Milling Hobbing Shaping

Total Page:16

File Type:pdf, Size:1020Kb

Milling Hobbing Shaping Doppler Gear TechBit: Methods of Gear Generation The most commonly used shape in gearing is an involute profile. The involute of a circle is a spiraling curve most often illustrated by the end of a taut string unwinding from a stationary circle (the base circle). This shape can be generated many different ways but three of the most common are: MILLING Gear milling, or “gashing”, can be done on a standard milling machine with a dividing head or indexer. It is also used on large and coarse pitch gears to quickly remove stock. The shape of the specific involute form is ground into the cutting tool and is dependent on the number of teeth in the gear. A gear of infinite diameter would be a rack and the cutting tool would have straight sides equal to the pressure angle of the gear. This method of generation can be prone to spacing errors. HOBBING Gear hobbing is an extremely common way to make gears. It is relatively fast, quite accurate, and can easily produce spur, helical, and worm gears. Hobbing is a generating process. The tool, or “hob” is a rack form thread with one or multiple starts. Accurate mounting and tool sharpening are key to producing precise involute forms. SHAPING Gear shaping is another generating process that uses special form cutting tools. It is applied mostly in cases where gear hobbing cannot be used. Especially for cutting internal gears and those with shoulders where hob tool collisions would result. Method of generation will depend on the application, quantity, 2715 - 29th Ave S and quality of gear required. Contact Doppler Gear Company and Minneapolis, MN 55406 let us help you determine the most cost effective approach. [email protected] www.dopplergear.com Ph: (612) 729-8301 .
Recommended publications
  • Milling Machines and Cnc Mills
    MILLING MACHINES AND CNC MILLS Safety Precautions MILL SAFETY HAZARDS Milling machines and computer-numerical-controlled (CNC) mills use moving cutters and/or move stock materials to cut shapes materials such as metal, wood or plastic. Mills cut away material using rotating blades, and can throw or eject dust and chips at high speed. Flying chips present an eye injury hazard. Fine dust can be a respiratory hazard. Mills can also be very loud, presenting a threat to hearing as well as drowning out voices, phones, and alarms. Rotating machinery presents a serious hazard, as gloves, clothing, jewelry or loose hair can be caught and body parts drawn into the running machine. Mills have guards to prevent some exposure, and some are completely enclosed when running. • Keep hands, tools, and clothing at least 12 inches away from the moving mill and do not SAFETY PRECAUTIONS attempt to adjust the mill while operating. • Wear safety glasses or goggles, and hearing Safety rules include: protection if needed. Do not wear gloves near • Get trained on the operation of the specific mill operating equipment. you are going to use. • Keep the mill surfaces and shop floor clean of • Never work alone, never leave the milling cuttings and dust. Metal filings can combust machine unattended while running, and know spontaneously and require a Class D fire where the emergency stop controls are located. extinguisher. • Securely clamp the stock material in place. • Secure guards, shields, doors in place prior to Machinery must be completely disconnected from starting. power (and tested) if it is to be repaired or adjusted (see the Hazardous Energy Control page).
    [Show full text]
  • Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions
    Gear Cutting and Grinding Machines and Precision Cutting Tools Developed for Gear Manufacturing for Automobile Transmissions MASAKAZU NABEKURA*1 MICHIAKI HASHITANI*1 YUKIHISA NISHIMURA*1 MASAKATSU FUJITA*1 YOSHIKOTO YANASE*1 MASANOBU MISAKI*1 It is a never-ending theme for motorcycle and automobile manufacturers, for whom the Machine Tool Division of Mitsubishi Heavy Industries, Ltd. (MHI) manufactures and delivers gear cutting machines, gear grinding machines and precision cutting tools, to strive for high precision, low cost transmission gears. This paper reports the recent trends in the automobile industry while describing how MHI has been dealing with their needs as a manufacturer of the machines and cutting tools for gear production. process before heat treatment. A gear shaping machine, 1. Gear production process however, processes workpieces such as stepped gears and Figure 1 shows a cut-away example of an automobile internal gears that a gear hobbing machine is unable to transmission. Figure 2 is a schematic of the conven- process. Since they employ a generating process by a tional, general production processes for transmission specific number of cutting edges, several tens of microns gears. The diagram does not show processes such as of tool marks remain on the gear flanks, which in turn machining keyways and oil holes and press-fitting bushes causes vibration and noise. To cope with this issue, a that are not directly relevant to gear processing. Nor- gear shaving process improves the gear flank roughness mally, a gear hobbing machine is responsible for the and finishes the gear tooth profile to a precision of mi- crons while anticipating how the heat treatment will strain the tooth profile and tooth trace.
