Homopus Areolatus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Body Condition Assessment – As a Welfare and Management Assessment Tool for Radiated Tortoises (Astrochelys Radiata)
Body condition assessment – as a welfare and management assessment tool for radiated tortoises (Astrochelys radiata) Hullbedömning - som ett verktyg för utvärdering av välfärd och skötsel av strålsköldpadda (Astrochelys radiata) Linn Lagerström Independent project • 15 hp Swedish University of Agricultural Sciences, SLU Department of Animal Environment and Health Programme/Education Uppsala 2020 2 Body condition assessment – as a welfare and management tool for radiated tortoises (Astrochelys radiata) Hullbedömning - som ett verktyg för utvärdering av välfärd och skötsel av strålsköldpadda (Astrochelys radiata) Linn Lagerström Supervisor: Lisa Lundin, Swedish University of Agricultural Sciences, Department of Animal Environment and Health Examiner: Maria Andersson, Swedish University of Agricultural Sciences, Department of Animal Environment and Health Credits: 15 hp Level: First cycle, G2E Course title: Independent project Course code: EX0894 Programme/education: Course coordinating dept: Department of Aquatic Sciences and Assessment Place of publication: Uppsala Year of publication: 2020 Cover picture: Linn Lagerström Keywords: Tortoise, turtle, radiated tortoise, Astrochelys radiata, Geochelone radiata, body condition indices, body condition score, morphometrics Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Animal Environment and Health 3 Publishing and archiving Approved students’ theses at SLU are published electronically. As a student, you have the copyright to your own work and need to approve the electronic publishing. If you check the box for YES, the full text (pdf file) and metadata will be visible and searchable online. If you check the box for NO, only the metadata and the abstract will be visiable and searchable online. Nevertheless, when the document is uploaded it will still be archived as a digital file. -
The Conservation Biology of Tortoises
The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1. -
Descriptions of Some A.Frican Tortoises
A"nals aftlte Natal Museum. Vol. VI, 1)(1ft 3 DESCRIPTIONS OF SOME AFRICAN TORTOISES. 46 1 Descriptions of some A.frican Tortoises. By John II C\\'itt. With P lates XXXVI-XXXVIII, and 5 Text. fi gul·es. CONTENTS. P elusios s inuatus s inu n.t us Smith J(j2 P elus ios s illu atus zuluensis H elQift 462 P ell1si os ni g r ica. ns n igricnns DonllC/. 4(\3 Pelus ios ni g ri can s castanoides SIIUS)1. n . 4(13 Peil1si os nigr icn.ns ca.stan e us Schw. 464 P elus ios nigricans rh odesianus H ellJi tt 465 Kinixys hellian!} Gray -I n? Kinixys nogll ey i Lataste ·HiS Kin ixys s pekii Gray. 469 Kinixys be lliana. zombensis sllbsp. '11. ·WO Kinixys belJin.nn. zulllon sis subs)1 . n. 47 1 Kinixys n. ustra lis 8p. It. 477 Kinixys da.rlingi Blgr. 4, 1 Kini xys jordn.ni sp . n . 482 Kinixys yonn gi ap. n. 4SG Kini xys lo bn.ts ia na Pou'er 488 H omopus WaMb. ..HHi Pseudomopus g. n . ·Hlli T estlld o L . 4!)H Neotestlldo g. n. 50" 462 JOHN HEWI'IT. THE material dealt wi th in this revi ew has bef' 1l derived from varioll s sources. A good portion of it is contained in the Albany Musemu, and for the loan of specimens I am especia.lly indebted to the Mu seums at Pretoria, Kimberley and Pietermaritzburg. It, may be .aid that the. present study again illustrates the fact t.hat the closer a group of organisms is studied and the wider the area from which they are obt.ained, the greater is the difficnlty ill formulating any clear diagnosis of specific characters. -
Growing and Shrinking in the Smallest Tortoise, Homopus Signatus Signatus: the Importance of Rain
CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Oecologia (2007) 153:479–488 DOI 10.1007/s00442-007-0738-7 GLOBAL CHANGE AND CONSERVATION ECOLOGY Growing and shrinking in the smallest tortoise, Homopus signatus signatus: the importance of rain Victor J. T. Loehr · Margaretha D. Hofmeyr · Brian T. Henen Received: 21 November 2006 / Accepted: 21 March 2007 / Published online: 24 April 2007 © Springer-Verlag 2007 Abstract Climate change models predict that the range of dorso-ventrally, so a reduction in internal matter due to the world’s smallest tortoise, Homopus signatus signatus, starvation or dehydration may have caused SH to shrink. will aridify and contract in the next decades. To evaluate Because the length and width of the shell seem more rigid, the eVects of annual variation in rainfall on the growth of reversible bone resorption may have contributed to shrink- H. s. signatus, we recorded annual growth rates of wild age, particularly of the shell width and plastron length. individuals from spring 2000 to spring 2004. Juveniles Based on growth rates for all years, female H. s. signatus grew faster than did adults, and females grew faster than need 11–12 years to mature, approximately twice as long as did males. Growth correlated strongly with the amount of would be expected allometrically for such a small species. rain that fell during the time just before and within the However, if aridiWcation lowers average growth rates to the growth periods. Growth rates were lowest in 2002–2003, level of 2002–2003, females would require 30 years to when almost no rain fell between September 2002 and mature. -
