1 Geography and Development 16Nd Year-No.51– Summer 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geographic Variation in Mesalina Watsonana (Sauria: Lacertidae) Along a Latitudinal Cline on the Iranian Plateau
SALAMANDRA 49(3) 171–176 30 October 2013 CorrespondenceISSN 0036–3375 Correspondence Geographic variation in Mesalina watsonana (Sauria: Lacertidae) along a latitudinal cline on the Iranian Plateau Seyyed Saeed Hosseinian Yousefkhani 1, Eskandar Rastegar-Pouyani 1, 2 & Nasrullah Rastegar-Pouyani 1 1) Iranian Plateau Herpetology Research Group (IPHRG), Faculty of Science, Razi University, 6714967346 Kermanshah, Iran 2) Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran Corresponding author: Seyyed Saeed Hosseinian Yousefkhani, email: [email protected] Manuscript received: 23 January 2013 Iran is geologically structured by several major mountain We also examined the extent of sexual dimorphism as ranges, plateaus and basins, including the Zagros and El- evident in the 28 metric and meristic characters examined burz Mountains, the Central Plateau, and the Eastern between the 39 adult males (15 Zagros; 10 South; 14 East) Highlands (Berberian & King 1981). Mesalina watson and 21 adult females (Tab. 3) by means of statistical analy- ana (Stoliczka, 1872) is one of the 14 species of the genus sis. The analyses were run using ANOVA and with SPSS Mesalina Gray, 1838 and has a wide distribution range in 16.0 for a Principal Component Analysis (PCA) based Iran, Afghanistan, Pakistan, NW India and some parts of on the correlation matrix of seven characters to identify Turkmenistan (Anderson 1999, Rastegar-Pouyani et al. groups that were possibly clustered. While 21 of the char- 2007, Khan 2006). It is well known that size and morpho- acter states examined proved to show no significant varia- logical adaptations of a species are closely linked to its habi- tion between the two latitudinal zones, the seven that had tat selection, determine its capability of colonising an area, P-values of < 0.05 (Tab. -
Hydrothermal-Metasomatic Origin in the Qatruyeh Iron Occurrences
The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University - Mashad Branch, Iran, 26-28 April 2010 Hydrothermal-metasomatic origin in the Qatruyeh iron occurrences, Sanandaj-Sirjan zone, SW Iran: Evidence from mineralogical textures, trace elements and fluid inclusions Mohammad Ali Rajabzadeh, Sina Asadi Corresponding author: Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran E-mail address: [email protected] Abstract The Qatruyeh iron deposits are located in the eastern edge of the NW-SE trending Sanandaj-Sirjan metamorphic zone of southwestern Iran and are hosted by a Late Proterozoic to Early Paleozoic sequence dominated by metamorphosed carbonate rocks. The magnetite ores occur as massive to layered bodies, with lesser amounts within disseminated magnetite-hematite-bearing veins. Field and textural observations, along with geochemical data in high-grade massive magnetite ores suggest an amagmatic origin. Geochemical analyses of the high field strength elements (HFSEs), large ion lithophile elements (LILEs), and REEs indicate that mineralization within the low-grade layered magnetite ores was related to magmatic process accompanied by Na-Ca alteration. Subsequent to the formation, low-temperature hydrothermal activity produced hematite ores with associated propyllitic- sericitic alteration. The metacarbonate host rocks are LILEs-depleted and HFSEs-enriched due to metasomatic alteration. REEs were relatively immobile during the alterations and can be used as indicators in different ores genesis. Data from fluid inclusions suggest that low grade magnetite ores were deposited at temperatures between 180 and 435 oC from fluids with salinities between 3.5 and 15 wt. % NaCl equiv. at pressures below 280 bars. -
Comprehensive Chemotaxonomic Analysis of Saffron Crocus Tepal And
