Visceral Leishmaniasis in Ethiopia: Innate Immune Functions, Biomarkers of Cure and Potential Roles of Cattle for Transmission

Total Page:16

File Type:pdf, Size:1020Kb

Visceral Leishmaniasis in Ethiopia: Innate Immune Functions, Biomarkers of Cure and Potential Roles of Cattle for Transmission ___________________________________________________________________________________________________ Aus der Klinik für Infektiologie und Mikrobiologie der Universität zu Lübeck Direktor: Prof. Dr. med. Jan Rupp Visceral leishmaniasis in Ethiopia: Innate immune functions, biomarkers of cure and potential roles of cattle for transmission Dissertation zur Erlangung der Doktorwürde Dr. rer. hum. biol. der Universität zu Lübeck - Aus der Sektion Medizin - presented by Geremew Tasew Guma from Arjo, Wellega, Ethiopia Lübeck 2018 ___________________________________________________________________________________________________ 1. Berichterstatter: Prof. Dr. univ. (Univ. Budapest) Tamás Laskay 2. Berichterstatter: Priv.-Doz. Dr. rer. nat. Norbert Reiling Tag der mündlichen Prüfung: 28.8.2018 Zum Druck genehmigt, Lübeck den 28.8.2018 - Promotionskommission der Sektion Medizin- 0 ABBREVIATIONS___________________________________________________________________ ABBREVIATIONS ATP Adenosine triphosphate BSA Bovine serum albumin CaCl2 Calcium chloride CD62L Cluster of differentiation 62L CD66b Cluster of differentiation 66b CGD Chronic granulomatous disease CO2 Carbondioxide CR3 Complement receptor -3 CRP C-reactive protein DAT Direct agglutination test DC Dendritic cells DCL Diffuse cutaneous leishmaniasis DHR 123 Dihydrorhodamine 123 DNA Deoxyribonucleic acid EGFR Epidermal growth factor receptor EHC Endemic healthy control ELISA Enzyme linked immunosorbent assay FACS Fluorescence-activated cell sorting FBS Fetal bovine serum FITC Fluorescein isothiocyanate fMLP Formyl-methionine-leucine-phenylalanine G-CSF Granulocyte colony stimulating factor GIPL glycoinositolphospholipids GM-CSF Granulocyte macrophage colonystimulating factor H2O2 Hydrogen peroxide HCl Hydrochloric acid HIV Human immunodeficiency virus HIV1/2 Human immuno deficiency viruses 1/2 IFN Interferon IFN- Interferon alpha IFN- Interferon beta IFN-γ Interferon gamma IgG Immunoglobulin G IL-1 Interleukin-1 IL-1 Interleukin-1 beta IL-10 Interleukin-10 IL-12 Interleukin-12 IL-2 Interleukin- 2 IL-6 Interleukin- 6 IL-7 Interleukin- 7 IL-8 Interleukin- 8 iNOS Inducible nitric oxide synthase IP-10 IFN-inducible protein-10 KCl Potassium chloride L. aethiopica Leishmania aethiopica L. braziliensis Leishmania braziliensis I ABBREVIATIONS___________________________________________________________________ L. chagasi Leishmania chagasi L. donovani Leishmania donovani L. enrietti Leishmania enrietti L. infantum Leishmania infantum L. major Leishmania major L. mexicana Leishmania mexicana L. tropica Leishmania tropica LCL Localized cutaneous leishmaniasis LN Lymph nodes LPG Lipophosphoglycan LPS Lipopolysaccharide M. tuberculosis Mycobacterium tuberculosis MALP-2 Macrophage-activating lipopeptide-2 MCF Mononuclear cell factor MCL Mucocutaneous leishmaniasis MCP-1 Monocyte chemotactic protein 1 MDM Monocyte derived macrophages MHC Major histocompatability complex MIP-1 Macrophage inflammatory protein-1 alpha MIP-1 Macrophage inflammatory protein-1 beta MMP- 9 Matrix metalloproteinase-9 MPO Myeloperoxidase MR Mannose receptor MyD88 Myeloid differentiation primary response 88 NaCl Sodium chloride NADPH Nicotinamide adenine dinucleotide phosphate NaHCO3 Sodium bicarbonate NETs Neutrophil extracellular traps NF-B Nuclear factor kappa B NK Natural killer NNN Novy-MacNeal-Nicolle NO Nitric oxide O2¯ Superoxide anion P. orientalis Phlebotomus orientalis PAMP Pathogen-associated molecular patterns PBS Phosphate buffered saline PCR Polymerase chain reaction PCR-RFLP Polymerase chain reaction restriction fragment length polymorphism PE Phycoerythrin PKDL Post kala azar dermal leishmaniasis PMN Polymorphonuclear Poly (I: C) Polyinosinic-polycytidylic acid PRR Pattern recognition receptors RANTES Regulated on activation, normal T cell expressed and secreted rK39 Recombinant fragment of kinesin gene 39 RNA Ribonucleic acid ROS Reactive oxygen species RPMI 1640 Roswell Park Memorial Institute Medium 1640 II ABBREVIATIONS___________________________________________________________________ S. aureus Staphylococcus aureus sCD40L Soluble CD40 ligand SD Standard deviation