    [Show full text]
  • Introduction to Selecting Milling Tools Iimportant Decisions for the Selection of Cutting Tools for Standard Milling Operations
    Introduction to Selecting Milling Tools IImportant decisions for the selection of cutting tools for standard milling operations The variety of shapes and materials machined on modern milling machines makes it impera- tive for machine operators to understand the decision-making process for selecting suitable cutting tools for each job. This course curriculum contains 16-hours of material for instructors to get their students ready to make basic decisions about which tools are suitable for standard milling operations. ©2016 MachiningCloud, Inc. All rights reserved. Table of Contents Introduction .................................................................................................................................... 2 Audience ..................................................................................................................................... 2 Purpose ....................................................................................................................................... 2 Lesson Objectives ........................................................................................................................ 2 Where to Start: A Blueprint and a Plan .......................................................................................... 3 Decision 1: What type of machining is needed? ............................................................................ 7 Decision 2: What is the workpiece material? ................................................................................. 7 ISO Material
    [Show full text]
  • Intelligent Process Optimization „Innovation Is Our Future.“ Sascha Tschiggfrei, CEO the Future Has Begun
    Intelligent Process Optimization „Innovation is our future.“ Sascha Tschiggfrei, CEO The Future has begun As a global market leader, we manufacture technologically advanced high precision tool holders for turning centers and swiss type lathes that are known for high performance and long life-time. Using our new “smart” technology, our customers will be able to intelligently optimize and monitor their processes in the future. Intelligent Process State-of-the-art technology for maximum productivity. With this claim, WTO develops Optimization and produces superior precision tool holders in terms of technology and quality. Used intelligently, processes are optimized and production becomes more productive. WTO Driven Precision Tool Holders equipped with innovative „smart“ technology enable intelligent online process monitoring. “Consistent development - always one step ahead.” Karlheinz Jansen, CTO High Tech – Made in Germany From the technical design to the finished product we make no compromises when it comes to manufacturing our high precision tool holders. Permanent investment in state-of-the-art production technologies, high quality standards and a large manufacturing depth. Our products are in use worldwide, wherever precision parts are manufactured on turning centers with high productivity. „Our employees don‘t work for WTO. They work for the success of our customers.“ Daniel Sierra, Sales Director WTO Your Success is our Business Motivated employees are the basis for 100 % consistent customer focus. WTO offers its employees a state-of-the-art working environ- ment to work independently and ensures highly motivated employees in a family-owned technology company. To a large extent, WTO relies on its own highly qualified employees in order to achieve high quality standards.
    [Show full text]
  • Milling Machine Operations
    SUBCOURSE EDITION OD1644 8 MILLING MACHINE OPERATIONS US ARMY WARRANT OFFICER ADVANCED COURSE MOS/SKILL LEVEL: 441A MILLING MACHINE OPERATIONS SUBCOURSE NO. OD1644 EDITION 8 US Army Correspondence Course Program 6 Credit Hours NEW: 1988 GENERAL The purpose of this subcourse is to introduce the student to the setup, operations and adjustments of the milling machine, which includes a discussion of the types of cutters used to perform various types of milling operations. Six credit hours are awarded for successful completion of this subcourse. Lesson 1: MILLING MACHINE OPERATIONS TASK 1: Describe the setup, operation, and adjustment of the milling machine. TASK 2: Describe the types, nomenclature, and use of milling cutters. i MILLING MACHINE OPERATIONS - OD1644 TABLE OF CONTENTS Section Page TITLE................................................................. i TABLE OF CONTENTS..................................................... ii Lesson 1: MILLING MACHINE OPERATIONS............................... 1 Task 1: Describe the setup, operation, and adjustment of the milling machine............................ 1 Task 2: Describe the types, nomenclature, and use of milling cutters....................................... 55 Practical Exercise 1............................................. 70 Answers to Practical Exercise 1.................................. 72 REFERENCES............................................................ 74 ii MILLING MACHINE OPERATIONS - OD1644 When used in this publication "he," "him," "his," and "men" represent both
    [Show full text]
  • Industrial Productivity Training Manual
