Multienhancing

Total Page:16

File Type:pdf, Size:1020Kb

Multienhancing FEBRUARY 2007 / VOLUME 59 / NUMBER 2 ➤ BY JOSEPH L. H AZE LTON, SENIOR EDITOR Multienhancing Multitasking machine tools, like this mill/ turn center, can reduce setups, shorten handling time and increase workpiece accuracy by allowing for complete machining within one enclosure. Mill/turn centers, the most com- advantages: fewer setups, reduced mon type of multitasking machine handling time and greater part Machine tool tool, appear to be the ultimate in accuracy. builders continue process consolidation. Inside its Everything has limitations, enclosure, a mill/turn center can though, and there are trade-offs to improve perform many of the functions with multitasking machine tools. A the capabilities of a 5-axis horizontal machining mill/turn center provides the ben- center—boring, drilling, milling, efit of process optimization, but its of mill/turn centers. tapping—as well as turning, once various operations may not be as limited to lathes. fast as they would be on separate That consolidation offers several machine tools. So the cycle time Doosan Infracore Doosan Infracore for a part produced in a mill/turn based multitasking machine tools ture includes twin ballscrew drives center can be longer than the sum could be described as 70 percent for both the X and Z axes and thereby of the cycle times if the part were turning machines and 30 percent permits driving at the center of grav- produced on separate milling and milling machines, according to Gerald ity. Mori Seiki refers to the design as turning centers. Owen, national applications manager DCG (Driven at the Center of Grav- That longer time, however, is usu- for machine tool builder Mori Seiki ity). ally recouped through a shorter setup USA Inc., Rolling Meadows, Ill. Another recent, significant im- time than the sum of the setup times Today, though, there are mill/turn provement was a longer Y-axis travel on the separate machines. As a limi- centers designed to mill on par with for the NT series. Previously, regard- tation, the possibility of slower ma- conventional machining centers and less of the machine tool builder, mill/ chining may someday be entirely turn on par with conventional lathes. turn centers often had long X-axis eliminated through improvements to Among those mill/turn centers are the travels, but limited Y-axis travels for mill/turn centers and other multi- Integrex Mark IV series from Mazak the tool spindles. For example, the MT tasking machines. Corp., Florence, Ky., and the NT series series had models with X-axis travels However, mill/turn centers have from Mori Seiki. To accomplish this, of 635mm and 1,008mm, but their Y- been improved in several ways in Mori Seiki transferred several subas- axis travels were 220mm and 300mm, recent years. semblies from its NL lathes and NH respectively. Today, the newer NT4000 machining centers to its NT mill/turn series of machine tools have X- and Fully Functional Milling centers, its latest series of multitask- Y-axis travels of 750mm and 420mm, and Turning ing machine tools. respectively. Compared with milling machines “We did not allow any lessening of “We have X- and Y-axis travels and lathes, one limitation of mill/ performance,” Owen said. more like what would be expected turn centers was the loss of some The lathe subassemblies included in a machining center,” said Greg milling or turning capabilities. the headstocks and lower turret with Hyatt, a Mori Seiki vice president. In the past, mill/turn centers were integral, driven tools. The machining Hyatt is the chief technical officer for only somewhat capable in their mill- center’s subassemblies consisted of the company’s Machining Technology ing or their turning. Previous lathe- its spindles and structure. The struc- Laboratory, also in Rolling Meadows. A multitasking machine for a narrow application ill/turn centers can perform a Afterward, the carrier is moved to a Mrange of machining operations. jig grinder to finish to final tolerances After all, the machine tools can be built the bores’ sizes and locations. The final to mill, turn, bore, drill and grind to tolerance level can be very tight. name just some of the possible opera- “Most often, it’s 10 microns or bet- tions. But, depending on its design, a ter,” Dolan said. center’s actual use can be narrow, as in However, Mitsui Seiki reduced the the case of the VU65A-SP. number of machine tools and opera- Mitsui Seiki built that mill/turn cen- tions involved in the previously men- ter for the production of gear carriers, tioned processing by applying its jig- mainly planetary gear carriers. The ma- boring and jig-grinding knowledge to chine tool builder created the VU65A- Mitsui Seiki a mill/turn center. The result was a SP to reduce the number of machine A high-precision mill/turn center turns vertically oriented center with a spin the face of a mild-steel workpiece, tools needed to turn, mill, bore