SEM Standard error of the mean TAE buffer Tris-acetate-EDTA buffer TB Tuberculosis TCR T cell receptor TEM Trans-endothelial migration TGF– Transforming growth factor beta TIR Toll/interleukin-1 receptor TLR Toll-like receptor TNF- Tumor necrosis factor-alpha TRIF TIR Toll/interleukin-1 receptor domain containing adapter inducing interferon-beta VEGF Vascular endothelial growth factor VL Visceral leishmaniasis WHO World Health Organization III CONTENTS______________________________________________________________________________________ CONTENTS Pages ABBREVIATIONS ------------------------------------------------------------------------------------ I CONTENTS -------------------------------------------------------------------------------------------- 1 1. INTRODUCTION ---------------------------------------------------------------------------------- 4 1.1. Visceral leishmaniasis --------------------------------------------------------------------------------------------------------------4 1.2. Epidemiology of visceral leishmaniasis ---------------------------------------------------------------------------------------5 1.3. Life cycle of Leishmania donovani ---------------------------------------------------------------------------------------------7 1.4. Modes of L. donovani transmission--------------------------------------------------------------------------------------------9 1.5. Leishmania donovani parasite ------------------------------------------------------------------------------------------------ 10 1.6. Diagnosis of visceral leishmaniasis------------------------------------------------------------------------------------------- 11 1.7. Pathogenesis of visceral leishmaniasis ------------------------------------------------------------------------------------- 14 1.8. Immunity during visceral leishmaniasis ------------------------------------------------------------------------------------ 15 1.8.1. Innate immunity and Leishmania --------------------------------------------------------------------------------------- 16 1.8.1.1. Toll-Like Receptors (TLR) ---------------------------------------------------------------------------------------- 18 1.8.1.2. Phagocytosis ---------------------------------------------------------------------------------------------------------- 20 1.8.1.3. Reactive oxygen species (ROS) --------------------------------------------------------------------------------- 22 1.8.1.4. Neutrophils ------------------------------------------------------------------------------------------------------------ 25 1.8.1.5. Monocytes ------------------------------------------------------------------------------------------------------------- 27 1.8.1.6. Macrophages ---------------------------------------------------------------------------------------------------------- 28 1.8.1.7. Cytokines --------------------------------------------------------------------------------------------------------------- 30 1.8.1.8. Chemokines ----------------------------------------------------------------------------------------------------------- 32 1.9. Can L. donovani have bovine reservoir host cells? ---------------------------------------------------------------------- 35 1.10. Test of cure for visceral leishmaniasis ------------------------------------------------------------------------------------- 36 1.11. Aims of the study ---------------------------------------------------------------------------------------------------------------- 37 2. MATERIALS AND METHODS ---------------------------------------------------------------- 39 2.1. Materials ----------------------------------------------------------------------------------------------------------------------------- 39 2.1.1. Leishmania parasites ------------------------------------------------------------------------------------------------------- 39 2.1.2. Chemicals, antibiotics, media and buffers ---------------------------------------------------------------------------- 39 2.1.3. Antibodies, stimulants, enzymes and fluorescent agents -------------------------------------------------------- 40 2.1.4. ELISAs and ready to use kits ---------------------------------------------------------------------------------------------- 41 2.1.5. Equipments ------------------------------------------------------------------------------------------------------------------- 42 2.1.6. Plastics and consumables ------------------------------------------------------------------------------------------------- 43 2. 