ISSN 2657-5000 (online) Lichenicolous fungi from Florida growing on Graphidales Paul Diederich1*, Ralph S. Common2, Uwe Braun3, Bettina Heuchert 3, Ana Millanes4, Ave Suija5 & Damien Ertz 6,7 Abstract. The lichenicolous fungi growing on Graphidales hosts in Florida are revised, Article info mainly based on collections by the second author (R. C.). Twenty-one species are rec- Received: 29 Mar. 2019 ognized. The new genus and species Lawreya glyphidiphila is described for a common Revision received: 19 Aug. 2019 asexual fungus growing on Glyphis scyphulifera and more rarely Trypethelium eluteriae, Accepted: 20 Aug. 2019 characterized by black stromatic conidiomata in which subspherical conidiogenous loculi Published: 2 Dec. 2019 develop, producing aseptate, subglobose, brown conidia. Nine additional new species Associate Editor are described: Amerosporiopsis phaeographidis (on Phaeographis brasiliensis), Arthonia Adam Flakus acanthotheciicola (on Acanthothecis floridensis), A. subgraphidicola (on Graphis assimilis), Hemigrapha graphidicola (on G. assimilis), Skyttea graphidicola (on Graphis spp.), Strigula graphidicola (on G. assimilis), S. perparvula (on Graphidales), Talpapellis graphidis (on Graphis caesiella) and Tremella wedinii (on Glyphis scyphulifera). Phylogenetic place- ments of Lawreya glyphidiphila, Skyttea graphidicola and Tremella wedinii are presented. Identification keys are given for the species of Cornutispora and Talpapellis, and for the 66 species known to grow on Graphidales hosts worldwide. Key words: lichen parasites, lichens, phylogeny, taxonomy, Cornutispora, Lawreya, Talpapellis Introduction The Graphidales, for a long time placed in Ostropales orders: Lichenostigma chlaroterae (mainly on Lecanora but recently proposed as a separate order by Kraichak but also on Buellia, Fuscidea and Graphis) and Taenio­ et al. (2018), are known to harbour a large diversity of lella punctata (mainly on Graphis, rarely on Arthonia, lichenicolous fungi, with 66 known species (Diederich Fissurina, Pertusaria and Phaeographis). Polycoccum et al. 2018). Some of these are opportunists, growing on arnoldii has been reported from Diploschistes and Rhizo­ a wide variety of lichens belonging to different orders, carpon, while Sphinctrina leucopoda is known from Per­ such as Corynespora laevistipitata, Etayoa trypethelii, tusaria and Diploschistes; in both cases, further studies Lichenodiplis lecanorae, Marchandiomyces corallinus, may reveal that populations from different hosts repre- Ovicuculispora parmeliae or Taeniolella delicata. Two sent genetically distinct species. All other known species species appear to be specialized on a small number of have been reported from a single Graphidales host genus. hosts, including Graphidales but also species from other Amongst these, eight were known from Diploschistes, eight from Graphis, five fromPhaeographis and 12 from Thelotrema. Each of the genera Acanthothecis, Anomo­ 1 Musée national d’histoire naturelle, 25 rue Munster, L-2160 Luxem- morpha, Chapsa, Diorygma, Fissurina, Nitidochapsa, bourg, Luxembourg Pallidogramme, Reimnitzia and Sarcographa were known 2 534 Fenton St, Lansing, MI 48910, USA 3 Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik, to host one lichenicolous species. Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany Over many years, the second author has collected 4 Departamento de Biología y Geología, Universidad Rey Juan Carlos, corticolous lichens in Florida and has carefully scrutinized E-28933 Móstoles, Spain the specimens for lichenicolous fungi. Several licheni- 5 Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, 51005 Tartu, Estonia colous species have already been published in previous 6 Meise Botanic Garden, Department of Research, Nieuwelaan 38, papers: Etayoa trypethelii (Ertz et al. 2014), Taeniolella B-1860 Meise, Belgium delicata (Heuchert et al. 2018), T. hawksworthiana (Ertz 7 Fédération Wallonie-Bruxelles, Direction Générale de l’Enseignement et al. 2016), Tremella graphidis, T. phaeographinae and non obligatoire et de la Recherche scientifique, rue A. Lavallée 1, B-1080 Bruxelles, Belgium T. pyrenulae (Ariyawansa et al. 2015). The aim of this * Corresponding author e-mail: [email protected] paper is to publish all species of lichenicolous fungi This work is licensed under the Creative Commons BY-NC-ND 4.0 License 250 Plant and Fungal Systematics 64(2): 249–282, 2019 collected and identified on Graphidales hosts in Florida, were purified with Exosap in Macrogene Inc. (Amster- to describe one new genus and 10 new species, and to dam, the Netherlands). Genomic DNA from Skyttea spec- present an identification key to all lichenicolous fungi imens was extracted from ascomata of dried herbarium known to inhabit Graphidales hosts. specimens, 3–4 ascomata per reaction, using a High Pure General information on the lichen flora from Flor- PCR Template Preparation Kit (Roche Applied Science, ida can be found in many papers, such as DeBolt et al. Penzberg, Germany) and following the protocol provided (2007), Harris (1990, 1995) or Seavey and Seavey (2019). by the manufacturer. The internal transcribed spacer (ITS) More specific information on the lichens of Fakahatchee was amplified using primers ITS0F (Tedersoo et al. 2008) Strand Preserve State Park, one of the richest localities or ITS1F (Gardes & Bruns 1993) and ITS4 (White et al. in Florida for ‘graphidicolous’ fungi, can be found in 1990). The PCR reaction mix (25 μL) consisted of 5 μL Lücking et al. (2011). 5× HOT FIREPol Blend Master Mix (Solis BioDyne, Tartu, Estonia), 0.5 μL of both primers (both at a con- Material and methods centration of 20 μM), 3 μL of target DNA, and distilled water up to the total volume. The PCR cycle consisted Morphological examination of 36 cycles and annealing temperature was set at 57°C. Almost all specimens studied in this paper were collected For purification of PCR products, 1 μL of FastAP and 0.5 by the second author (R. C.); these are kept in BR, MSC μL of exonuclease I (Thermo Scientific, Waltham, MA, and/or in the private herbarium of P. Diederich (Luxem- USA) were added per 20 μL of the product, and the tubes bourg), with some duplicates in HAL and S. Additional were incubated at 37°C for 45 min; the enzymes were specimens have been obtained on loan from NY and deactivated by heating at 85°C for 15 min. SBBG. Specimens collected by R. Common are abbre- DNA sequencing of both complementary strands was viated C, followed by the collection number. For all other performed in Macrogen Inc. (Amsterdam, the Nether- specimens the collector is indicated. lands) with the same primer set as for amplifications to Macroscopic photographs were obtained using a Canon generate Tremella sequences; primers LIC15R (Miad- 40D camera (Tokyo, Japan) with Nikon BD Plan 10 or likowska et al. 2002), LR3 and LR6 (Vilgalys & Hester Nikon M Plan 40 ELWD microscope objectives (Tokyo, 1990) for Lawreya sequences; and primers ITS4 and ITS5 Japan), StackShot (Cognisys, MI, USA) and Helicon Focus (White et al. 1990) for Skyttea sequences. (HeliconSoft, Kharkiv, Ukraine) for increasing the depth of field (P. Diederich); or a Keyence VHX-5000 digital Sequence alignment and phylogenetic analyses microscope and a VH-Z20R/W/T lens (Osaka, Japan) Twelve new Tremella sequences (6 ITS and 6 nLSU (D. Ertz); or a Wild Heerbrugg M400 Photomakroskop rDNA) were edited and assembled using Geneious ver. (Heerbrugg, Switzerland) fitted with an Apozoom objec- 6.1.2 (Biomatters Ltd., Auckland, NZ). Assembly of the tive and a Nikon D700 digital camera (Tokyo, Japan), nuclear rDNA included the whole ITS and a continued using Zerene Stacker (Zerene Systems, WA, USA) for fragment of ~1000 bp in the nLSU region. Sequencher increasing the depth of field (R. Common). Hand-made ver. 4.10.1 (GeneCodes Corp.