Mangifera of Sumatra

Total Page:16

File Type:pdf, Size:1020Kb

Mangifera of Sumatra i ii MANGIFERA OF SUMATRA Fitmawati Ibna Hayati With Contribution by Eko Prasetyo Adi Zulkifli Photographs by Fitmawati Salpa Hartanto UR PRESS 2018 iii iv v ACKNOWLEDGMENT First of all, We would like to thank to Allah, God of the ‗Alameen (the whole universe), for all of His blessings. It was Allah who has opened a broad way for us so that We can completed the manuscript of Mangifera of Sumatra. The present results would not have been possible without the generous support of our colleagues in Biology Department of Universitas Riau, our biology students who have done the research related to Mangifera, and HIKOM. The Indonesian Minister of Research Technology and Higher Education provided financial grant and I am much grateful to DIKTI for unstinting support. I am indebted to Prof. Mien A. Rifai, Prof. Elizabet Wijaya and Prof. Alex Hartana who gave me guidance, support, and encouragement to finish this manuscript. It is a pleasure to warmly thank my exploration companions, Anggi, Uyun, Fransiska, Anto, Suci, Puji, Roslina, Masruroh, Ibna, Sandi, Erwina, Esi, Miladia, Nurul, Rissan, Syaiful fortheir time in the field; my greatest debt goes to Salpa, Adi, Syafroni who accompanied me on all trips,tirelessly organising the camp, the meals, cutting the plot boundaries, climbing trees for proper botanical collection, and helping in pre-identifying the samples. We would also like to express our sincere and deep gratitude to our supervisors, Prof. Mien, for his guidance and help, huge understansing, patience, kindness, immense support, and encouragement throughout this manuscript,. Numerous people have helped us during our research and the writing up. We would like to thank them all: Nery Sofyanti, Anggi Swita, Anto, Fransiska Warni, Suci Rochyati who have helped me exploring mango in Central Sumatra, Adi Zulkifli vi Salpa Hartanto and Rissan Suriatno, who have helped me exploring mango in eastern Sumatra until mapping distribution, Ibna Hayati, Erwina Juliantari, Sandi Pratiwi Harahap, Syaiful Ramadhan, Syafroni Pranata who have helped me exploring mango in southern Sumatra. For molecular team: Roslina, Masruroh, Ibna, Sandi, Wiwin, Esi, Miladia, Nurul. PREFACE vii Diversity Mango (Mangifera) in Indonesia is an important and interesting aspect to be studied for mango improvement program relies heavily on the genetic diversity available. Exploration and surveys of mango genetic diversity in Indonesia have been conducted in Java (Fitmawati 2003, Sulistiowati (1989), West Kalimantan and South Kalimantan (Kostermans and Bompart 1989), South Sulawesi (Wirawan 1999), Southeast Sulawesi (Fitmawati 2005) exploration and surveying the diversity of mango species in eastern and southern Sumatra has never been done.It is very important to do exploration to reveal the biological wealth of Sumatran mangoes in order to sow the resources of germplasm of wild mangoes in Sumatra that are racing with the rapid transfer of land function to the area of oil palm and rubber plantation. Mango has become a major fruit crop of the tropics and subtropics, particularly in Asia, where the mango has always been the most important fruit crop and where it has been considered the ‗king of fruits‘ (Purseglove, 1972). However, improvement of tree crops has lagged far behind field crops for several reasons: their heterogeneity, polyploidy, lengthy juvenile period, time required for evaluation of trees in the fi eld, and the relatively high cost of maintaining tree plantings. For the most part, fruit cultivars continue to be ancient selections, many of which have serious problems, including alternate bearing, lack of disease resistance, low yields, etc. The rapid growth of mango production in recent years has been due to its expansion into new growing regions of the New World, China and parts of Africa; the planting of regular bearing selections; and the adoption of modern fi eld practices, which include irrigation management, control of flowering, etc. Agricultural practices are currently undergoing another revolution, as integrated pest and disease management replaces viii the earlier reliance on agrichemicals, and emerging fields within biotechnology begin to impact cultivar development. The Mangifera species have their centre of diversity and origin in South-east Asia, a region that has experienced great economic development in recent years. Vast wooded areas have been completely or partially deforested either for expanding agriculture or for removal of tropical hardwoods for export. This has caused great genetic erosion within many species and genera. The Mangifera species, like many other tropical fruit trees, are canopy and emergent trees of the tropical rainforest (Kaur et al., 1980). These trees are widely scattered in the tropical rainforest, flower erratically and reproduce from large seeds that deteriorate rapidly. As such, they are particularly vulnerable and in danger of extinction. Mango (Mangifera indica L.) has attained the status of most important fruit crop in tropics and subtropics, particularly in Asia and considered as ‗king of fruits‘. India occupies first place in mango production of the world and accounts for almost half of the global production and area. India being primary and secondary centre of domestication of Mangifera indica, substantial contribution of mango industry in economy, export, livelihood support is well known. Enormous