and table. The table gives the center its which became part of an inspection otherwise machine the carriers. gage inside another machine tool. The turning capability. Tom Dolan, Mitsui Seiki’s marketing mill/turn center’s design is based on Given its jig work, the VU65A-SP is manager, described a conventional way jig machine tools, so it can perform built for high precision. The center has of machining a planetary gear carrier. precision work often done on jig a positioning accuracy of 2 microns or borers and jig grinders. The machine The machining starts with a lathe, better, and its typical turning accuracy also performed off-center precision which rough- and finish-turns the boring and milling on the workpiece. is 2-microns roundness or better. carrier’s diameters, including the car- Thus, three machine tools were re- rier diameter that will align with the tapping and rough and semifinish bor- placed by one for producing the plan- mounting diameter of the carrier’s cen- ing. The bores include those that will etary gear carrier. “We’ve been able to tral gear, the sun gear. The workpiece is align the location diameters of the achieve all the required tolerances on then transferred to a machining center carrier’s planetary gears, which sur- one machine tool,” Dolan said. for rough and finish milling, drilling, round the sun gear. —J. Hazelton for a part produced in a mill/turn center could be described Integrex multitasking centers by incor- ory for a 2MB program, and optional can be longer than the sum of the cycle as 70 percent turn- porating a lower turret so workpieces The ‘Brains’ of Mill/Turn Centers memory for an 8MB program. Also, the times if the part were produced on ing machines and can be machined simultaneously by Several improvements have cen- previous generation system could store separate milling and turning centers. 30 percent mill- both the upper and lower turrets. The tered on the controls and software of 500 sets of tool offsets and accommo- That longer time, however, is usually ing machines, ac- lower turret accommodates milling mill/turn centers. date tool data registration for up to 1,000 recouped through a shorter setup time cording to Gerald and turning tools. In Integrex IV mod- A multitasking machine tool requires tools. The Matrix can store 4,000 sets of than the sum of the setup times on the Owen, national ap- els, the lower turret can hold up to nine a lot of computing power to control the offsets and accommodate registration separate machines. As a limitation, the plications manager tools or serve as a steady rest or center simultaneous movement of its many for a maximum of 4,000 tools. possibility of slower machining may for machine tool to enhance machining. axes. For example, a Mori Seiki NT Software was a main concern in someday be entirely eliminated through builder Mori Seiki Mori Seiki The newly introduced Integrex e- mill/turn center has the option of being 2006 for machine tool builder Doo- Consolidating turning and milling in one machine tool once improvements to mill/turn centers and USA Inc., Rolling involved noticeable compromising of one or both processes. 420H-ST II has a lower turret for ro- equipped with two headstocks, allow- san Infracore America Corp., West other multitasking machines. Meadows, Ill. But many mill/turn centers are designed today to be fully tary tools with X-, Y- and Z-axis travel ing it to function as a 5-axis VMC at Caldwell, N.J. The company spent However, mill/turn centers have Today, though, functional in their milling and turning. capacity. Its spindle has a maximum one end of its enclosure and as a 3-axis time improving programs to speed been improved in several ways in re- there are mill/turn speed of 6,000 rpm. Also, the lower lathe at the other end. throughput of its mill/turn centers, the cent years. centers designed to mill on par with con- machine tool builder, mill/turn cen- turrets can be equipped with special Given all those axes, there’s a greater Lynx and Puma series. ventional machining centers and turn on ters often had long X-axis travels, but adapters to serve as steady rests or chance of interference—of tools crash- Doosan Infracore’s efforts are pay- Fully Functional Milling par with conventional lathes. Among limited Y-axis travels for the tool spin- centers for supporting shafts. ing into workpieces. Consequently, ing off. Bob Appleton, multitasking and Turning those mill/turn centers are the Integrex dles. For example, the MT series had each NT mill/turn center can check applications engineer, said time was Compared with milling machines Mark IV series from Mazak Corp., Flor- models with X-axis travels of 635mm The following companies for interference via a front-end control saved in machining aspects like chip- and lathes, one limitation of mill/turn ence, Ky., and the NT series from Mori and 1,008mm, but their Y-axis travels contributed to this report: that includes a 1.6GB dual processor.