®, Ann Arbor, MI, USA) was sections of ascomata and thallus were studied in tap water, used to check, assemble and manually adjust the resulting 5% KOH (K), Lugol’s reagent (1% I2) without (I) or with sequence fragments of four new Skyttea sequences, and KOH pre-treatment (K/I), lactophenol-cotton blue (LCB), Sequencher ver. 5.3 of three new Lawreya sequences. The Congo Red or phloxine B. Measurements based on statisti- consensus sequences generated for this study are deposited cal data are indicated as (minimum–) X-sd – X+sd (–max- in GenBank (https://www.ncbi.nlm.nih.gov/genbank/). imum), where X represents the arithmetic mean and sd the The new Tremella sequences were aligned together corresponding standard deviation, followed by the number with sequences already available in GenBank (Table 1). of measurements (n); the length/breadth ratio is indicated After a preliminary alignment including all regions, as L/B and given in the same way. Microscopic photo- the ITS1, 5.8S, ITS2 and nLSU regions were identified graphs were prepared using a Leica DMLB microscope and aligned separately using the Q-INS-I (for ITS1 and (Wetzlar, Germany) with interference contrast, fitted with ITS2), and the G-INS-i (for 5.8S and nLSU) algorithms a Leica EC3 camera (P. Diederich); or an Olympus BX51 in MAFFT ver. 7 multiple sequence alignment software microscope (Tokyo, Japan) with interference contrast, (Katoh & Toh 2008). The 5.8S region was considered connected to an Olympus Color View I digital camera unambiguously
Recommended publications
  • Taxonomy and New Records of Graphidaceae Lichens in Western Pangasinan, Northern Philippines
    PRIMARY RESEARCH PAPER | Philippine Journal of Systematic Biology DOI 10.26757/pjsb2019b13006 Taxonomy and new records of Graphidaceae lichens in Western Pangasinan, Northern Philippines Weenalei T. Fajardo1, 2* and Paulina A. Bawingan1 Abstract There are limited studies on the diversity of Philippine lichenized fungi. This study collected and determined corticolous Graphidaceae from 38 collection sites in 10 municipalities of western Pangasinan province. The study found 35 Graphidaceae species belonging to 11 genera. Graphis is the dominant genus with 19 species. Other species belong to the genera Allographa (3 species) Fissurina (3), Phaeographis (3), while Austrotrema, Chapsa, Diorygma, Dyplolabia, Glyphis, Ocellularia, and Thelotrema had one species each. This taxonomic survey added 14 new records of Graphidaceae to the flora of western Pangasinan. Keywords: Lichenized fungi, corticolous, crustose lichens, Ostropales Introduction described Graphidaceae in the country (Parnmen et al. 2012). Most recent surveys resulted in the characterization of six new Graphidaceae is the second largest family of lichenized species (Lumbsch et al. 2011; Tabaquero et al.2013; Rivas-Plata fungi (Ascomycota) (Rivas-Plata et al. 2012; Lücking et al. et al. 2014). In the northwestern part of Luzon in the Philippines 2017) and is the most speciose of tropical crustose lichens (Region 1), an account on the Graphidaceae lichens was (Staiger 2002; Lücking 2009). The inclusion of the initially conducted only from the Hundred Islands National Park (HINP), separate family Thelotremataceae (Mangold et al. 2008; Rivas- Alaminos City, Pangasinan (Bawingan et al. 2014). The study Plata et al. 2012) in the family Graphidaceae made the latter the reported 32 identified lichens, including 17 Graphidaceae dominant element of lichen communities with 2,161 accepted belonging to the genera Diorygma, Fissurina, Graphis, Thecaria species belonging to 79 genera (Lücking et al.