genetic diversity exists in the country. Considering the importance of mango national database on mango has been developed with the support of DBT (Department of Biotechnology, Government of India, New Delhi) in network mode involving ten research institutes/universities viz., Central Institute for Subtropical Horticulture (CISH), Lucknow; Indian institute of Horticultural Research (IIHR), Bengaluru; Horticultural College & Research Institute for Women (HCRIW) (Tamil Nadu Agricultural University), Trichy; Bidhan Chandra Krishi Viswavidyalaya (BCKV), Nadia; National Research Centre for Litchi (NRCL), Muzaffarpur; Central Horticultural Experiment ix Station (CHES), Bhubaneswar; Fruit Research Station (FRS) (Andhra Pradesh Horticultural University), Sangareddy; Regional Fruit Research Station (RFRS) (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Vengurle; Agriculture Experimental Station (AES) (Navsari Agriculture University), Paria and ICAR Research Complex for NEH Region (ICAR RC), Barapani. As the information on morphological characterization of regional farmer‘s variety and eco-geographical adaptations, package of practices, traditional knowledge, geographical indicators related to different varieties specific to mango growing areas of India, thus the involvement of these institutions for collection of information at district level resulted a huge data set representing country level information, which further reorganized for the development of an interactive and informative national network database meeting the strong need of the country. All centres collected geographical location specific information and final integration of the digitized information developed at Central Institute for Subtropical Horticulture (CISH), Lucknow as National Mango Database. Mango database providing information on genetic, phenotypic, molecular markers, proteins, endogenous phytochemicals, usage, packages of practices, traditional knowledge, nutritional and medicinal value, production, harvesting and postharvest technologies, on farm conservation sites, gene bank status, IPR issues, diseases and pests, geographical indicators, bibliographic records and GIS applications for georeference database and several other important aspects on the crop. The national database on various aspects of mango germplasm would be highly useful for biotechnologists, students, researchers, farmers, policy makers and mango lovers. From IPR point of view, utilization of germplasm in breeding programs and other biotechnological researches on mango will be highly useful. x Genetic resources molecular characterization and bioinformatics resource information including nucleic acid, ESTs, proteins, chemicals of different Mangifera collected by CISH, Lucknow. CISH, Lucknow also generated information on GIS based mapping of thematic areas like genetic diversity, molecular information and varietal climate suitability, database useful for DUS testing, IPR issues including patents on mango. Development and maintenance of national database containing information on various aspects related to mango will result in proper utilization of genetic resources in improvement programmes and germplasm conservation, which will also provide sustainable management tools. Mango database also delivers information on various aspects like improvement, production technology, crop protection, biotechnology, genetics, bibliographic citations and related issues affecting livelihoods and nutritional security for the benefit of researchers, farmers, local communities and tropical fruit tree user groups. Information on mango accessions available in different gene banks was augmented and updated for providing information of the accessions from various parts of the country. Existing documentation available on mango have been converted into digital format. Information on the farmer‘s varieties and landraces, available in the literatures were digitized for the updates of database. For this purpose, descriptions made by research workers from different parts of the country were collected. Information on the important eco-geographical areas rich in genetic diversity presented could also
Recommended publications
  • Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis
    molecules Article Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis Muhanna Mohammed Al-Shaibani 1,2, Radin Maya Saphira Radin Mohamed 1,* , Noraziah Mohamad Zin 2,*, Adel Al-Gheethi 1,*, Mohammed Al-Sahari 1 and Hesham Ali El Enshasy 3,4 1 Micro-Pollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Malaysia; [email protected] (M.M.A.-S.); [email protected] (M.A.-S.) 2 Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia 3 Institute of Bioproducts Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Malaysia; [email protected] 4 City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, 21934 Alexandria, Egypt * Correspondence: [email protected] (R.M.S.R.M.); [email protected] (N.M.Z.); [email protected] (A.A.-G.); Tel.: +607-4564236 (R.M.S.R.M.); +603-92897373 (N.M.Z.); +607-4564346 (A.A.-G.); Fax: +607-4536588(R.M.S.R.M.); +601-93924639 (N.M.Z.); +607-4536588 (A.A.-G.) Citation: Al-Shaibani, M.M.; Radin Abstract: The present research aimed to enhance the pharmaceutically active compounds’ (PhACs’) Mohamed, R.M.S.; Zin, N.M.; productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodol- Al-Gheethi, A.; Al-Sahari, M.; El ogy (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against Enshasy, H.A.