Husbandry Guidelines Speckled Dwarf Tortoise (Chersobius Signatus)
Speckled dwarf tortoise (Chersobius signatus) Version 12 The following information is based on experience gathered within the studbook coordinated by Dwarf Tortoise Conservation. Enclosure The speckled dwarf tortoise (Chersobius signatus) is successfully kept and bred in enclosures measuring at least 1 m2 for two to three adult specimens. Single adult individuals require at least 0.5 m2. Males have been reported to show aggression amongst each other, but in some cases they did not. Regardless, it is recommended not to keep multiple males in breeding groups, as this would obscure genetic parent-offspring relationships. Males and females can be housed together year-round. Studbook terrariums are decorated to imitate the natural habitat of the tortoises, with a firm soil (e.g., sand and loam mixed in a 1:1 ratio and compacted) to avoid sand being ingested, wood stumps and (real or artificial) rocks, and sometimes (live or artificial) plants. It is essential that enclosures are well-structured and that multiple hiding places are present, in which the tortoises can retreat. The animals show a preference for hiding places that are slightly higher than tortoise shell height, between rocks, but may also shelter at other sites. For adult females, egg-laying sites with a non-compacted soil layer (e.g., sand and loam mixed in a 10:1 ratio) of at least 6 cm deep should be provided to allow nesting. Nesting sites should provide cover by an overhanging plant, rock, wood, or other structure, because C. signatus will not nest in an open space. Enclosures need to be sprayed from time to time, preferably more often in winter (for instance twice weekly) than in summer (for instance once weekly very lightly), to simulate the natural climatic cycle. -
Conservation of South African Tortoises with Emphasis on Their Apicomplexan Haematozoans, As Well As Biological and Metal-Fingerprinting of Captive Individuals
CONSERVATION OF SOUTH AFRICAN TORTOISES WITH EMPHASIS ON THEIR APICOMPLEXAN HAEMATOZOANS, AS WELL AS BIOLOGICAL AND METAL-FINGERPRINTING OF CAPTIVE INDIVIDUALS By Courtney Antonia Cook THESIS submitted in fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR (Ph.D.) in ZOOLOGY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG Supervisor: Prof. N. J. Smit Co-supervisors: Prof. A. J. Davies and Prof. V. Wepener June 2012 “We need another and a wiser and perhaps a more mystical concept of animals. Remote from universal nature, and living by complicated artifice, man in civilization surveys the creature through the glass of his knowledge and sees thereby a feather magnified and the whole image in distortion. We patronize them for their incompleteness, for their tragic fate of having taken form so far below ourselves. And therein we err, and greatly err. For the animal shall not be measured by man. In a world older and more complete than ours they move finished and complete, gifted with extensions of the senses we have lost or never attained, living by voices we shall never hear. They are not brethren, they are not underlings; they are other nations caught with ourselves in the net of life and time, fellow prisoners of the splendour and travail of the earth.” Henry Beston (1928) ABSTRACT South Africa has the highest biodiversity of tortoises in the world with possibly an equivalent diversity of apicomplexan haematozoans, which to date have not been adequately researched. Prior to this study, five apicomplexans had been recorded infecting southern African tortoises, including two haemogregarines, Haemogregarina fitzsimonsi and Haemogregarina parvula, and three haemoproteids, Haemoproteus testudinalis, Haemoproteus balazuci and Haemoproteus sp. -
Annual Report 2016 Homopus Research Foundation