    [Show full text]
  • Ascomycota: Ostropales: Graphidaceae) De La Selva Alta Perennifolia De Los Tuxtlas, Veracruz, México
    Una especie nueva y peculiar de Graphis (Ascomycota: Ostropales: Graphidaceae) de la selva alta perennifolia de Los Tuxtlas, Veracruz, México Bárcenas-Peña, A., Miranda-González, R., & de los Ángeles Herrera-Campos, M. (2015). Una especie nueva y peculiar de Graphis (Ascomycota: Ostropales: Graphidaceae) de la selva alta perennifolia de Los Tuxtlas, Veracruz, México. Revista Mexicana de Biodiversidad, 86(3), 559-564. doi10.1016/j.rmb.2015.05.001 10.1016/j.rmb.2015.05.001 Instituto de Biología Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Disponible en www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 86 (2015) 559–564 www.ib.unam.mx/revista/ Taxonomía y sistemática Una especie nueva y peculiar de Graphis (Ascomycota: Ostropales: Graphidaceae) de la selva alta perennifolia de Los Tuxtlas, Veracruz, México A peculiar new species of Graphis (Ascomycota: Ostropales: Graphidaceae) from the evergreen forest of Los Tuxtlas, Veracruz, Mexico a a,b Alejandrina Bárcenas-Pena˜ , Ricardo Miranda-González a,∗ y María de los Ángeles Herrera-Campos a Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70-327, 04510 México, D. F. , México b Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, Oregon 97331-2902, Estados Unidos Recibido el 10 de febrero de 2014; aceptado el 27 de febrero de 2015 Disponible en Internet el 29 de julio de 2015 Resumen Graphis robertusii Bárcenas-Pena,˜ Herrera-Campos y Miranda es descrita por primera vez para la selva alta perennifolia de Los Tuxtlas, Veracruz. Es una especie conspicua caracterizada por lirelas erumpentes con margen talino lateral, labios no estriados blancos pruinosos, excípulo completamente carbonizado, himenio insperso, esporas transversalmente septadas y ácidos estíctico, salazínico y conestíctico como metabolitos secundarios.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • New Or Otherwise Interesting Lichens. VII, Including a World Key to the Lichen Genus Heiomasia
    New or otherwise interesting lichens. VII 1 New or otherwise interesting lichens. VII, including a world key to the lichen genus Heiomasia Klaus Kalb Lichenologisches Institut Neumarkt Im Tal 12, D-92318 Neumarkt/Opf., Germany and Institute of Plant Sciences, University of Regensburg, Universitätsstraße 31 D-93053 Regensburg, Germany. email: [email protected] Abstract Eight species new to science are described, Allographa grandis from Cameroon which is distinguished by its very large ascomata, richly muriform, large ascospores and an inspersed hymenium (type B); Bapalmuia microspora from Malaysia which differs from B. consanguinea in having shorter and broader ascospores and a granular thallus; Diorygma cameroonense from Cameroon which differs from D. sticticum in having larger ascospores with more septa; Glyphis frischiana which is similar to G. atrofusca but differs in producing secondary lichen compounds, the first species in Glyphis in doing so. Two new species are added to the genus Heiomasia, viz. H. annamariae from Malaysia, which differs from H. sipmanii in producing the stictic acid aggr. and H. siamensis from Thailand, distinguished from H. sipmanii in containing hypoprotocetraric acid as a major metabolite. The published chemistry of several species of Heiomasia is revised and a new substance, heiomaseic acid, with relative Rf-values 5/19/8, is demonstrated for H. seavey- orum, H. siamensis and H. sipmanii. A world-wide key to the known species of Heiomasia is presented. Myriotrema squamiferum, a fertile species from Malaysia, is distinguished from M. frondosolucens by lacking lichexanthone. As there are conflicting literature data concerning Ocellularia crocea, the type specimen was investigated and the results are reported.
    [Show full text]
  • A CONTRIBUTION to the LICHEN FAMILY GRAPHIDACEAE (OSTROPALES, ASCOMYCOTA) of BOLIVIA. 2 Ulf Schiefelbein, Adam Flakus, Harrie J
    Polish Botanical Journal 59(1): 85–96, 2014 DOI: 10.2478/pbj-2014-0017 A CONTRIBUTION TO THE LICHEN FAMILY GRAPHIDACEAE (OSTROPALES, ASCOMYCOTA) OF BOLIVIA. 2 Ulf Schiefelbein, Adam Flakus, Harrie J. M. Sipman, Magdalena Oset & Martin Kukwa1 Abstract. Microlichens of the family Graphidaceae are important components of the lowland and montane tropical forests in Bolivia. In this paper we present new records for 51 taxa of the family in Bolivia. Leiorreuma lyellii (Sm.) Staiger is reported as new for the Southern Hemisphere, while Diploschistes caesioplumbeus (Nyl.) Vain., Graphis daintreensis (A. W. Archer) A. W. Archer, G. duplicatoinspersa Lücking, G. emersa Müll. Arg., G. hossei Vain., G. immersella Müll. Arg. and G. subchrysocarpa Lücking are new for South America. Thirty taxa are reported for the first time from Bolivia. Notes on distribution are provided for most species. Key words: biodiversity, biogeography, lichenized fungi, Neotropics, South America Ulf Schiefelbein, Blücherstr. 71, D-18055 Rostock, Germany Adam Flakus, Laboratory of Lichenology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland Harrie J. M. Sipman, Botanischer Garten & Botanisches Museum Berlin Dahlem, Königin-Luise-Strasse 6 – 8, D-14195 Berlin, Germany Martin Kukwa & Magdalena Oset, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; e-mail: [email protected] Introduction Bolivia has the highest ecosystem diversity in Material and methods South America and the forest communities form a mosaic of vegetation which offers a variety Specimens are deposited at B, GOET, KRAM, LPB, of potential habitats for numerous microlichens UGDA (acronyms after Thiers 2012) and the private (Navarro & Maldonado 2002; Josse et al.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • One Hundred and Seventy-Five New Species of Graphidaceae: Closing the Gap Or a Drop in the Bucket?