1.7. Primers and PCR reaction ------------------------------------------------------------------------------------------------ 43 2. 1.9. Buffers and media prepared in the laboratory --------------------------------------------------------------------- 44 2.1.10. Software --------------------------------------------------------------------------------------------------------------------- 45 2.2. Methods ----------------------------------------------------------------------------------------------------------------------------- 46 2.2.1. Part I. Establishment of a functional laboratory and optimization of methods ---------------------------- 46 2.2.1.1. Establishment of a functional laboratory to carry out the planned studies in the VL endemic area in Ethiopia ---------------------------------------------------------------------------------------------------- 46 2.2.1.2. Optimization
Recommended publications
  • Detection of Leishmania Aethiopica in Paraffin-Embedded Skin Biopsies Using the Polymerase Chain Reaction T
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mitteilungen der Österreichischen Gesellschaft für Tropenmedizin und Parasitologie Jahr/Year: 1994 Band/Volume: 16 Autor(en)/Author(s): Laskay T., Miko T. L., Teferedegn H., Negesse Y., Rodgers M. R., Solbach W., Röllinghoff M., Frommel D. Artikel/Article: Onchozerkose-Kontrolle in Mali - Darstellung eines Kommunikationsdefizites und seine Entwicklung. 141-146 ©Österr. Ges. f. Tropenmedizin u. Parasitologie, download unter www.biologiezentrum.at Mitt. Österr. Ges. Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia (Director: Dr. D. Frommel) (1) Tropenmed. Parasitol. 16 (1994) All Africa Leprosy Rehabilitation and Training Center (ALERT), Addis Ababa, Ethiopia 141 - 146 (Managing Director: Mr. J. N. Alldred) (2) Department of Tropical Public Health, Harvard School of Public Health, Boston, MA (Head of Unit: Dr. Dyann Wirth) (3) Institute for Clinical Microbiology, Univerity of Erlangen-Nürnberg, Erlangen, F. R. G. (Director: Prof. Dr. M. Röllinghoff) (4) Detection of Leishmania aethiopica in paraffin-embedded skin biopsies using the polymerase chain reaction T. Laskay14, T. L. Miko1-2, H. Teferedegn1, Y. Negesse12, M. R. Rodgers3, W. Solbach4, M. Röllinghoff4, D. Frommel1 Introduction Cutaneous leishmaniasis (CL) is a serious public health problem in several areas of the world. Current reports indicate that the prevalence of the disease is increasing in many countries (4). One major focus of CL in the Old World is found in Ethiopia where the aetiological agent is Leishmania aethiopica (1, 2, 7). At present diagnosis relies on the detection of the parasite in smears or skin biopsy specimens by histopathological examination and/or by in vitro culture.
    [Show full text]
  • Molecular Characterization of Leishmania RNA Virus 2 in Leishmania Major from Uzbekistan
    G C A T T A C G G C A T genes Article Molecular Characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan 1, 2,3, 1,4 2 Yuliya Kleschenko y, Danyil Grybchuk y, Nadezhda S. Matveeva , Diego H. Macedo , Evgeny N. Ponirovsky 1, Alexander N. Lukashev 1 and Vyacheslav Yurchenko 1,2,* 1 Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia; [email protected] (Y.K.); [email protected] (N.S.M.); [email protected] (E.N.P.); [email protected] (A.N.L.) 2 Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; [email protected] (D.G.); [email protected] (D.H.M.) 3 CEITEC—Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic 4 Department of Molecular Biology, Faculty of Biology, Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.: +420-597092326 These authors contributed equally to this work. y Received: 19 September 2019; Accepted: 18 October 2019; Published: 21 October 2019 Abstract: Here we report sequence and phylogenetic analysis of two new isolates of Leishmania RNA virus 2 (LRV2) found in Leishmania major isolated from human patients with cutaneous leishmaniasis in south Uzbekistan. These new virus-infected flagellates were isolated in the same region of Uzbekistan and the viral sequences differed by only nineteen SNPs, all except one being silent mutations. Therefore, we concluded that they belong to a single LRV2 species. New viruses are closely related to the LRV2-Lmj-ASKH documented in Turkmenistan in 1995, which is congruent with their shared host (L.