Recommended publications
  • Milling Machines and Cnc Mills
    MILLING MACHINES AND CNC MILLS Safety Precautions MILL SAFETY HAZARDS Milling machines and computer-numerical-controlled (CNC) mills use moving cutters and/or move stock materials to cut shapes materials such as metal, wood or plastic. Mills cut away material using rotating blades, and can throw or eject dust and chips at high speed. Flying chips present an eye injury hazard. Fine dust can be a respiratory hazard. Mills can also be very loud, presenting a threat to hearing as well as drowning out voices, phones, and alarms. Rotating machinery presents a serious hazard, as gloves, clothing, jewelry or loose hair can be caught and body parts drawn into the running machine. Mills have guards to prevent some exposure, and some are completely enclosed when running. • Keep hands, tools, and clothing at least 12 inches away from the moving mill and do not SAFETY PRECAUTIONS attempt to adjust the mill while operating. • Wear safety glasses or goggles, and hearing Safety rules include: protection if needed. Do not wear gloves near • Get trained on the operation of the specific mill operating equipment. you are going to use. • Keep the mill surfaces and shop floor clean of • Never work alone, never leave the milling cuttings and dust. Metal filings can combust machine unattended while running, and know spontaneously and require a Class D fire where the emergency stop controls are located. extinguisher. • Securely clamp the stock material in place. • Secure guards, shields, doors in place prior to Machinery must be completely disconnected from starting. power (and tested) if it is to be repaired or adjusted (see the Hazardous Energy Control page).
    [Show full text]
  • Numerical Control (NC) Fundamentals
    Lab Sheet for CNC Laboratory Department of Production Engineering and Metallurgy Prepared by: Dr. Laith Abdullah Mohammed Production Engineering – CNC Lab Lab Sheet Numerical Control (NC) Fundamentals What is Numerical Control (NC)? Form of programmable automation in which the processing equipment (e.g., machine tool) is controlled by coded instructions using numbers, letter and symbols - Numbers form a set of instructions (or NC program) designed for a particular part. - Allows new programs on same machined for different parts. - Most important function of an NC system is positioning (tool and/or work piece). When is it appropriate to use NC? 1. Parts from similar raw material, in variety of sizes, and/or complex geometries. 2. Low-to-medium part quantity production. 3. Similar processing operations & sequences among work pieces. 4. Frequent changeover of machine for different part numbers. 5. Meet tight tolerance requirements (compared to similar conventional machine tools). Advantages of NC over conventional systems: Flexibility with accuracy, repeatability, reduced scrap, high production rates, good quality. Reduced tooling costs. Easy machine adjustments. More operations per setup, less lead time, accommodate design change, reduced inventory. Rapid programming and program recall, less paperwork. Faster prototype production. Less-skilled operator, multi-work possible. Limitations of NC: · Relatively high initial cost of equipment. · Need for part programming. · Special maintenance requirements. · More costly breakdowns. Advantages
    [Show full text]
  • Introduction to Selecting Milling Tools Iimportant Decisions for the Selection of Cutting Tools for Standard Milling Operations
    Introduction to Selecting Milling Tools IImportant decisions for the selection of cutting tools for standard milling operations The variety of shapes and materials machined on modern milling machines makes it impera- tive for machine operators to understand the decision-making process for selecting suitable cutting tools for each job. This course curriculum contains 16-hours of material for instructors to get their students ready to make basic decisions about which tools are suitable for standard milling operations. ©2016 MachiningCloud, Inc. All rights reserved. Table of Contents Introduction .................................................................................................................................... 2 Audience ..................................................................................................................................... 2 Purpose ....................................................................................................................................... 2 Lesson Objectives ........................................................................................................................ 2 Where to Start: A Blueprint and a Plan .......................................................................................... 3 Decision 1: What type of machining is needed? ............................................................................ 7 Decision 2: What is the workpiece material? ................................................................................. 7 ISO Material
    [Show full text]
  • Milling Machine Operations
