Tracing the Backbone in China's Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Tracing the Backbone in China's Rocks From Fish Nature http://doi. to Human: org/4j4; 2013). The March of Each fauna or group Vertebrate Life in BRIAN CHOO China of faunas is followed CORWIN SULLIVAN, by a concise review of WANG YUAN AND a related evolutionary BRIAN CHOO transition. So the dis- Popular Science: cussion of how feath- 2015. ers evolved into their modern form fol- lows a description of the Jehol Biota, which yielded much of the fossil evidence for it. The balance between specific discoveries and general evolutionary history allows a clear and current understanding of verte- brate evolution, and showcases the beauty of the extinct animals. Thus stunning pho- tographs, for example of the exquisitely preserved fossils from the Chengjiang Biota, sit alongside remarkable reconstruc- tions of creatures and habitats. Informative drawings show the family trees of major vertebrate groups and biological structures such as tetrapod limbs. I do have quibbles. The chapter on basics such as how fossils form will help begin- ners, but the rest seems to be written for advanced readers. Discussion of some Megamastax amblyodus eating Dunyu longiferus, from the 423-million-year-old Xiaoxiang Biota of China. important groups is missing; for example, we read nothing of the Late Cretaceous Bayan PALAEONTOLOGY Mandahu Fauna (about 75 million years old), from which significant information on dinosaur behaviour has been recovered. The authors list 79 major vertebrate fossil sites in Tracing the backbone China — at least 10 short, in my view. They describe only 15. Attractive global palaeogeographic in China’s rocks maps show the arrangement of the con- tinents and oceans in different geological Xu Xing relishes a bilingual book on the evolution of periods, but there is no indication of the vertebrate life in his fabulously fossil-rich country. modern locations of the fossil faunas in China. Neither is there a summary guide to their stratigraphic distribution. And in a hina’s rich fossil resources have epoch. The Cambrian Chengjiang Biota, few cases, the Chinese translation is subtly supplied many firsts — discoveries for example, dating to around 525 million different in meaning and intent from the that have rewritten and helped to years ago, contains the oldest known diverse original English. Cconstruct evolutionary history. The bilingual multicellular animals, including the earliest Nevertheless, this book should occupy (English and Chinese) From Fish to Human vertebrates, such as the primitive, fishlike the shelf of anyone eager to keep up with summarizes and highlights the spectacular Haikouichthys. It is shedding light on the advances in palaeontology and evolu- Chinese vertebrate fossil record and its place rapid diversification of life known as the tion, or to know more about Chinese in the broader span of vertebrate life. Cambrian explosion. palaeontology. ■ This volume, rich with illustrations, Flamboyant feathered dinosaurs from was produced by an international team the roughly 125-million-year-old Jehol Xu Xing is a professor at the Institute of vertebrate palaeontologists. Corwin Biota, such as the four-winged Microraptor of Vertebrate Paleontology and Sullivan wrote the English text with input and the gigantic tyrannosaur Yutyrannus, Paleoanthropology of the Chinese Academy from the other authors, Wang Yuan did the have garnered much public attention; less of Sciences in Beijing. Chinese translation and Brian Choo pro- known are the earlier Silurian Xiaoxiang e-mail: [email protected] duced the illustrations. (I work alongside and Devonian Zhongning faunas. The all three, but was not involved with this authors explain how discoveries from these book.) Their effort has produced an excel- have helped to establish the evolution of CORRECTION lent resource. important structures such as jaws and The Q&A ‘Geological historian’ (Nature From Fish to Human describes 15 Chinese limbs. Entelognathus from Xiaoxiang, for 520, 294; 2015) incorrectly used faunas — collections of fossils of a similar age example, is a placoderm, or armoured fish, “geology and surveying” instead of from the same general area — that highlight with the jawed face of an osteichthyan, or “geometry and surveying”, and “core every major geological time period from bony fish — a finding that blurs the bound- seams” instead of “coal seams”. the early Cambrian to the late Pleistocene ary between major vertebrate groups (see 288 | NATURE | VOL 521 | 21 MAY 2015 © 2015 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • Timeline of the Evolutionary History of Life
    Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016
    [Show full text]
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • Zootaxa, a New Dromaeosaurid (Dinosauria: Theropoda)
    Zootaxa 2403: 1–9 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China XING XU1, JONAH N. CHOINIERE2, MICHAEL PITTMAN3, QINGWEI TAN4, DONG XIAO5, ZHIQUAN LI5, LIN TAN4, JAMES M. CLARK2, MARK A. NORELL6, DAVID W. E. HONE1 & CORWIN SULLIVAN1 1Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, 142 Xiwai Street, Beijing 100044. E-mail: [email protected] 2Department of Biological Sciences, George Washington University, 2023 G Street NW, Washington, DC 20052, USA 3Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK 4Long Hao Institute of Geology and Paleontology, Hohhot, Nei Mongol 010010, China 5Department of Land and Resources, Linhe, Nei Mongol 015000, China 6Division of Paleontology, American Museum of Natural History, Central Park West at 79th St., New York, 10024, USA Abstract We describe a new dromaeosaurid theropod from the Upper Cretaceous Wulansuhai Formation of Bayan Mandahu, Inner Mongolia. The new taxon, Linheraptor exquisitus gen. et sp. nov., is based on an exceptionally well-preserved, nearly complete skeleton. This specimen represents the fifth dromaeosaurid taxon recovered from the Upper Cretaceous Djadokhta Formation and its laterally equivalent strata, which include the Wulansuhai Formation, and adds to the known diversity of Late Cretaceous dromaeosaurids. Linheraptor exquisitus closely resembles the recently reported Tsaagan mangas. Uniquely among dromaeosaurids, the two taxa share a large, anteriorly located maxillary fenestra and a contact between the jugal and the squamosal that excludes the postorbital from the infratemporal fenestra.