    [Show full text]
  • A Review on Biology, Epidemiology And
    iolog ter y & c P a a B r f a o s i l Journal of Bacteriology and t o Dawit et al., J Bacteriol Parasitol 2013, 4:2 a l n o r g u DOI: 10.4172/2155-9597.1000166 y o J Parasitology ISSN: 2155-9597 Research Article Open Access A Review on Biology, Epidemiology and Public Health Significance of Leishmaniasis Dawit G1, Girma Z1 and Simenew K1,2* 1College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia 2College of Agricultural Sciences, Dilla University, Dilla, Ethiopia Abstract Leishmaniasis is a major vector-borne disease caused by obligate intramacrophage protozoa of the genus Leishmania, and transmitted by the bite of phlebotomine female sand flies of the genera Phlebotomus and Lutzomyia, in the old and new worlds, respectively. Among 20 well-recognized Leishmania species known to infect humans, 18 have zoonotic nature, which include agents of visceral, cutaneous, and mucocutaneous forms of the disease, in both the old and new worlds. Currently, leishmaniasis show a wider geographic distribution and increased global incidence. Environmental, demographic and human behaviors contribute to the changing landscape for zoonotic cutaneous and visceral leishmaniasis. The primary reservoir hosts of Leishmania are sylvatic mammals such as forest rodents, hyraxes and wild canids, and dogs are the most important species among domesticated animals in the epidemiology of this disease. These parasites have two basic life cycle stages: one extracellular stage within the invertebrate host (phlebotomine sand fly), and one intracellular stage within a vertebrate host. Co-infection with HIV intensifies the burden of visceral and cutaneous leishmaniasis by causing severe forms and more difficult to manage.
    [Show full text]
  • INFECTIOUS DISEASES of ETHIOPIA Infectious Diseases of Ethiopia - 2011 Edition
    INFECTIOUS DISEASES OF ETHIOPIA Infectious Diseases of Ethiopia - 2011 edition Infectious Diseases of Ethiopia - 2011 edition Stephen Berger, MD Copyright © 2011 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-068-3 ISBN-10: 1-61755-068-X Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. Scope of Content: Disease designations may reflect a specific pathogen (ie, Adenovirus infection), generic pathology (Pneumonia – bacterial) or etiologic grouping(Coltiviruses – Old world). Such classification reflects the clinical approach to disease allocation in the Infectious Diseases Module of the GIDEON web application.
    [Show full text]
  • The Maze Pathway of Coevolution: a Critical Review Over the Leishmania and Its Endosymbiotic History
    G C A T T A C G G C A T genes Review The Maze Pathway of Coevolution: A Critical Review over the Leishmania and Its Endosymbiotic History Lilian Motta Cantanhêde , Carlos Mata-Somarribas, Khaled Chourabi, Gabriela Pereira da Silva, Bruna Dias das Chagas, Luiza de Oliveira R. Pereira , Mariana Côrtes Boité and Elisa Cupolillo * Research on Leishmaniasis Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040360, Brazil; lilian.cantanhede@ioc.fiocruz.br (L.M.C.); carlos.somarribas@ioc.fiocruz.br (C.M.-S.); khaled.chourabi@ioc.fiocruz.br (K.C.); gabriela.silva@ioc.fiocruz.br (G.P.d.S.); bruna.chagas@ioc.fiocruz.br (B.D.d.C.); luizaper@ioc.fiocruz.br (L.d.O.R.P.); boitemc@ioc.fiocruz.br (M.C.B.) * Correspondence: elisa.cupolillo@ioc.fiocruz.br; Tel.: +55-21-38658177 Abstract: The description of the genus Leishmania as the causative agent of leishmaniasis occurred in the modern age. However, evolutionary studies suggest that the origin of Leishmania can be traced back to the Mesozoic era. Subsequently, during its evolutionary process, it achieved worldwide dispersion predating the breakup of the Gondwana supercontinent. It is assumed that this parasite evolved from monoxenic Trypanosomatidae. Phylogenetic studies locate dixenous Leishmania in a well-supported clade, in the recently named subfamily Leishmaniinae, which also includes monoxe- nous trypanosomatids. Virus-like particles have been reported in many species of this family. To date, several Leishmania species have been reported to be infected by Leishmania RNA virus (LRV) and Leishbunyavirus (LBV). Since the first descriptions of LRVs decades ago, differences in their genomic Citation: Cantanhêde, L.M.; structures have been highlighted, leading to the designation of LRV1 in L.(Viannia) species and LRV2 Mata-Somarribas, C.; Chourabi, K.; in L.(Leishmania) species.
    [Show full text]
  • Catalase in Leishmaniinae: with Me Or Against Me?