    Phytotaxa 189 (1): 007–038 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.189.1.4 One hundred and seventy-five new species of Graphidaceae: closing the gap or a drop in the bucket? ROBERT LÜCKING1, MARK K. JOHNSTON1, ANDRÉ APTROOT2, EKAPHAN KRAICHAK1, JAMES C. LENDEMER3, KANSRI BOONPRAGOB4, MARCELA E. S. CÁCERES5, DAMIEN ERTZ6, LIDIA ITATI FERRARO7, ZE-FENG JIA8, KLAUS KALB9,10, ARMIN MANGOLD11, LEKA MANOCH12, JOEL A. MERCADO-DÍAZ13, BIBIANA MONCADA14, PACHARA MONGKOLSUK4, KHWANRUAN BUTSATORN PAPONG 15, SITTIPORN PARNMEN16, ROUCHI N. PELÁEZ14, VASUN POENGSUNGNOEN17, EIMY RIVAS PLATA1, WANARUK SAIPUNKAEW18, HARRIE J. M. SIPMAN19, JUTARAT SUTJARITTURAKAN10,18, DRIES VAN DEN BROECK6, MATT VON KONRAT1, GOTHAMIE WEERAKOON20 & H. THORSTEN 1 LUMBSCH 1Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, U.S.A.; email: [email protected], [email protected], [email protected], [email protected] 2ABL Herbarium, G.v.d.Veenstraat 107, NL-3762 XK Soest, The Netherlands; email: [email protected] 3Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, U.S.A.; email: [email protected] 4Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng 24 road, Bangkok, 10240 Thailand; email: [email protected] 5Departamento de Biociências, Universidade Federal de Sergipe, CEP: 49500-000,
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Checklist of the Lichens and Allied Fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A
    Opuscula Philolichenum, 18: 420–434. 2019. *pdf effectively published online 2December2019 via (http://sweetgum.nybg.org/philolichenum/) Checklist of the lichens and allied fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A. J. KEVIN ENGLAND1, CURTIS J. HANSEN2, JESSICA L. ALLEN3, SEAN Q. BEECHING4, WILLIAM R. BUCK5, VITALY CHARNY6, JOHN G. GUCCION7, RICHARD C. HARRIS8, MALCOLM HODGES9, NATALIE M. HOWE10, JAMES C. LENDEMER11, R. TROY MCMULLIN12, ERIN A. TRIPP13, DENNIS P. WATERS14 ABSTRACT. – The first checklist of lichenized, lichenicolous and lichen-allied fungi from the Kathy Stiles Freeland Bibb County Glades Preserve in Bibb County, Alabama, is presented. Collections made during the 2017 Tuckerman Workshop and additional records from herbaria and online sources are included. Two hundred and thirty-eight taxa in 115 genera are enumerated. Thirty taxa of lichenized, lichenicolous and lichen-allied fungi are newly reported for Alabama: Acarospora fuscata, A. novomexicana, Circinaria contorta, Constrictolumina cinchonae, Dermatocarpon dolomiticum, Didymocyrtis cladoniicola, Graphis anfractuosa, G. rimulosa, Hertelidea pseudobotryosa, Heterodermia pseudospeciosa, Lecania cuprea, Marchandiomyces lignicola, Minutoexcipula miniatoexcipula, Monoblastia rappii, Multiclavula mucida, Ochrolechia trochophora, Parmotrema subsumptum, Phaeographis brasiliensis, Phaeographis inusta, Piccolia nannaria, Placynthiella icmalea, Porina scabrida, Psora decipiens, Pyrenographa irregularis, Ramboldia blochiana, Thyrea confusa, Trichothelium
    [Show full text]
  • One Hundred and Seventy-Five New Species of Graphidaceae: Closing the Gap Or a Drop in the Bucket?