    INDUSTRIAL PRODUCTIVITY TRAINING MANUAL Version 2.0 Written by: Dr. Michael R. Muller - Director, Don Kasten ©2006 Rutgers, the State University of New Jersey Table of Contents INTRODUCTION..............................................................................2 PRODUCTIVITY TOOLBOX ..............................................................5 Toolbox Introduction.....................................................................6 Productivity Metrics......................................................................9 Cost of Labor..............................................................................10 Space Optimization .......................................................................11 Productivity Questions...................................................................14 CONCEPTS FOR PRODUCTIVITY ENHANCEMENT, PART I INCREASING PIECES/PERSON/HOUR .............................................19 QUICK CHANGES......................................................................20 AR No. 1 Decrease Die Change-Out & Start-Up Times...................26 AR No. 2 Use Fixtures to Reduce Lathe Set-up Times....................32 AR No. 3 Install a Rotating Nozzle Carousel to Reduce Set-Up Times.34 AR No. 4 Employ Modular Jigs to Reduce Process Set-up Times.......36 BOTTLENECK MITIGATION.........................................................39 AR No. 5 Add Machine Operators to Reduce Production Bottleneck....41 AR No. 6 Install Refrigeration System to Cool Product...................45 AR No. 7 Replace Old Lathe
    [Show full text]
  • Rotary Transfer Machines Hydromat® Hc Product Line
    ROTARY TRANSFER MACHINES HYDROMAT® HC PRODUCT LINE Precise | Productive | Reliable The FFG Rotary Transfer Platform Flexible Multi-Machining with Hydromat® Precise, modular and efficient: The FFG group is the The ability to set up working stations horizontally as well as world’s leading manufacturer of rotary transfer machines vertically allows big machining jobs with the highest output and offers the best solutions for workpieces at the high just-in-time. The enormous flexibility of the rotary transfer volume end. machines gives our clients a major advantage in dealing with the growing challenges of today’s global markets: United under the roof of the FFG group: with the rotary 3 The most cost-effective solutions transfer machines of the tradition brands IMAS, Pfiffner and 3 Maximum precision and process reliability in mass production Witzig & Frank, you are always one cycle ahead. 3 High investment security thanks to extensive modularity 3 High reusability thanks to reconfigurable machine systems The rotary transfer machine program covers all applications for 3 High flexibility and variability (simpler retooling, reduced the serial production of complex metal parts. Rotary transfer setup times) machines are designed for the handling of bar and coil materials, 3 High machine availability or automatic part feeding. They guarantee high-precision 3 Low maintenance costs (TCO) machining of each workpiece, being carried out simultaneously 3 Turnkey solutions on each station. Every rotary transfer machine is specified, 3 Process optimisation
    [Show full text]
  • Milling Machine Operations
    Milling Machine Operations Milling Machine This full article is about milling machine operations. If you haven’t read our complete article on types of milling machine you can read now by clicking here. Let's starts with some little introduction about milling machine and milling machine operations. A milling machine is a machine tool that cuts metal as the workpiece is fed against a rotating multipoint cutter. The milling cutter rotates at a very high speed because of the multiple cutting edges, it cuts the metal at a very fast rate. This machine can also hold single or multiple cutters at the same time. This is why a milling machine has wide application in production work. This is better for other machines as regards accuracy and better surface finish. And also it is designed for machining a variety of tool room work. Milling Machine Operations The 15 different types of milling machine operations are as follow: 1. Plain Milling Operation 2. Face Milling Operation 3. Side Milling Operation 4. Straddle Milling Operation 5. Angular Milling Operation 6. Gang Milling Operation 7. Form Milling Operation 8. Profile Milling Operation 9. End Milling Operation 10. Saw Milling Operation 11. Milling Keyways, Grooves and Slot 12. Gear Milling 13. Helical Milling 14. Cam Milling 15. Thread Milling Read also: Types of Milling Cutters [Complete Guide] TheEngineersPost.com Page 1 Milling Machine Operations Read also: Milling Machine: Main Parts and It’s Working Principle Types of Milling Machine Operations Plain Milling The plain milling is the most common types of milling machine operations. Plain milling is performed to produce a plain, flat, horizontal surface parallel to the axis of rotation of a plain milling cutter.
    [Show full text]
  • Milling Machine a Milling Machine Removes Material from a Work Piece by Rotating a Cutting Tool (Cutter) and Moving It Into the Work Piece
    Milling machine A milling machine removes material from a work piece by rotating a cutting tool (cutter) and moving it into the work piece. Milling machines, either vertical or hori- zontal, are usually used to machine flat and irregularly shaped surfaces and can be used to drill, bore, and cut gears, threads, and slots. The vertical mill, or “column and knee” mill, is the most common milling machine found in machine shops today. The general construction of this mill includes the quill, which moves vertically in the head and contains the spindle and cutting tools. The knee moves up and down by sliding parallel to the column. The column holds the Georgia Tech Research Institute turret, which allows the milling head to be positioned anywhere above the table. Hand wheels move the work table to the left and right (X axis), in and out (Y axis), in addition to moving the knee, saddle, and worktable up and down (Z axis). Hazard Serious injuries and entanglement can occur if the operator con- tacts the rotating cutter. Metal shavings and lubricating/cooling fluids might also present a risk from the point of operation area. Material might spin and strike an operator if the material is not secured to the table. Injuries can also occur from a projected wrench if it is left in the spindle. Solution Illinois Institute of Technology Secure the work piece either by clamping it onto the work table or Vertical “column and knee” mill. by clamping it securely in a vise that is clamped tightly to the table.