    Infection, Genetics and Evolution 50 (2017) 121–127 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Catalase in Leishmaniinae: With me or against me? Natalya Kraeva a,1, Eva Horáková b,1,AlexeiY.Kostygova,c,LuděkKořený b,d,AnzhelikaButenkoa, Vyacheslav Yurchenko a,b,e,⁎, Julius Lukeš b,f,g,⁎⁎ a Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic b Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic c Zoological Institute of the Russian Academy of Sciences, St. Petersburg 199034, Russia d Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom e Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic f Faculty of Science, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic g Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada article info abstract Article history: The catalase gene is a virtually ubiquitous component of the eukaryotic genomes. It is also present in the Received 26 April 2016 monoxenous (i.e. parasitizing solely insects) trypanosomatids of the subfamily Leishmaniinae, which have ac- Received in revised form 24 June 2016 quired the enzyme by horizontal gene transfer from a bacterium. However, as shown here, the catalase gene Accepted 30 June 2016 was secondarily lost from the genomes of all Leishmania sequenced so far. Due to the potentially key regulatory Available online 2 July 2016 role of hydrogen peroxide in the inter-stagial transformation of Leishmania spp., this loss seems to be a necessary prerequisite for the emergence of a complex life cycle of these important human pathogens.
    [Show full text]
  • Insights Into Microbial Evolution and Ecology from Genetic Analysis of Diverse Archaeological Materials
    !"#$%&'#($"')(*$+,)-$./(01)/2'$)"(."3(0+)/)%4( 5,)*(%0"0'$+(."./4#$#()5(3$10,#0(.,+&.0)/)%$+./( *.'0,$./#( ! ! ! ! ! "#$$%&'('#)*! ! +)!,-./#..!'0%! 1%2-#&%3%*'$!/)&!'0%!"%4&%%!)/! 5")6')&!)/!70#.)$)809:;70"<! ! ! ! =->3#''%?!')!'0%!@)-*6#.!)/!'0%!,(6-.'9!! )/!A#).)4#6(.!=6#%*6%$!! )/!'0%!,&#%?&#60!=60#..%&!B*#C%&$#'9!D%*(! ! >9!EF=6F!G&60(%).)4#6(.!=6#%*6%$!=-$(**(!=(>#*! >)&*!)*!HI!E(&60!JKKL!#*!M%N!O)&P!@#'9! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! R-'(60'%&S! JF!7&)/F!"&F!D)0(**%$!T&(-$%!;E(U!7.(*6P!V*$'#'-'%!/)&!'0%!=6#%*6%!)/!W-3(*!W#$')&9X!D%*(<! QF!7&)/F!"&F!@0&#$'#*(!Y(&#**%&!;E(U!7.(*6P!V*$'#'-'%!/)&!'0%!=6#%*6%!)/!W-3(*!W#$')&9X!D%*(<! ZF!"&F!V[(P#!@)3($!;A#)3%?#6#*%!V*$'#'-'%!)/!\(.%*6#(X!\(.%*6#(!]=8(#*^<! ! !"#$%%&'"(&)(*+*,$*%-&JK!D(*-(&!QHJ_! .$//"(,0,$*%&"$%#"("$12,&0+-&Q`!D-*#!QHJK! 30#&'"(&455"%,6$12"%&7"(,"$'$#8%#-&HJ!M)C%3>%&!QHJK! ! ! ! Q! ! ! 6.-/0()5(7)"'0"'#( JF! V*'&)?-6'#)*FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!`! JFJ! G*6#%*'!3#6&)>#(.!4%*)3#6$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!L! JFQ! =0#/'#*4!*(&&('#C%$!)*!'0%!)&#4#*$!)/!'->%&6-.)$#$FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!a! JFQFJ! +0%!&#$%!(*?!/(..!)/!'0%!E96)>(6'%&#-3!>)C#$!098)'0%$#$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!a! JFQFQ! G*6#%*'!"MG!(*?!'->%&6-.)$#$!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!K! JFQFZ! "#$6&%8(*6#%$!>%'N%%*!?#//%&%*'!.#*%$!)/!%C#?%*6%!FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF!JH!