    SUBCOURSE EDITION OD1644 8 MILLING MACHINE OPERATIONS US ARMY WARRANT OFFICER ADVANCED COURSE MOS/SKILL LEVEL: 441A MILLING MACHINE OPERATIONS SUBCOURSE NO. OD1644 EDITION 8 US Army Correspondence Course Program 6 Credit Hours NEW: 1988 GENERAL The purpose of this subcourse is to introduce the student to the setup, operations and adjustments of the milling machine, which includes a discussion of the types of cutters used to perform various types of milling operations. Six credit hours are awarded for successful completion of this subcourse. Lesson 1: MILLING MACHINE OPERATIONS TASK 1: Describe the setup, operation, and adjustment of the milling machine. TASK 2: Describe the types, nomenclature, and use of milling cutters. i MILLING MACHINE OPERATIONS - OD1644 TABLE OF CONTENTS Section Page TITLE................................................................. i TABLE OF CONTENTS..................................................... ii Lesson 1: MILLING MACHINE OPERATIONS............................... 1 Task 1: Describe the setup, operation, and adjustment of the milling machine............................ 1 Task 2: Describe the types, nomenclature, and use of milling cutters....................................... 55 Practical Exercise 1............................................. 70 Answers to Practical Exercise 1.................................. 72 REFERENCES............................................................ 74 ii MILLING MACHINE OPERATIONS - OD1644 When used in this publication "he," "him," "his," and "men" represent both
    [Show full text]
  • Rotary Transfer Machines Hydromat® Hc Product Line
    ROTARY TRANSFER MACHINES HYDROMAT® HC PRODUCT LINE Precise | Productive | Reliable The FFG Rotary Transfer Platform Flexible Multi-Machining with Hydromat® Precise, modular and efficient: The FFG group is the The ability to set up working stations horizontally as well as world’s leading manufacturer of rotary transfer machines vertically allows big machining jobs with the highest output and offers the best solutions for workpieces at the high just-in-time. The enormous flexibility of the rotary transfer volume end. machines gives our clients a major advantage in dealing with the growing challenges of today’s global markets: United under the roof of the FFG group: with the rotary 3 The most cost-effective solutions transfer machines of the tradition brands IMAS, Pfiffner and 3 Maximum precision and process reliability in mass production Witzig & Frank, you are always one cycle ahead. 3 High investment security thanks to extensive modularity 3 High reusability thanks to reconfigurable machine systems The rotary transfer machine program covers all applications for 3 High flexibility and variability (simpler retooling, reduced the serial production of complex metal parts. Rotary transfer setup times) machines are designed for the handling of bar and coil materials, 3 High machine availability or automatic part feeding. They guarantee high-precision 3 Low maintenance costs (TCO) machining of each workpiece, being carried out simultaneously 3 Turnkey solutions on each station. Every rotary transfer machine is specified, 3 Process optimisation
    [Show full text]
  • Milling Machine Operations
    Milling Machine Operations Milling Machine This full article is about milling machine operations. If you haven’t read our complete article on types of milling machine you can read now by clicking here. Let's starts with some little introduction about milling machine and milling machine operations. A milling machine is a machine tool that cuts metal as the workpiece is fed against a rotating multipoint cutter. The milling cutter rotates at a very high speed because of the multiple cutting edges, it cuts the metal at a very fast rate. This machine can also hold single or multiple cutters at the same time. This is why a milling machine has wide application in production work. This is better for other machines as regards accuracy and better surface finish. And also it is designed for machining a variety of tool room work. Milling Machine Operations The 15 different types of milling machine operations are as follow: 1. Plain Milling Operation 2. Face Milling Operation 3. Side Milling Operation 4. Straddle Milling Operation 5. Angular Milling Operation 6. Gang Milling Operation 7. Form Milling Operation 8. Profile Milling Operation 9. End Milling Operation 10. Saw Milling Operation 11. Milling Keyways, Grooves and Slot 12. Gear Milling 13. Helical Milling 14. Cam Milling 15. Thread Milling Read also: Types of Milling Cutters [Complete Guide] TheEngineersPost.com Page 1 Milling Machine Operations Read also: Milling Machine: Main Parts and It’s Working Principle Types of Milling Machine Operations Plain Milling The plain milling is the most common types of milling machine operations. Plain milling is performed to produce a plain, flat, horizontal surface parallel to the axis of rotation of a plain milling cutter.
    [Show full text]
  • Milling Machine a Milling Machine Removes Material from a Work Piece by Rotating a Cutting Tool (Cutter) and Moving It Into the Work Piece
    Milling machine A milling machine removes material from a work piece by rotating a cutting tool (cutter) and moving it into the work piece. Milling machines, either vertical or hori- zontal, are usually used to machine flat and irregularly shaped surfaces and can be used to drill, bore, and cut gears, threads, and slots. The vertical mill, or “column and knee” mill, is the most common milling machine found in machine shops today. The general construction of this mill includes the quill, which moves vertically in the head and contains the spindle and cutting tools. The knee moves up and down by sliding parallel to the column. The column holds the Georgia Tech Research Institute turret, which allows the milling head to be positioned anywhere above the table. Hand wheels move the work table to the left and right (X axis), in and out (Y axis), in addition to moving the knee, saddle, and worktable up and down (Z axis). Hazard Serious injuries and entanglement can occur if the operator con- tacts the rotating cutter. Metal shavings and lubricating/cooling fluids might also present a risk from the point of operation area. Material might spin and strike an operator if the material is not secured to the table. Injuries can also occur from a projected wrench if it is left in the spindle. Solution Illinois Institute of Technology Secure the work piece either by clamping it onto the work table or Vertical “column and knee” mill. by clamping it securely in a vise that is clamped tightly to the table.