Journal of Pharmaceutical and Biomedical Analysis 184 (2020) 113183 Contents lists available at ScienceDirect Journal of Pharmaceutical and Biomedical Analysis journal homepage: www.elsevier.com/locate/jpba Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity a b a Javad Mottaghipisheh , Mohammad Mahmoodi Sourestani , Tivadar Kiss , a a c d a,∗ Attila Horváth , Barbara Tóth , Mehdi Ayanmanesh , Amin Khamushi , Dezso˝ Csupor a Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary b Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran c Department of Horticultural Science, Islamic Azad University, Estahban Branch No. 69, Niroo Av., Satarkhan Str., 14536-33143, Tehran, Iran d Department of Horticultural Science, Faculty of Agriculture, University of Mashhad, Mashhad, Iran a r t i c l e i n f o a b s t r a c t Article history: Saffron crocus (Crocus sativus L.) has been widely grown in Iran. Its stigma is considered as the most Received 5 December 2019 valuable spice for which several pharmacological activities have been reported in preclinical and clinical Received in revised form 22 January 2020 studies, the antidepressant effect being the most thoroughly studied and confirmed. This plant part Accepted 17 February 2020 contains several characteristic secondary metabolites, including the carotenoids crocetin and crocin, and Available online 18 February 2020 the monoterpenoid glucoside picrocrocin, and safranal. Since only the stigma is utilized industrially, huge amount of saffron crocus by-product remains unused. Recently, the number of papers dealing with the Keywords: chemical and pharmacological analysis of saffron is increasing; however, there are no systematic studies Crocus sativus Saffron on the chemical variability of the major by-products. -
See the Document
IN THE NAME OF GOD IRAN NAMA RAILWAY TOURISM GUIDE OF IRAN List of Content Preamble ....................................................................... 6 History ............................................................................. 7 Tehran Station ................................................................ 8 Tehran - Mashhad Route .............................................. 12 IRAN NRAILWAYAMA TOURISM GUIDE OF IRAN Tehran - Jolfa Route ..................................................... 32 Collection and Edition: Public Relations (RAI) Tourism Content Collection: Abdollah Abbaszadeh Design and Graphics: Reza Hozzar Moghaddam Photos: Siamak Iman Pour, Benyamin Tehran - Bandarabbas Route 48 Khodadadi, Hatef Homaei, Saeed Mahmoodi Aznaveh, javad Najaf ...................................... Alizadeh, Caspian Makak, Ocean Zakarian, Davood Vakilzadeh, Arash Simaei, Abbas Jafari, Mohammadreza Baharnaz, Homayoun Amir yeganeh, Kianush Jafari Producer: Public Relations (RAI) Tehran - Goragn Route 64 Translation: Seyed Ebrahim Fazli Zenooz - ................................................ International Affairs Bureau (RAI) Address: Public Relations, Central Building of Railways, Africa Blvd., Argentina Sq., Tehran- Iran. www.rai.ir Tehran - Shiraz Route................................................... 80 First Edition January 2016 All rights reserved. Tehran - Khorramshahr Route .................................... 96 Tehran - Kerman Route .............................................114 Islamic Republic of Iran The Railways -
Page 1 of 27 PODOCES, 2007, 2(2): 77-96 a Century of Breeding Bird Assessment by Western Travellers in Iran, 1876–1977 - Appendix 1 C.S
PODOCES, 2007, 2(2): 77-96 A century of breeding bird assessment by western travellers in Iran, 1876–1977 - Appendix 1 C.S. ROSELAAR and M. ALIABADIAN Referenced bird localities in Iran x°.y'N x°.y'E °N °E Literature reference province number Ab Ali 35.46 51.58 35,767 51,967 12 Tehran Abadan 30.20 48.15 30,333 48,250 33, 69 Khuzestan Abadeh 31.06 52.40 31,100 52,667 01 Fars Abasabad 36.44 51.06 36,733 51,100 18, 63 Mazandaran Abasabad (nr Emamrud) 36.33 55.07 36,550 55,117 20, 23-26, 71-78 Semnan Abaz - see Avaz Khorasan Abbasad - see Abasabad Semnan Abdolabad ('Abdul-abad') 35.04 58.47 35,067 58,783 86, 88, 96-99 Khorasan Abdullabad [NE of Sabzevar] * * * * 20, 23-26, 71-78 Khorasan Abeli - see Ab Ali Tehran Abiz 33.41 59.57 33,683 59,950 87, 89, 90, 91, 94, 96-99 Khorasan Abr ('Abar') 36.43 55.05 36,717 55,083 37, 40, 84 Semnan Abr pass 36.47 55.00 36,783 55,000 37, 40, 84 Semnan/Golestan Absellabad - see Afzalabad Sistan & Baluchestan Absh-Kushta [at c.: ] 29.35 60.50 29,583 60,833 87, 89, 91, 96-99 Sistan & Baluchestan Abu Turab 33.51 59.36 33,850 59,600 86, 88, 96-99 Khorasan Abulhassan [at c.:] 32.10 49.10 32,167 49,167 20, 23-26, 71-78 Khuzestan Adimi 31.07 61.24 31,117 61,400 90, 94, 96-99 Sistan & Baluchestan Afzalabad 30.56 61.19 30,933 61,317 86, 87, 88, 89, 90, 91, Sistan & Baluchestan 94, 96-99 Aga-baba 36.19 49.36 36,317 49,600 92, 96-99 Qazvin Agulyashker/Aguljashkar/Aghol Jaskar 31.38 49.40 31,633 49,667 92, 96-99 Khuzestan [at c.: ] Ahandar [at c.: ] 32.59 59.18 32,983 59,300 86, 88, 96-99 Khorasan Ahangar Mahalleh - see Now Mal Golestan Ahangaran 33.25 60.12 33,417 60,200 87, 89, 91, 96-99 Khorasan Ahmadabad 35.22 51.13 35,367 51,217 12, 41 Tehran Ahvaz (‘Ahwaz’) 31.20 48.41 31,333 48,683 20, 22, 23-26, 33, 49, 67, Khuzestan 69, 71-78, 80, 92, 96-99 Airabad - see Kheyrabad (nr Turkmen. -