    [Show full text]
  • EXPLORING the ANTI INFLAMMATORY PROPERTIES of Mangiferaindica USING MOLECULAR DOCKING APPROACH
    © 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162) EXPLORING THE ANTI INFLAMMATORY PROPERTIES OF MangiferaIndica USING MOLECULAR DOCKING APPROACH 1Khursheed Ahmed, 2Heena Pathan, 3Mrinalini Bhosale, 4Subhash Padhye 1Associate Professor, 2,3Assistant Professor, 4Professor Department of Chemistry, Abeda Inamdar Senior College, Pune, India Abstract: Mango fruit contains a number of phytochemicals having medicinal properties. These constituents are used to treat diseases of skin and throat since ancient times. Herein we have investigated the effect of different constituents of mango stem on NFκB, which is the protein uplifted in inflammation. Different constituents show high binding affinity with NFκB calculated in terms of binding energy and stability in the cavity of the protein. Introduction: MangiferaIndica, (mango tree) is one of the flowering plant species belonging to the Anacardiaceae family. This family include about 30 tropical fruiting trees with the genus Mangifera, such as Mangifera altissima, Mangifera persiciformis, Mangifera caesia, Mangifera camptosperma, Mangifera casturi, Mangifera decandra, Mangifera foetida, Mangifera indica, Mangifera griffithii, Mangifera laurina, Mangifera kemanga, Mangifera macrocarpa, Mangifera longipes, Mangifera odorata, Mangifera mekongensis, Mangifera quadrifi da, Mangifera pajang, Mangifera similis, Mangifera siamensis, Mangifera sylvactia, Mangifera torquenda, Mangifera zeylanica, Mangifera applanata,Mangifera swintonioides[1]. Major uses of various parts of the plant are
    [Show full text]
  • Phylogenetic Analysis of Mango (Mangifera) in Northern Sumatra Based on Gene Sequences of Cpdna Trnl-F Intergenic Spacer
    BIODIVERSITAS ISSN: 1412-033X Volume 18, Number 2, April 2017 E-ISSN: 2085-4722 Pages: 715-719 DOI: 10.13057/biodiv/d180239 Short Communication: Phylogenetic analysis of mango (Mangifera) in Northern Sumatra based on gene sequences of cpDNA trnL-F intergenic spacer FITMAWATI♥, SANDI PRATIWI HARAHAP, NERY SOFIYANTI Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Riau. Kampus Binawidya, Jl. HR Soebrantas Km 12,5 Pekanbaru 28293, Riau, Indonesia. Tel./Fax. +62-761-63273, ♥email: [email protected] Manuscript received: 30 August 2016. Revision accepted: 11 April 2017. Abstract. Harahap SP, Fitmawati, Sofiyanti N. 2017. Short Communication: Phylogenetic analysis of mango (Mangifera) in Northern Sumatra based on gene sequences of cpDNA trnL-F intergenic spacer. Biodiversitas 18: 715-719. Northern Sumatra is an area with geographical variation. The environmental factors are affected on character plasticity such as found in Anacardiaceae family especially Mangifera genus. The character plasticity of Mangifera members raises a problem in determining clear boundaries between species based on morphological character. Therefore, a molecular approach is necessary to provide a specific character among Mangifera species. This study aimed to reconstruct the phylogeny among Mangifera members in Northern Sumatra based on the sequences of trnL- F intergenic spacer. All of the sequences were aligned by using Clustal W and Cladogram was reconstructed by using PAUP by Maximum Parsimony (MP) and Neighbour-Joining (NJ) methods. The MP cladogram produced two in groups i.e., clade I consist of M. odorata1, M. odorata2, M. laurina1, M. laurina2, M. indica, M. zeylanica, M. quadrifida and Mangifera sp. and clade II consisted of M.