    [Show full text]
  • Design and Development of Keyway Milling Attachmentfor Lathe Machine
    International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017) © International Research Publication House http://www.irphouse.com Design and Development of Keyway Milling Attachmentfor Lathe Machine Indrajeet Baburao Shedbale Master Student, School of Mechanical and Building Sciences, VIT University, Vellore, Katpadi Road, Tamil Nadu, India. Amar S. Bhandare Assistant Professor, Department of Mechanical Engineering, ATS’s Sanjay Bhokare Group Of Institute, Miraj, India. Abstract axis of shaft and the vertical axis of end mill cutter are In manufacturing industry there are different types of perpendicular to each other; also the vertical axis of shaft and machining processes are required to convert raw material in to vertical axis of tool are coinciding with each other. final product. Some of machining process required separate machine to carry out machining of product. It means not only consumption of space and overall time increases but also expenses will increases. By developing the special attachment for machine will reduces consumption of time and space. Various operations like Turning, Drilling, Facing, slotting will be done on single machine. Instead of milling machine we are using the special attachment for lathe machine to machining of key way slot. In thispaperdiscussed aboutthemilling attachment for lathe machine through whichwe eliminated cost of slotting and milling. Machine operates through lathe machine. It consist of lathe machine slide, electric motor, power chuck, end mill cutter, dowel pin etc. Keywords:lathe machine, milling operations, end mill cutter, lathe machine slide, key way. Figure 1: Axis of Shaft and Axis of End mill cutter both are Introduction coincide with each other.
    [Show full text]
  • NIMS CNC Milling Programming & Set-Up
    SC ACCELERATE MTT 255 Open Text Module 5 3 NIMS CNC Milling 5 Programming & Set-Up Objectives Students will be able to: • Write and Format CNC milling programs • Diagram CNC Fanuc Control Programs • Analyze and edit CNC G-code based programs • Program and Operate a CNC Mill by earning Level I NIMS CNC Milling Credential Orienting Questions ü How do cutter offsets effect CNC programming? ü What is the difference between cutter compensation left and right? ü What is the difference between contour machining and point machining? ü Is “NIMS” a National or State Accredited Program? ü Why is NIMS important to Industry? **The bolded/underlined words are key terms…click on the blue underlined terms for more information. **Closed Captions and transcripts are available for all videos in this module. Click the button at the bottom right of the play menu to turn on closed captioning in the language of your choice. You may also read a full transcript of this video by clicking on the bottom below the play menu.** Except where otherwise noted, this work was created by Mark Cramer and is licensed under the Creative Commons Attribution 4.0 International License. SC ACCELERATE Page | 1 Version │ Course ID │ Rev 1 2012 SC ACCELERATE MTT 255 Open Text Module 5 To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. INTRODUCTION CNC Milling Programs can be divided into two basic divisions; the “Preparation Codes” and the actual “Machining Codes”.