    Phytotaxa 189 (1): 007–038 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.189.1.4 One hundred and seventy-five new species of Graphidaceae: closing the gap or a drop in the bucket? ROBERT LÜCKING1, MARK K. JOHNSTON1, ANDRÉ APTROOT2, EKAPHAN KRAICHAK1, JAMES C. LENDEMER3, KANSRI BOONPRAGOB4, MARCELA E. S. CÁCERES5, DAMIEN ERTZ6, LIDIA ITATI FERRARO7, ZE-FENG JIA8, KLAUS KALB9,10, ARMIN MANGOLD11, LEKA MANOCH12, JOEL A. MERCADO-DÍAZ13, BIBIANA MONCADA14, PACHARA MONGKOLSUK4, KHWANRUAN BUTSATORN PAPONG 15, SITTIPORN PARNMEN16, ROUCHI N. PELÁEZ14, VASUN POENGSUNGNOEN17, EIMY RIVAS PLATA1, WANARUK SAIPUNKAEW18, HARRIE J. M. SIPMAN19, JUTARAT SUTJARITTURAKAN10,18, DRIES VAN DEN BROECK6, MATT VON KONRAT1, GOTHAMIE WEERAKOON20 & H. THORSTEN 1 LUMBSCH 1Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, U.S.A.; email: [email protected], [email protected], [email protected], [email protected] 2ABL Herbarium, G.v.d.Veenstraat 107, NL-3762 XK Soest, The Netherlands; email: [email protected] 3Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, U.S.A.; email: [email protected] 4Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng 24 road, Bangkok, 10240 Thailand; email: [email protected] 5Departamento de Biociências, Universidade Federal de Sergipe, CEP: 49500-000,
    [Show full text]
  • Download Article (PDF)
    Advances in Biological Sciences Research, volume 14 Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020) Phenetic Relationship of Lichens Grown on Tea Plants (Camellia sinensis (L.) Kuntze) in Tangsi Baru Village, Kabawetan Subdistrict, Kepahiang District Rochmah Supriati1,* Dwi Agustian 2 RR Sri Astuti 1 Riandini Evelyne1 Fatimatuzzahra1 1Department of Biology, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Kandang Limun, Bengkulu 38112, Indonesia 2Undergraduate Student, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Kandang Limun, Bengkulu 38112, Indonesia *Corresponding author. Email: [email protected] ABSTRACT Lichen is a mutualism symbiotic organism between fungi (mycobiont) and photosynthetic symbiont in the form of algae (photobiont). Lichen can be found from the lowlands to the highlands, growing epiphytes in soil, rocks, weathered wood, and on tree bark, such as on the surface of tea plants (Camellia sinensis (L.) Kuntze) in PT Sarana Mandiri Mukti, Tea plantation Kepahiang District, Bengkulu Province. This study aims to determine the phenetic relationship of lichen on tea plants (Camellia sinensis (L.) Kuntze) which was conducted in May- October 2020 in Tangsi Baru Village, Kabawetan Subdistrict, Kepahiang District. Sampling using a purposive sampling method. The samples were identified in the Laboratory of Plant Biosystematics Basic Sciences, Faculty of Mathematics and Natural Sciences, Bengkulu University. Lichens were analyzed based on 51 characters and converted into matrix data using the MS Excel program and the Numerical Taxonomy System (NTSYS) version 2.02. There are 20 species of lichens consisting of 12 species of thallus crustose type, and 8 species of thallus foliose type; belonged to Ascomycota division, 2 classes (Lecanoromycetes and Eurotiomycetes), 5 orders, and 7 families.
    [Show full text]