    [Show full text]
  • A History of Fruits on the Southeast Asian Mainland
    OFFPRINT A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm Occasional Paper 4 Linguistics, Archaeology and the Human Past Edited by Toshiki OSADA and Akinori UESUGI Indus Project Research Institute for Humanity and Nature, Kyoto, Japan 2008 ISBN 978-4-902325-33-1 A history of Fruits on the Southeast Asian mainland A history of fruits on the Southeast Asian mainland Roger Blench Kay Williamson Educational Foundation Cambridge, UK E-mail: [email protected] http://www.rogerblench.info/RBOP.htm ABSTRACT The paper presents an overview of the history of the principal tree fruits grown on the Southeast Asian mainland, making use of data from biogeography, archaeobotany, iconography and linguistics. Many assertions in the literature about the origins of particular species are found to be without empirical basis. In the absence of other data, comparative linguistics is an important source for tracing the spread of some fruits. Contrary to the Pacific, it seems that many of the fruits we now consider characteristic of the region may well have spread in recent times. INTRODUCTION empirical base for Pacific languages is not matched for mainland phyla such as Austroasiatic, Daic, Sino- This study 1) is intended to complement a previous Tibetan or Hmong-Mien, so accounts based purely paper on the history of tree-fruits in island Southeast on Austronesian tend to give a one-sided picture. Asia and the Pacific (Blench 2005). Arboriculture Although occasional detailed accounts of individual is very neglected in comparison to other types of languages exist (e.g.
    [Show full text]
  • Collection and Evaluation of Under-Utilized Tropical and Subtropical Fruit Tree Genetic Resources in Malaysia
    J]RCAS International Symposium Series No. 3: 27-38 Session 1-3 27 Collection and Evaluation of Under-Utilized Tropical and Subtropical Fruit Tree Genetic Resources in Malaysia WONG, Kai Choo' Abstract Fruit tree genetic resources in Malaysia consist of cultivated and wild species. The cul­ tivated fruit trees number more than 100 species of both indigenous and introduced species. Among these fruits, some are popular and are widely cultivated throughout the country while others are less known and grown in small localized areas. The latter are the under-utilized fruit species. Apart from these cultivated fruits, there is also in the Malaysian natural forest a diversity of wild fruit tree species which produce edible fruits but are relatively unknown and unutilized. Many of the under-utilized and unutilized fruit species are known to show economic potential. Collection and evaluation of some of these fruit tree genetic resources have been carried out. These materials are assessed for their potential as new fruit trees, as sources of rootstocks for grafting and also as sources of germplasm for breeding to improve the present cultivated fruit species. Some of these potential fruit tree species within the gen­ era Artocarpus, Baccaurea, Canarium, Dimocarpus, Dialium, Durio, Garcinia, Litsea, Mangif era, Nephelium, Sa/acca, and Syzygium are highlighted. Introduction Malaysian fruit tree genetic resources comprise both cultivated and wild species. There are more than 100 cultivated fruit species of both major and minor fruit crops. Each category includes indigenous as well as introduced species. The major cultivated fruit crops are well known and are commonly grown throughout the country.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Review Article Phytochemicals and Medicinal Properties of Indigenous Tropical Fruits with Potential for Commercial Development
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2016, Article ID 7591951, 20 pages http://dx.doi.org/10.1155/2016/7591951 Review Article Phytochemicals and Medicinal Properties of Indigenous Tropical Fruits with Potential for Commercial Development Hock Eng Khoo,1,2 Azrina Azlan,1,2,3 Kin Weng Kong,4 and Amin Ismail1,2,3 1 Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400Serdang,Selangor,Malaysia 2Research Centre of Excellence for Nutrition and Non-Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia 3Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia (UPM), 43400Serdang,Selangor,Malaysia 4Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence should be addressed to Azrina Azlan; [email protected] Received 28 December 2015; Revised 29 April 2016; Accepted 4 May 2016 Academic Editor: Daniela Rigano Copyright © 2016 Hock Eng Khoo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Hundreds of fruit-bearing trees are native to Southeast Asia, but many of them are considered as indigenous or underutilized. These species can be categorized as indigenous tropical fruits with potential for commercial development and those possible for commercial development. Many of these fruits are considered as underutilized unless the commercialization is being realized despite the fact that they have the developmental potential. This review discusses seven indigenous tropical fruits from 15 species that have been identified, in which their fruits are having potential for commercial development.