    [Show full text]
  • Leishmania (Leishmania) Major HASP and SHERP Genes During Metacyclogenesis in the Sand Fly Vectors, Phlebotomus (Phlebotomus) Papatasi and Ph
    Investigating the role of the Leishmania (Leishmania) major HASP and SHERP genes during metacyclogenesis in the sand fly vectors, Phlebotomus (Phlebotomus) papatasi and Ph. (Ph.) duboscqi Johannes Doehl PhD University of York Department of Biology Centre for Immunology and Infection September 2013 1 I’d like to dedicate this thesis to my parents, Osbert and Ulrike, without whom I would never have been here. 2 Abstract Leishmania parasites are the causative agents of a diverse spectrum of infectious diseases termed the leishmaniases. These digenetic parasites exist as intracellular, aflagellate amastigotes in a mammalian host and as extracellular flagellated promastigotes within phlebotomine sand fly vectors of the family Phlebotominae. Within the sand fly vector’s midgut, Leishmania has to undergo a complex differentiation process, termed metacyclogenesis, to transform from non-infective procyclic promastigotes into mammalian-infective metacyclics. Members of our research group have shown previously that parasites deleted for the L. (L.) major cDNA16 locus (a region of chromosome 23 that codes for the stage-regulated HASP and SHERP proteins) do not complete metacyclogenesis in the sand fly midgut, although metacyclic-like stages can be generated in in vitro culture (Sádlová et al. Cell. Micro.2010, 12, 1765-79). To determine the contribution of individual genes in the locus to this phenotype, I have generated a range of 17 mutants in which target HASP and SHERP genes are reintroduced either individually or in combination into their original genomic locations within the L. (L.) major cDNA16 double deletion mutant. All replacement strains have been characterized in vitro with respect to their gene copy number, correct gene integration and stage-regulated protein expression, prior to phenotypic analysis.
    [Show full text]
  • Cimeliidae, Doidae, Drepanidae, Epicopeiidae
    Cornell University Insect Collection Cimeliidae, Doidae, Drepanidae, Epicopeiidae Ryan St. Laurent Updated: May, 2015 Cornell University Insect Collection Cimeliidae Ryan St. Laurent Determined species: 1 Updated: March, 2015 Genus Species Author Zoogeography Axia orciferaria (Hübner) PAL Cornell University Insect Collection Doidae Ryan St. Laurent Determined species: 2 Updated: March, 2015 Genus Species Author Zoogeography Doa ampla (Grote) PAL raspa (Druce) NEO Cornell University Insect Collection Drepanidae Ryan St. Laurent Determined species: 98 Updated: April, 2015 Subfamily Genus Species Author Zoogeography Cyclidiinae Cyclidia orciferaria Walker ORI rectificata Walker ORI substigmaria Hübner ORI Drepaninae Agnidra sp Albara reversaria Walker ORI Ausaris argenteola (Moore) ORI patrana (Moore) PAL saucia (Felder) AUS Auzata chinensis Leech ORI semipavonaria Walker ORI superba Butler PAL Canucha fleximargo (Warren) AUS Cilix glaucata (Scopoli) PAL Deroca hidda Swinhoe ORI hyalina Walker ORI inconclusa (Walker) ORI, PAL Ditrigonia sericea (Leech) ORI Drapetodes fratercula Moore ORI Drepana arcuata Walker NEA bilineata Packard NEA curvatula (Borkhausen) PAL falcataria (Linnaeus) PAL pallida Moore ORI Eudeilinia herminiata Guenée NEA luteifera? Euphalacra nigrodorsata Warren ORI Falcaria lacertinaria (Linnaeus) PAL Macrocilix maia Leech PAL mysticata Walker ORI orbiferata Walker ORI Microblepsis violacea (Butler) ORI Nordstromia japonica Moore PAL Phalacra strigata Warren ORI Strepsigonia quadripunctata (Walker) ORI Teldenia latilinea
    [Show full text]
  • WO 2016/033635 Al 10 March 2016 (10.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2016/033635 Al 10 March 2016 (10.03.2016) P O P C T (51) International Patent Classification: AN, Martine; Epichem Pty Ltd, Murdoch University Cam Λ 61Κ 31/155 (2006.01) C07D 249/14 (2006.01) pus, 70 South Street, Murdoch, Western Australia 6150 A61K 31/4045 (2006.01) C07D 407/12 (2006.01) (AU). ABRAHAM, Rebecca; School of Animal and A61K 31/4192 (2006.01) C07D 403/12 (2006.01) Veterinary Science, The University of Adelaide, Adelaide, A61K 31/341 (2006.01) C07D 409/12 (2006.01) South Australia 5005 (AU). A61K 31/381 (2006.01) C07D 401/12 (2006.01) (74) Agent: WRAYS; Groud Floor, 56 Ord Street, West Perth, A61K 31/498 (2006.01) C07D 241/20 (2006.01) Western Australia 6005 (AU). A61K 31/44 (2006.01) C07C 211/27 (2006.01) A61K 31/137 (2006.01) C07C 275/68 (2006.01) (81) Designated States (unless otherwise indicated, for every C07C 279/02 (2006.01) C07C 251/24 (2006.01) kind of national protection available): AE, AG, AL, AM, C07C 241/04 (2006.01) A61P 33/02 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07C 281/08 (2006.01) A61P 33/04 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 337/08 (2006.01) A61P 33/06 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 281/18 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/AU20 15/000527 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 28 August 2015 (28.08.2015) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • A Novel Metabarcoding Diagnostic Tool to Explore Protozoan