    [Show full text]
  • Manufacuting Technology
    ME 6402 -Manufacturing Technology - II IV Sem / II Year B.E. (Mechanical Engineering) Department of Mechanical Engineering R.M.K.ENGINEERINGCOLLEGE R.S.M. Nagar, Kavaraipettai – 601 206. UNIT I - THEORY OF METAL CUTTING INTRODUCTION: CUTTING TOOL: SINGLE POINT CUTTING TOOL: NOMENCLATURE SINGLE POINT TOOL: MECHANICS OF METAL CUTTING: TYPES OF CHIPS: COOLANT OR CUTTING FLUIDS OR EMULSIONS: FUNCTIONS OR USES OF COOLANTS OR CUTTING FLUIDS: TYPICAL PROPERTIES OF TOOL MATERIALS: ------------------------------X-------------------------------- UNIT-II - CENTRE LATHE AND SPECIAL PURPOSE LATHE INTRODUCTION: TYPES OF LATHE: SPEED LATHE: CENTRE LATHE OR ENGINE LATHE: BENCH LATHE: TOOL ROOM LATHE: CAPSTAN AND TURRET LATHE: SPECIAL PURPOSE LATHE: AUTOMATIC LATHE: CONSTRUCTION OF LATHE MACHINE: BED: HEAD STOCK: TAIL STOCK: CARRIAGE: THREAD CUTTING MECHANISM: ACCESSORIES AND ATTACHMENTS OF LATHE: SPECIFICATION OF LATHE: LATHE OPERATIONS: TAPERS AND TAPER TURNING: TAPER TURNING BY SWIVELLING THE COMPOUND REST: TAPER TURNING ATTACHMENT METHOD: TAPER TURNING WITH TAILSTOCK SET OVER METHOD: FORM TOOL METHOD: TAPER TURNING WITH DOUBLE HEADS: THREAD CUTTING: DRILLING ON A LATHE: CUTTING SPEED: FEED: ---------------------------X------------------------------ UNIT-III, OTHER MACHINE TOOLS DRILLING INTRODUCTION: CONSTRUCTION OF DRILLING MACHINE: TYPES OF DRILLING MACHINE: PORTABLE DRILLING MACHINE: SENSITIVE DRILLING MACHINE: UPRIGHT DRILLING MACHINE: RADIAL DRILLING MACHINE: GANG DRILLING MACHINE: MULTIPLE-SPINDLE DRILLING MACHINE: TYPES OF DRILLS: TWIST DRILL
    [Show full text]
  • Full-Time Gunsmithing Program Information
    LCC GUNSMITHING PROGRAM The Lassen Community College Gunsmithing Program has been providing prepared, quality gunsmiths to the industry since the program’s foundation in 1945 and is the oldest gunsmithing school in the United States. We offer Associate in Science Degrees in Firearms Repair and General Gunsmithing, as well as Certificates of Completion for Pistolsmith, Riflesmith, Long Guns, and Gunsmith Machinist and Metal Finishing. Degree programs and Certificate programs are designed to be realistic and comprehensive, spanning the wide spectrum of skills needed to compete in the modern job market. The Gunsmithing Program is two years in duration and offers 64 courses over four semesters. At the completion of the two year program, the student is eligible to petition for graduation and can receive the following: • Certificate of Achievement, General Gunsmithing • Certificate of Achievement, Firearms Repair • Certificate of Accomplishment, Gunsmith Machinist and Metal Finishing • Certificate of Accomplishment, Riflesmith • Certificate of Accomplishment, Pistolsmith • Certificate of Accomplishment, Long Gun Upon the completion of the General Education Requirements in addition to the full time gunsmithing program, the student is eligible for graduation and can receive the following degrees: • Associate in Science degree, General Gunsmithing • Associate in Science degree, Firearms Repair The Gunsmithing Program offers an intensive full spectrum look into the field of gunsmithing. Your typical course is a week in duration and is held Monday through Friday for a total of 39 instructional hours. There are 16 weeks and therefore 16 classes per semester. Like a full time job, the coursework will occupy the majority of your time while you are enrolled in the program.
    [Show full text]
  • Century American Machinery and Machine Tool Building
    From Depression to Globalization: Reconfiguring 20th Century American Machinery and Machine Tool Building Philip Scranton, Rutgers University Prologue Practical Machinist: 06-14-2003, 11:51 AM Let's talk about Machine Tool Making. 1. The industry is Capital Intensive. A machine tool maker has a huge amount invested in plant and equipment. 2. The industry is Labor Intensive. Almost all the workers are highly skilled and not only that, each worker has to have significant experience working in the specific shop making that company's machines. 3. The Industry is cyclic. Some years there is a big backlog of orders. Some years, there is hardly anything for the skilled and valued workers to do. 4. The "Technical" competition is Brutal. As soon as a new machine design is fit for production, some competitor brings out a newer design with faster spindle speeds or faster motions or some other feature that he touts relentlessly in the trade publications. A Machine tool can be rendered obsolete by the time the first article is being crated up on a maker's loading dock. 5. The reverse of this can happen. A machine tool maker can devise a highly sophisticated design that just doesn't sell. Giddings and Lewis has had this happen to them several times and Davenport Machine had it happen with a servo-controlled, multi-spindle automatic bar machine. 6. During slow times, a machine tool manufacturer can be in competition with slightly used machine of his own manufacture. This is happening right now. None of the above points have anything to do with the government, and the best of the foreign competition suffers all of the above situations.
    [Show full text]