High Infection of Anaplasma and Ehrlichia Spp. Among Tick Species Collected from Different Geographical Locations of Iran
Asian Pac J Trop Dis 2016; 6(10): 787-792 787 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Disease journal homepage: www.elsevier.com/locate/apjtd Parasitological research doi: 10.1016/S2222-1808(16)61131-3 ©2016 by the Asian Pacific Journal of Tropical Disease. All rights reserved. High infection of Anaplasma and Ehrlichia spp. among tick species collected from different geographical locations of Iran Leila Tajedin1, Hasan Bakhshi2*, Faezeh Faghihi3, Zakkyeh Telmadarraiy1* 1Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran 2Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran 3Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran ARTICLE INFO ABSTRACT Article history: Objective: To ascertain the prevalence of the Anaplasma/Ehrlichia infections in tick population Received 28 Jul 2016 within four provinces of Iran. Received in revised form 12 Aug, 2nd Methods: A total of 384 tick specimens were collected from domestic animals inhabiting in revised form 15 Aug 2016 four provinces (East Azerbaijan, Gilan, South Khorasan and Yazd). Specimens were identified Accepted 21 Aug 2016 based on morphological analysis. The detection of Anaplasma spp./Ehrlichia spp. within Available online 25 Aug 2016 tick samples was carried out by nested PCR amplification of the 16S ribosomal RNA gene accompanied by DNA sequencing and analysis for verification. Keywords: Results: A total of 10 tick species were identified as follows: Ornithodoros lahorensis (O. Tick lahorensis) (44.8%), Hyalomma dromedarii (15.6%), Dermacentor marginatus (13.5%), Anaplasma ovis Hyalomma anatolicum (11.2%), Hyalomma asiaticum (5.7%), Hyalomma marginatum (4.9%), Ehrlichia spp. -
Iraq Situation Sources: UNHCR Field Office UNHCR, Global Insight Digital Mapping Elevation © 1998 Europa Technologies Ltd
FF II CC SS SS Capital Armistice Demarcation Line Field Information and Administrative boundary Coordination Support Section UNHCR Representation Main road Division of Operational Services UNHCR Sub office Railway Iraq Situation Sources: UNHCR Field office UNHCR, Global Insight digital mapping Elevation © 1998 Europa Technologies Ltd. UNHCR Presence (Above mean sea level) MoDM, IOM, IDP Working Group C Refugee settlement As of April 2008 3,250 to 4,000 metres Refugee camp 2,500 to 3,250 metres The boundaries and names shown and the designations used on this Town or village of interest 1,750 to 2,500 metres map do not imply official endorsement 1,000 to 1,750 metres Exclusively for internal UNHCR use !! Main town or village or acceptance by the United Nations. 750 to 1,000 metres ((( Secondary town or village Iraq_SituationMapEthnoGroups_A3LC.WOR ((( ((( ((( 500 to 750 metres ((( Andirin !! ((( ((( ((( ((( Hakkâri ((( Yüksekova Kahramanmaras((( ((( ((( Gercus !! ((( ((( !! ((( ((( Kuyulu ((( Savur International boundary ((( Pazarcik((( Golcuk ((( !! 250 to 500 metres ((( !! ((( ((( !! ((( ((( !! ((( ((( !! ((( Bandar-e Anzali !! ((( !! ((( Karakeci OrumiyehOrumiyeh ((( Kozan ((( ((( OrumiyehOrumiyeh ((( Meyaneh ((( ((( ((( ((( !! ((( !! Turkoglu((( Yaylak((( ((( ((( !! Maraghen ((( Boundary of former Kadirli((( !! ((( Akziyaret ((( Derik ((( ((( ((( 0 to 250 metres ((( ((( (((Cizre ((( Bonab !! ((( ((( !! !! ((( ((( ( ((( Mardin Sume`eh Sara !! ((( Kuchesfahan ( ((( ((( ((( ((( SilopiSilopi !! Palestine Mandate Karaisali((( -
A Survey of the Environmental Effects on the Livability of Rural Areas (Case Study: Villages of Buin Zahra County)