    www.nature.com/scientificreports OPEN A novel metabarcoding diagnostic tool to explore protozoan haemoparasite diversity in Received: 20 June 2019 Accepted: 19 August 2019 mammals: a proof-of-concept study Published: xx xx xxxx using canines from the tropics Lucas G. Huggins 1, Anson V. Koehler1, Dinh Ng-Nguyen2, Stephen Wilcox3, Bettina Schunack4, Tawin Inpankaew5 & Rebecca J. Traub1 Haemoparasites are responsible for some of the most prevalent and debilitating canine illnesses across the globe, whilst also posing a signifcant zoonotic risk to humankind. Nowhere are the efects of such parasites more pronounced than in developing countries in the tropics where the abundance and diversity of ectoparasites that transmit these pathogens reaches its zenith. Here we describe the use of a novel next-generation sequencing (NGS) metabarcoding based approach to screen for a range of blood-borne apicomplexan and kinetoplastid parasites from populations of temple dogs in Bangkok, Thailand. Our methodology elucidated high rates of Hepatozoon canis and Babesia vogeli infection, whilst also being able to characterise co-infections. In addition, our approach was confrmed to be more sensitive than conventional endpoint PCR diagnostic methods. Two kinetoplastid infections were also detected, including one by Trypanosoma evansi, a pathogen that is rarely screened for in dogs and another by Parabodo caudatus, a poorly documented organism that has been previously reported inhabiting the urinary tract of a dog with haematuria. Such results demonstrate the power of NGS methodologies to unearth rare and unusual pathogens, especially in regions of the world where limited information on canine vector-borne haemoparasites exist. Protozoan haemoparasites generate some of the highest rates of morbidity and mortality in canines worldwide, whilst some are also zoonotic, capable of producing signifcant infections in humans as well1–4.
    [Show full text]
  • Apoptotic Induction Induces Leishmania Aethiopica and L. Mexicana Spreading in Terminally Differentiated THP-1 Cells
    1 Apoptotic induction induces Leishmania aethiopica and L. mexicana spreading in terminally differentiated THP-1 cells RAJEEV RAI, PAUL DYER, SIMON RICHARDSON, LAURENCE HARBIGE and GIULIA GETTI* Department of Life and Sport Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK (Received 11 April 2017; revised 24 May 2017; accepted 25 June 2017) SUMMARY Leishmaniasis develops after parasites establish themselves as amastigotes inside mammalian cells and start replicating. As relatively few parasites survive the innate immune defence, intracellular amastigotes spreading towards uninfected cells is instrumental to disease progression. Nevertheless the mechanism of Leishmania dissemination remains unclear, mostly due to the lack of a reliable model of infection spreading. Here, an in vitro model representing the dissemination of Leishmania amastigotes between human macrophages has been developed. Differentiated THP-1 macrophages were infected with GFP expressing Leishmania aethiopica and Leishmania mexicana. The percentage of infected cells was enriched via camptothecin treatment to achieve 64·1 ± 3% (L. aethiopica) and 92 ± 1·2% (L. mexicana) at 72 h, compared to 35 ± 4·2% (L. aethiopica) and 36·2 ± 2·4% (L. mexicana) in untreated population. Infected cells were co-cultured with a newly differentiated population of THP-1 macrophages. Spreading was detected after 12 h of co-culture. Live cell imaging showed inter-cellular extrusion of L. aethiopica and L. mexicana to recipient cells took place independently of host cell lysis. Establishment of secondary infection from Leishmania infected cells provided an insight into the cellular phenomena of parasite movement between human macrophages. Moreover, it supports further investigation into the molecular mechanisms of parasites spreading, which forms the basis of disease development.
    [Show full text]