    [Show full text]
  • Design and Development of Keyway Milling Attachmentfor Lathe Machine
    International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017) © International Research Publication House http://www.irphouse.com Design and Development of Keyway Milling Attachmentfor Lathe Machine Indrajeet Baburao Shedbale Master Student, School of Mechanical and Building Sciences, VIT University, Vellore, Katpadi Road, Tamil Nadu, India. Amar S. Bhandare Assistant Professor, Department of Mechanical Engineering, ATS’s Sanjay Bhokare Group Of Institute, Miraj, India. Abstract axis of shaft and the vertical axis of end mill cutter are In manufacturing industry there are different types of perpendicular to each other; also the vertical axis of shaft and machining processes are required to convert raw material in to vertical axis of tool are coinciding with each other. final product. Some of machining process required separate machine to carry out machining of product. It means not only consumption of space and overall time increases but also expenses will increases. By developing the special attachment for machine will reduces consumption of time and space. Various operations like Turning, Drilling, Facing, slotting will be done on single machine. Instead of milling machine we are using the special attachment for lathe machine to machining of key way slot. In thispaperdiscussed aboutthemilling attachment for lathe machine through whichwe eliminated cost of slotting and milling. Machine operates through lathe machine. It consist of lathe machine slide, electric motor, power chuck, end mill cutter, dowel pin etc. Keywords:lathe machine, milling operations, end mill cutter, lathe machine slide, key way. Figure 1: Axis of Shaft and Axis of End mill cutter both are Introduction coincide with each other.
    [Show full text]
  • Multienhancing
    FEBRUARY 2007 / VOLUME 59 / NUMBER 2 ➤ BY JOSEPH L. H AZE LTON, SENIOR EDITOR Multienhancing Multitasking machine tools, like this mill/ turn center, can reduce setups, shorten handling time and increase workpiece accuracy by allowing for complete machining within one enclosure. Mill/turn centers, the most com- advantages: fewer setups, reduced mon type of multitasking machine handling time and greater part Machine tool tool, appear to be the ultimate in accuracy. builders continue process consolidation. Inside its Everything has limitations, enclosure, a mill/turn center can though, and there are trade-offs to improve perform many of the functions with multitasking machine tools. A the capabilities of a 5-axis horizontal machining mill/turn center provides the ben- center—boring, drilling, milling, efit of process optimization, but its of mill/turn centers. tapping—as well as turning, once various operations may not be as limited to lathes. fast as they would be on separate That consolidation offers several machine tools. So the cycle time Doosan Infracore Doosan Infracore for a part produced in a mill/turn based multitasking machine tools ture includes twin ballscrew drives center can be longer than the sum could be described as 70 percent for both the X and Z axes and thereby of the cycle times if the part were turning machines and 30 percent permits driving at the center of grav- produced on separate milling and milling machines, according to Gerald ity. Mori Seiki refers to the design as turning centers. Owen, national applications manager DCG (Driven at the Center of Grav- That longer time, however, is usu- for machine tool builder Mori Seiki ity).
    [Show full text]
  • Gear Rolling for Production of High Gears Alireza Khodaee
    Gear Rolling for Production of High Gears Alireza Khodaee Gear Rolling for Production of High Gears Alireza Khodaee Licentiate Thesis, 2015 KTH Royal Institute of Technology Industrial Engineering and Management Department of Production Engineering SE-100 44 Stockholm, Sweden TRITA-IIP-15-06 ISSN: 1650-1888 ISBN: 978-91-7595-678-7 Abstract Gears are used to transmit mechanical work from one point to another. They are widely used in different mechanisms and they are the most important components of a transmission system. Thus, it is important that they are manufactured with high precision to deliver the work with highest possible efficiency. The dominant gear production method is metal cutting, like hobbing. The gear manufacturing industry aims to replace their traditional production lines with greener processes and thereby urge engineers to think about using metal forming methods instead of the traditional metal cutting solutions when possible. Gear rolling is an interesting metal forming method that can be an alternative method to fabricate gear wheels. Research on gear rolling firstly came into interest around 2000. Very few papers are published that covers the development of the method and its limitations and advantages. Almost all of these publications considered rolling of gear wheels with small modules. The focus of this study will be on application of gear rolling for gear wheels with large module (over 3 mm) where the amount of deformation is much larger than found in previous studies. In this thesis the Finite Element Method has been used to simulate and predict the results of rolling of high gears. In addition to that experiments were performed to validate the numerical results and develop the modelling technique for further investigations.
    [Show full text]