Homopus Research Foundation Annual Report 2016 Victor Loehr February 2017 Homopus Research Foundation: annual report 2016 CONTENTS 1. INTRODUCTION AND ACHIEVEMENTS IN 2016 ........................................................................................ 2 1.1. POLICIES AND PERMANENT ACTION POINTS .................................................................................................. 2 1.2. OUTSTANDING ACTION POINTS FROM THE 2015 ANNUAL REPORT ................................................................... 2 1.3. STUDBOOK MANAGEMENT PLAN HOMOPUS SIGNATUS .................................................................................. 4 1.4. STUDBOOK MANAGEMENT PLAN HOMOPUS AREOLATUS ................................................................................ 5 1.5. PROGRESS FIELD STUDIES ON HOMOPUS .................................................................................................... 5 2. PLANS FOR 2017 AND THEREAFTER ..................................................................................................... 6 3. STUDBOOK SUMMARIES ...................................................................................................................... 6 4. ACTUAL STUDBOOK OVERVIEWS .......................................................................................................... 8 5. SPECIFIC INFORMATION FROM STUDBOOK PARTICIPANTS ....................................................................... 19 6. NEW PUBLICATIONS ........................................................................................................................ -
TCF Summary Activity Report 2002–2018
Turtle Conservation Fund • Summary Activity Report 2002–2018 Turtle Conservation Fund A Partnership Coalition of Leading Turtle Conservation Organizations and Individuals Summary Activity Report 2002–2018 1 Turtle Conservation Fund • Summary Activity Report 2002–2018 Recommended Citation: Turtle Conservation Fund [Rhodin, A.G.J., Quinn, H.R., Goode, E.V., Hudson, R., Mittermeier, R.A., and van Dijk, P.P.]. 2019. Turtle Conservation Fund: A Partnership Coalition of Leading Turtle Conservation Organi- zations and Individuals—Summary Activity Report 2002–2018. Lunenburg, MA and Ojai, CA: Chelonian Research Foundation and Turtle Conservancy, 54 pp. Front Cover Photo: Radiated Tortoise, Astrochelys radiata, Cap Sainte Marie Special Reserve, southern Madagascar. Photo by Anders G.J. Rhodin. Back Cover Photo: Yangtze Giant Softshell Turtle, Rafetus swinhoei, Dong Mo Lake, Hanoi, Vietnam. Photo by Timothy E.M. McCormack. Printed by Inkspot Press, Bennington, VT 05201 USA. Hardcopy available from Chelonian Research Foundation, 564 Chittenden Dr., Arlington, VT 05250 USA. Downloadable pdf copy available at www.turtleconservationfund.org 2 Turtle Conservation Fund • Summary Activity Report 2002–2018 Turtle Conservation Fund A Partnership Coalition of Leading Turtle Conservation Organizations and Individuals Summary Activity Report 2002–2018 by Anders G.J. Rhodin, Hugh R. Quinn, Eric V. Goode, Rick Hudson, Russell A. Mittermeier, and Peter Paul van Dijk Strategic Action Planning and Funding Support for Conservation of Threatened Tortoises and Freshwater -
Kinixys Erosa (Schweigger 1812) – Forest Hinge-Back Tortoise, Serrated Hinge-Back Tortoise, Serrated Hinged Tortoise
Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of theTestudinidae IUCN/SSC Tortoise — Kinixys and Freshwater erosa Turtle Specialist Group 084.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.084.erosa.v1.2014 © 2014 by Chelonian Research Foundation • Published 29 December 2014 Kinixys erosa (Schweigger 1812) – Forest Hinge-back Tortoise, Serrated Hinge-back Tortoise, Serrated Hinged Tortoise LUCA LUISELLI1,2 AND TOMAS DIAGNE3 1Niger Delta Ecology and Biodiversity Conservation Unit, Rivers State University of Science and Technology, PMB 5080, Port Harcourt, Rivers State, Nigeria; 2Centre of Environmental Studies Demetra, Via Olona 7, I-00198 Rome, Italy [[email protected]]; 3African Chelonian Institute, P.O. Box 449, Ngaparou, Mbour 33022, Senegal, West Africa [[email protected]] SUMMARY. – The Forest Hinge-back Tortoise, Kinixys erosa (Family Testudinidae), is a forest tortoise with considerable range over the continuous Guinea–Congo rainforest region in West and Central Africa. It is a medium-sized to large tortoise, with a carapace length reaching ca. 400 mm, and males larger than females. Tortoises of the genus Kinixys can close themselves entirely within their shells through a unique posterior carapacial hinge. Kinixys erosa inhabits the lowland evergreen forest, marshy areas, and forest galleries growing along rivers and streams, where it is locally threatened by clearance of forest for cultivation and hunting pressure. It has an omnivorous diet, with mushrooms being predominant. Population sizes are strongly depressed in areas where these tortoises are actively hunted by human populations. -
Ancient Mitogenomics Clarifies Radiation of Extinct Mascarene Giant Tortoises (Cylindraspis Spp.)