Archive of SID Journal of Research and Rural Planning Volume 7, No. 1, Spring 2018, Serial No.21 ISSN: 2322-2514 eISSN: 2383-2495 http://jrrp.um.ac.ir A Survey of the Environmental Effects on the Livability of Rural Areas (Case Study: Villages of Buin Zahra County) Mahmoud Jome’epour1- Seyyed Hasan Motiee Langerudi2- Samira Hajihosseini*3- Abouzar Salami Beirami4 1-Professor in Social Planning and Regional Development, Allameh Tabataba'i University, Tehran, Iran. 2-Professor in Geography & Rural Planning, University of Tehran, Tehran, Iran. 3-Ph.D. Candidate in Geography & Rural Planning, University of Tehran, Tehran, Iran. 4-Ph.D. Candidate in Geography & Urban Planning, University of Tabriz, Tabriz, Iran. Received: 28 February 2017 Accepted: 12 December 2017 Abstract Purpose: Every human being, regardless of the city or village that he Lives, in pursuit of a desirable and satisfying life needed fields and factors to enable a person to provide comfort and long-term well-being for himself and his community. To some authors this condition is synonymous with livability or suitable conditions for life, in general, it refers to a set of objective characteristics that make a place in point is that people tend to live in the present and future. The aim of this study is to evaluate the environmental factors affecting the livability of rural areas and tried to answer the question of whether environmental factors affect the livability of rural areas or not? Design/methodology/approach: The nature of this study is applied, and it uses the descriptive-analytical method. Data was collected by documentary study and field studies (questionnaires, interviews, and direct observation). -
Report of One Rare Bee New to Iran, with the Checklist of the Persian Bee Subfamily Nomioidinae (Hymenoptera: Halictidae)
NORTH-WESTERN JOURNAL OF ZOOLOGY 14 (2): 159-164 ©NWJZ, Oradea, Romania, 2018 Article No.: e171202 http://biozoojournals.ro/nwjz/index.html Report of one rare bee new to Iran, with the checklist of the Persian bee subfamily Nomioidinae (Hymenoptera: Halictidae) Ziba SAFI1, Ahmad NADIMI1,*, Mohsen YAZDANIAN1 and Vladimir G. RADCHENKO2 1. Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. 2. Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine, acad. Lebedev, 37, Kiev 03143, Ukraine. *Corresponding author, A. Nadimi, E-mail: [email protected] Received: 04. November 2016 / Accepted: 19. October 2017 / Available online: 23. October 2017 / Printed: December 2018 Abstract. We report the capture of one rare species of bee new record for Iran, Nomioides hybridus (Blüthgen, 1934). Based on published records and previous lists of bee species from the last 100 years, we listed 18 species of Nomioidinae belonging to Iranian bee fauna. The known geographical distribution of the bees both within country and worldwide are shown. Key words: checklist, bee, Nomioidinae, Nomioides hybridus, Iran. Introduction of this paper is to summarize the available published data on Iranian Nomioidinae. We hope that this work will be sup- Bees (Hymenoptera: Apoidea), with more than 17000 de- ported by a revision and monograph of the genera Nomioides scribed species worldwide, are the most important pollina- and Ceylalictus including a key for the species. tors of flowering plants and play a key role in ecosystem function (Michener 2007). Bees are currently classified into seven families (Stenotritidae, Colletidae, Andrenidae, Halic- Material and methods tidae, Melittidae, Megachilidae and Apidae) (Michener 2007) The present paper includes nearly all data given in the literature. -
Deronectes Tashk Nov.Sp. from the Fars Province (Iran) (Insecta: Coleoptera: Dytiscidae) 1255-1265 © Biologiezentrum Linz/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Linzer biologische Beiträge Jahr/Year: 2014 Band/Volume: 0046_2 Autor(en)/Author(s): Fery Hans, Hasanshahi Gholamhosein, Abbasipour Habib Artikel/Article: Deronectes tashk nov.sp. from the Fars Province (Iran) (Insecta: Coleoptera: Dytiscidae) 1255-1265 © Biologiezentrum Linz/Austria; download unter www.zobodat.at Linzer biol. Beitr. 