    [Show full text]
  • Personal Enrichment Courses SUPPLY LIST
    Personal Enrichment Courses SUPPLY LIST Beginning Acrylics Intermediate Acrylics Instructor: Patti Overholt Instructor: Patti Overholt Niceville Campus Niceville Campus Please try to purchase Galeria Acrylic Paints Supply List (Windsor Newton) for best color mixing results. 1. CANVAS: One 8x10 Canvas Panel Supply List One 9 x 12 Canvas Panel 1. CANVAS: One 8x10 Gallery Wrapped Canvas Three 8x10 Canvas Panels 2. BRUSHES: 2. BRUSHES: #1 inch and a #0.5 inch Flat Brush #1 inch and a #0.5 inch Flat Brush #4 inch and a #8 Filbert #4 inch and a #8 Filbert #8 inch Round Brush #8 inch Round Brush A fan Brush A fan Brush A one inch craft brush A one inch craft brush 3 Palettes Knives, Small, Med. and Large 3. ACRYLIC PAINT: 3. ACRYLIC PAINT: (Starter Sets are available online and at local craft stores. Hobby (Starter Sets are available online and at local craft stores. Hobby Lobby has the best coupon offers. PLEASE avoid cheap paints as Lobby has the best coupon offers. PLEASE avoid cheap paints as colors are off and the pigments are thin.) colors are off and the pigments are thin.) • Ultramarine Blue • Ultramarine Blue • Cerulean Blue • Cerulean Blue • Alizarin Crimson • Alizarin Crimson • Rose Pink • Rose Pink • Cadmium Red Medium • Cadmium Red Medium • Cadmium Yellow Medium • Cadmium Yellow Medium • Yellow Ochre • Yellow Ochre • Indian Yellow • Indian Yellow • Titanium White • Titanium White • Unbleached Titanium (Buff • Unbleached Titanium (Buff White) White) • Burnt Umber • Burnt Umber • Acrylic Extender • Acrylic Extender MISCELLANEOUS: MISCELLANEOUS: Brush Holder for water Plastic Palette Plastic Bottle with water Styrofoam Trays Paper Towels Small jar Golden Moulding Paste Package of Handy or Baby Wipes Brush Holder for water Plastic Bottle with water Paper Towels Package of Handy or Baby Wipes Saran Wrap Personal Enrichment Courses SUPPLY LIST Acrylic Painting Have Fun Drawing Instructor: Marvin Tweedy Instructor: Patti Overholt DeFuniak Springs Campus Niceville Campus Supply List Supply List 1.
    [Show full text]
  • Ministry of Education and Training Vietnam Academy
    MINISTRY OF EDUCATION VIETNAM ACADEMY OF AND TRAINING SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY ----------------------------- Nguyen Xuan Quyen STUDY ON TAXONOMY OF CASHEW FAMILY (ANACARDIACEAE R. Br.) IN VIETNAM Major: Botany Code: 9.42.01.11 SUMMARY OF BIOLOGY DOCTORAL THESIS Hanoi, 2021 The thesis is completed at: GRADUATE UNIVERSITY OF SCIENCE AND TECHNOLOGY, VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY Supervisors: 1. Tran Thi Phuong Anh Ph.D. 2. Nguyen The Cuong Ph.D. Examination board Commenter 1: Commenter 2: Commenter 3: This doctoral thesis will be defended at the GUST-level Board of Examiner at Graduate University of Science and Technology, Vietnam Academy of Science and Technology at ......... on ........./......... /……. This doctoral thesis can be found at: - National Library of Vietnam - Library of Gradute Univesity of Science and Technology INTRODUCTION 1. Rationale for the study Vietnam is located in the tropical monsoon climate, geographic location with complex terrain and many different ecological regions, so the flora is very diverse and rich. From the late 18th century up to now, there have been many studies on plant taxonomy in our country, including new research results that have contributed to the necessary scientific basis for a number of related fields such as: conservation of biodiversity, ecology, agriculture, forestry, medicine, ... and management such as planning, building economic development, ... In the world, there are many completed and systematic work on plant taxonomy, which are the National Floras. That is the most up-to-date document on the specimen and latest information, using the modern methods of plants classification in each country, ... In Vietnam, 21 volumes The Flora of Vietnam have been published (2000- 2017), which included 3639 species, 665 genera belonging to 57 families of plant.