Title Ancient mitogenomics clarifies radiation of extinct Mascarene giant tortoises (Cylindraspis spp.) Authors Kehlmaier, C; Graciá, E; Campbell, P; Hofmeyr, MD; SCHWEIGER, S; Martínez-Silvestre, A; Joyce, W; Fritz, U Date Submitted 2019-11-26 www.nature.com/scientificreports OPEN Ancient mitogenomics clarifes radiation of extinct Mascarene giant tortoises (Cylindraspis spp.) Christian Kehlmaier1, Eva Graciá2, Patrick D. Campbell3, Margaretha D. Hofmeyr4, Silke Schweiger5, Albert Martínez-Silvestre6, Walter Joyce7 & Uwe Fritz 1* The fve extinct giant tortoises of the genus Cylindraspis belong to the most iconic species of the enigmatic fauna of the Mascarene Islands that went largely extinct after the discovery of the islands. To resolve the phylogeny and biogeography of Cylindraspis, we analysed a data set of 45 mitogenomes that includes all lineages of extant tortoises and eight near-complete sequences of all Mascarene species extracted from historic and subfossil material. Cylindraspis is an ancient lineage that diverged as early as the late Eocene. Diversifcation of Cylindraspis commenced in the mid-Oligocene, long before the formation of the Mascarene Islands. This rejects any notion suggesting that the group either arrived from nearby or distant continents over the course of the last millions of years or had even been translocated to the islands by humans. Instead, Cylindraspis likely originated on now submerged islands of the Réunion Hotspot and utilized these to island hop to reach the Mascarenes. The fnal diversifcation took place both before and after the arrival on the Mascarenes. With Cylindraspis a deeply divergent clade of tortoises became extinct that evolved long before the dodo or the Rodrigues solitaire, two other charismatic species of the lost Mascarene fauna. -
Homopus Research Foundation
Homopus Research Foundation Annual Report 2011 Victor Loehr January 2012 Homopus Research Foundation: annual report 2011 1 Homopus Research Foundation: annual report 2011 CONTENTS 1. INTRODUCTION AND ACHIEVEMENTS IN 2011 .......................................................................................... 4 1.1. LONG-TERM STUDBOOK MANAGEMENT PLAN HOMOPUS SIGNATUS .............................................. 5 1.2. PROGRESS LONG-TERM FIELD STUDY HOMOPUS FEMORALIS ....................................................... 6 2. PLANS FOR 2012 AND THEREAFTER ........................................................................................................ 6 3. STUDBOOK SUMMARIES ......................................................................................................................... 7 4. ACTUAL STUDBOOK OVERVIEWS ............................................................................................................. 8 5. SPECIFIC INFORMATION FROM STUDBOOK PARTICIPANTS ......................................................................... 20 6. NEW PUBLICATIONS ............................................................................................................................ 25 7. FINANCIAL REPORT ............................................................................................................................. 26 8. PERMIT OVERVIEW .............................................................................................................................. 26 APPENDIX 1 - MEETING REPORT -
Download Preprint
Nonchalant neighbors: Space use and overlap of the critically endangered Elongated Tortoise Matthew Ward1†, Benjamin Michael Marshall1, Cameron Wesley Hodges1, Ysabella Montano1, Taksin Artchawakom2, Surachit Waengsothorn3, Colin Thomas Strine1* 1 Suranaree University of Technology, Nakhon Ratchasima, Thailand 2 Population and Community Development Association, Bangkok, Thailand 3 Sakaerat Environmental Research Station, Nakhon Ratchasima, Thailand * [email protected] † [email protected] Received: ; Revised: (optional); Accepted: . 1 Abstract To prevent population extirpations we need to understand species’ requirements, especially for critically endangered species inhabiting biodiversity hotspots. Studying animal movement provides insights into such requirements and gauges protected area effectiveness. Southeast Asian protected areas are becoming isolated; thus, we must ensure existing areas can sustain populations. We used multi-year radio-telemetry with the critically endangered Elongated Tortoise (Indotestudo elongata) to assess: movements, space- use, and conspecific overlap in a small protected area –Sakaerat Biosphere Reserve, Thailand. Movements were weakly seasonal, increasing in hot and wet seasons compared to the dry season. Individuals annual space-use varied (4.24–55.57 ha), while frequently overlapping with conspecifics. Conspecific comparisons revealed males (n = 5) moved similarly to females (n = 12) but used larger areas. Explorations of temporal avoidance versus attraction reveal more instances of conspecific attraction than avoidance (20:8). Avoidance/attraction behavior appeared disconnected from carapace length or mass; therefore, that conspecific interaction patterns may potentially be a result of resources (mates or food) rather than competition (i.e., no apparent evidence of smaller individuals avoiding larger individuals). Female-female attraction suggests an absence of resource exclusion tactics at the temporal resolution of our data.