46/2 1255-1265 19.12.2014 Deronectes tashk nov.sp. from the Fars Province (Iran) (Insecta: Coleoptera: Dytiscidae) H. FERY, G. HASANSHAHI & H. ABBASIPOUR A b s t r a c t: Deronectes tashk nov.sp. is described from the Lake Tashk region in the central eastern part of the Fars Province, Iran. With its distinctly cordiform pronotum, the new species belongs to the D. longipes subgroup of the Deronectes parvicollis-group as defined by FERY & HOSSEINIE (1998) and BRANCUCCI & FERY (1997), respectively. The new species is especially similar to Deronectes longipes Sharp, 1882, but can be distinguished from it by the shape of the aedeagus. The species has been recorded only in the type locality, although some other dytiscids have been collected in two nearby localities. The new species is described in detail; its habitus and male and female genitalia are illustrated and compared to those of D. longipes. A map showing the distribution of both species demonstrates the relatively isolated occurrence of the new species. K e y w o r d s: Coleoptera, Dytiscidae, Deronectes, new species, description, Iran. Introduction The genus Deronectes SHARP, 1882, is widely distributed in the western and central Palearctic extending east to Pakistan, and extreme western China. -
Agroclimatic Zones Map of Iran Explanatory Notes
AGROCLIMATIC ZONES MAP OF IRAN EXPLANATORY NOTES E. De Pauw1, A. Ghaffari2, V. Ghasemi3 1 Agroclimatologist/ Research Project Manager, International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo Syria 2 Director-General, Drylands Agricultural Research Institute (DARI), Maragheh, Iran 3 Head of GIS/RS Department, Soil and Water Research Institute (SWRI), Tehran, Iran INTRODUCTION The agroclimatic zones map of Iran has been produced to as one of the outputs of the joint DARI-ICARDA project “Agroecological Zoning of Iran”. The objective of this project is to develop an agroecological zones framework for targeting germplasm to specific environments, formulating land use and land management recommendations, and assisting development planning. In view of the very diverse climates in this part of Iran, an agroclimatic zones map is of vital importance to achieve this objective. METHODOLOGY Spatial interpolation A database was established of point climatic data covering monthly averages of precipitation and temperature for the main stations in Iran, covering the period 1973-1998 (Appendix 1, Tables 2-3). These quality-controlled data were obtained from the Organization of Meteorology, based in Tehran. From Iran 126 stations were accepted with a precipitation record length of at least 20 years, and 590 stations with a temperature record length of at least 5 years. The database also included some precipitation and temperature data from neighboring countries, leading to a total database of 244 precipitation stations and 627 temperature stations. The ‘thin-plate smoothing spline’ method of Hutchinson (1995), as implemented in the ANUSPLIN software (Hutchinson, 2000), was used to convert this point database into ‘climate surfaces’. -
Iran (Persia) and Aryans Part - 6
INDIA (BHARAT) - IRAN (PERSIA) AND ARYANS PART - 6 Dr. Gaurav A. Vyas This book contains the rich History of India (Bharat) and Iran (Persia) Empire. There was a time when India and Iran was one land. This book is written by collecting information from various sources available on the internet. ROOTSHUNT 15, Mangalyam Society, Near Ocean Park, Nehrunagar, Ahmedabad – 380 015, Gujarat, BHARAT. M : 0091 – 98792 58523 / Web : www.rootshunt.com / E-mail : [email protected] Contents at a glance : PART - 1 1. Who were Aryans ............................................................................................................................ 1 2. Prehistory of Aryans ..................................................................................................................... 2 3. Aryans - 1 ............................................................................................................................................ 10 4. Aryans - 2 …............................………………….......................................................................................... 23 5. History of the Ancient Aryans: Outlined in Zoroastrian scriptures …….............. 28 6. Pre-Zoroastrian Aryan Religions ........................................................................................... 33 7. Evolution of Aryan worship ....................................................................................................... 45 8. Aryan homeland and neighboring lands in Avesta …...................……………........…....... 53 9. Western