    [Show full text]
  • The ISCC-NBS Method of Designating Colors and a Dictionary of Color Names
    Uc 8 , .Department of Commerce Na Canal Bureau of Standards Circular UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director The ISCC-NBS Method of Designating Colors and a Dictionary of Color Names National Bureau of Standards Circular 553 Issued November 1, 1955 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 32 7 1 National Bureau of Standards NOV 1 1955 8 (0*118 QC 00 U555 Cop. 1 Preface I^Ever since the language of man began to develop, words or expressions have been used first to indicate and then to describe colors. Some of these have per- sisted throughout the centuries and are those which refer to the simple colors or ranges such as red or yellow. As the language developed, more and more color names were invented to describe the colors used by art and industry and in late years in the rapidly expanding field of sales promotion. Some of these refer to the pigment or dye used, as Ochre Red or Cochineal, or a geographical location of its source such as Naples Yellow or Byzantium. Later when it became clear that most colors are bought by or for women, many color names indicative of the beauties and wiles of the fan- sex were introduced, as French Nude, Heart’s Desire, Intimate Mood, or Vamp. Fanciful color names came into vogue such as Dream Fluff, Happy Day, Pearly Gates, and Wafted Feather. Do not suppose that these names are without economic importance for a dark reddish gray hat for Milady might be a best seller ; if advertised as Mauve Wine whereas it probably would not if the color were called Paris Mud.
    [Show full text]
  • Bouea) Based on Morphological Characters in Indonesia
    RESEARCH ARTICLE % SABRAO Journal of Breeding and Genetics 48 (4) 504-517, 2016 DIVERSITY OF GANDARIA (BOUEA) BASED ON MORPHOLOGICAL CHARACTERS IN INDONESIA T. HARSONO1, N. PASARIBU1, SOBIR2 and FITMAWATI3* 1Departement of Biology, North Sumatera University, Medan, Indonesia 2Center for Tropical Horticultural (PKHT), Bogor Agricultural University, Bogor, Indonesia 3Department of Biology, Riau University, Pekanbaru, Indonesia *Corresponding author’s email: [email protected] Email addresses of co-authors: [email protected], [email protected], [email protected] SUMMARY The major distribution of Bouea spp from the family Anacardiaceae is common in Malaysian region. The genus Bouea has three species B. Marcophylla, B. oppositifolia, and B. poilanei. Morphological variations were found in Bouea in various regions of Indonesia. This study aims to review the genetic diversity and grouping of Bouea spp in Indonesia using morphological markers. A total of 75 accessions of B. macrophylla and 30 accessions of B. oppositifolia obtained from 13 provinces in Indonesia observed with variations using 31 and 81 characters, respectively as morphological markers. Result of the observations were then cluster analyzed using the program NTSYS version 2.02 and confirmed using principal component analysis (PCA). Results revealed that morphological markers which can distinguish Bouea from other plants were opposite leaves pattern and purle seeds. Morphological markers that distinguished B. macrophylla with B. oppositifolia were leaf size, fruit size, fruit shape, fruit color, flesh color, and shape of the leaf axillary bud. Cluster analysis showed that B. macrophylla has similarity coefficient of 0.77 to 1.00 which is sub-divided in seven major groups with coefficient of 0.93.
    [Show full text]
  • Technical Guidelines for Reforestation at Ex-Coal-Mining Areas
    Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Japan International Forestry Promotion and Cooperation Center (JIFPRO) March 2015 Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Eiichiro Nakama, Seiichi Ohta, Yasuo Ohsumi, Tokunori Mori and Satohiko Sasaki Japan International Forestry Promotion and Cooperation Center Fakhrur Razie, Hamdani Fauzi and Mahrus Aryadi Lambung Mangkurat University, Indonesia Japan International Forestry Promotion and Cooperation Center March 2015 Foreword During the past decades, deforestation and forest degradation continues especially in developing countries. According to the report of the Food and Agriculture Organization of the United Nation (FAO), approximately 13 million hectors of global forests have been lost annually due to forest land conversion to other land uses, forest fires and natural disasters, while reforestation and natural regeneration account for an increase of approx. 7.8 million hectors of forest cover. This means the net loss of global forest is estimated at 5.2 million hectors. Adverse impacts of forest conversion to farmland can be minimized as far as the land is properly used and managed in a sustainable manner. However, in some cases, problem soils are exposed and abandoned as degraded land. Deforestation by mining is a big issue these years. Problem soils such as strong acid soils and/or too much heavy metal soils appear at the ex-mining areas. In some cases it is too difficult to reforestate.
    [Show full text]