    [Show full text]
  • 0195-5373 E-ISSN: 2708-521X Vol . 42 No. 1 Jan/Feb.2021
    ISSN: 0195-5373 e-ISSN: 2708-521X Vol . 42 No. 1 Jan/Feb. 2021 www.at-spectrosc.com Cover Feature: Jinhua Li, Rui Pei, Fangfang Teng, Hao Qiu, Roald Tagle, Qiqi Yan, Qiang Wang, Xuelei Chu , and Xing Xu Micro- XRF Study of the T roodontid Dinosaur Jianianhualong tengi Reveals New Biological and Taphonomical Signals Journal Overview The Atomic Spectroscopy (Print ISSN 0195−5373; Online ISSN 2708-521X) is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin. It is dedicated to advancing the analytical methodology & applications, instrumentation & fundamentals, and the science of reference materials in the fields of atomic spectroscopy. Publishing frequency: Six issues per year. Editor in Chief Editorial Board Xian-Hua Li (China) Beibei Chen (Wuhan University, China) Miguel Ángel Aguirre Pastor (Universidad de Executive Editor Biyang Deng (Guangxi Normal University, Alicante, Spain) Wei Guo (China) China) Mingli Chen (Northeastern University, China) Associate Editors Carsten Engelhard (University of Siegen, Ming Xu (Research Center for Eco-Environmental Germany) Sciences, CAS, China) Michael Dürr (Germany) Chao Li (National Research Center for Muharrem INCE (Munzur University, Turkey) Wei Hang (China) Geoanalysis, China) Mustafa Soylak (Erciyes University, Turkey) Zhaochu Hu (China) Chao Wei (National Institute of Metrology, Qian Liu (Research Center for Editorial Assistants China) Eco-Environmental Sciences, CAS, China) Chaofeng Li (Institute of Geology and Anneliese Lust (USA) Qiu-Li Li (Institute of Geology and Geophysics, Geophysics, CAS, China) Fadi. Abou-Shakra (USA) CAS, China) Chengbin Zheng (Sichuan University, Kenneth R. Neubauer (USA) Rong Qian (Shanghai Institute of Ceramics, CAS, China) Ming Li (China) China) Érico M.
    [Show full text]
  • Chordates (Phylum Chordata)
    A short story Leathem Mehaffey, III, Fall 201993 The First Chordates (Phylum Chordata) • Chordates (our phylum) first appeared in the Cambrian, 525MYA. 94 Invertebrates, Chordates and Vertebrates • Invertebrates are all animals not chordates • Generally invertebrates, if they have hearts, have dorsal hearts; if they have a nervous system it is usually ventral. • All vertebrates are chordates, but not all chordates are vertebrates. • Chordates: • Dorsal notochord • Dorsal nerve chord • Ventral heart • Post-anal tail • Vertebrates: Amphioxus: archetypal chordate • Dorsal spinal column (articulated) and skeleton 95 Origin of the Chordates 96 Haikouichthys Myllokunmingia Note the rounded extension to Possibly the oldest the head bearing sensory vertebrate: showed gill organs bars and primitive vertebral elements Early and primitive agnathan vertebrates of the Early Cambrian (530MYA) Pikaia Note: these organisms were less Primitive chordate, than an inch long. similar to Amphioxus 97 The Cambrian/Ordovician Extinction • Somewhere around 488 million years ago something happened to cause a change in the fauna of the earth, heralding the beginning of the Ordovician Period. • Rather than one catastrophe, the late-Cambrian extinction seems to be a series of smaller extinction events. • Historically the change in fauna (mostly trilobites as the index species) was thought to be due to excessive warmth and low oxygen. • But some current findings point to an oxygen spike due perhaps to continental drift into the tropics, driving rapid speciation and consequent replacement of old with new organisms. 98 Welcome to the Ordovician YOU ARE HERE 99 The Ordovician Sea, 488 million years 100 ago The Ordovician Period lasted almost 45 million years, from 489 to 444 MYA.
    [Show full text]
  • Lower Cretaceous Avian-Dominated, Theropod
    Lower cretaceous avian-dominated, theropod, thyreophoran, pterosaur and turtle track assemblages from the Tugulu Group, Xinjiang, China: ichnotaxonomy and palaeoecology Lida Xing1,2, Martin G. Lockley3, Chengkai Jia4, Hendrik Klein5, Kecheng Niu6, Lijun Zhang7, Liqi Qi8, Chunyong Chou2, Anthony Romilio9, Donghao Wang2, Yu Zhang2, W Scott Persons10 and Miaoyan Wang2 1 State Key Laboratory of Biogeology and Environmental Geology, China University of Geoscience (Beijing), Beijing, China 2 School of the Earth Sciences and Resources, China University of Geoscience (Beijing), Beijing, China 3 Dinosaur Trackers Research Group, University of Colorado at Denver, Denver, United States 4 Research Institute of Experiment and Detection of Xinjiang Oil Company, PetroChina, Karamay, China 5 Saurierwelt Paläontologisches Museum, Neumarkt, Germany 6 Yingliang Stone Natural History Museum, Nan’an, China 7 Institute of Resources and Environment, Key Laboratory of Biogenic Traces & Sedimentary Minerals of Henan Province, Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Henan Polytechnic University, Jiaozuo, China 8 Faculty of Petroleum, China University of Petroleum (Beijing) at Karamay, Karamay, China 9 School of Biological Sciences, The University of Queensland, Brisbane, Australia 10 Mace Brown Museum of Natural History, Department of Geology and Environmental Geosciences, College of Charleston, Charleston, United States ABSTRACT Rich tetrapod ichnofaunas, known for more than a decade, from the Huangyangquan Reservoir (Wuerhe District, Karamay City, Xinjiang) have been an abundant source Submitted 10 January 2021 of some of the largest Lower Cretaceous track collections from China. They originate Accepted 26 April 2021 from inland lacustrine clastic exposures of the 581–877 m thick Tugulu Group, 28 May 2021 Published variously divided into four formations and subgroups in the northwestern margin of Corresponding author the Junggar Basin.
    [Show full text]
  • Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex
    Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex By Karen E. Poole B.A. in Geology, May 2004, University of Pennsylvania M.A. in Earth and Planetary Sciences, August 2008, Washington University in St. Louis A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation Directed by Catherine Forster Professor of Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Karen Poole has passed the Final Examination for the degree of Doctor of Philosophy as of August 10th, 2015. This is the final and approved form of the dissertation. Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex Karen E. Poole Dissertation Research Committee: Catherine A. Forster, Professor of Biology, Dissertation Director James M. Clark, Ronald Weintraub Professor of Biology, Committee Member R. Alexander Pyron, Robert F. Griggs Assistant Professor of Biology, Committee Member ii © Copyright 2015 by Karen Poole All rights reserved iii Dedication To Joseph Theis, for his unending support, and for always reminding me what matters most in life. To my parents, who have always encouraged me to pursue my dreams, even those they didn’t understand. iv Acknowledgements First, a heartfelt thank you is due to my advisor, Cathy Forster, for giving me free reign in this dissertation, but always providing valuable commentary on any piece of writing I sent her, no matter how messy.
    [Show full text]
  • About Me Facebook Badge Globe Popular Posts
    Species New to Science: [Mammalogy • 2018] Taxonomic Review of th... http://novataxa.blogspot.com.br/2017/12/cyclopes.html new & recent described Flora & Fauna species from all over the World esp. Asia, Oriental, Indomalayan & Malesiana region Wednesday, December 13, 2017 About Me pskhun View my complete profile Facebook Badge Globe Popular Posts [Botany • 2018] Thismia thaithongiana • A New Species of Mycoheterotroph (Dioscoreaceae: Thismieae) from An Unusual Habitat in Thailand Thismia thaithongiana Chantanaorr. & Suddee in Chantanaorrapint & Suddee, 2018. facebook.com/ ForestHerbarium ... [Botany • 2018] Nephelaphyllum maliauensis • A New Species (Orchidaceae; Collabiinae) from the Maliau Basin, Sabah, Borneo, with A Discussion of the Taxonomic Identities of N. pulchrum, N. latilabre and N. flabellatum Nephelaphyllum maliauensis in Suetsugu, Suleiman & Tsukaya, 2018 DOI: 10.11646/phytotaxa.336.1.7 Nephelaphyllum is... 1 de 16 31/01/2018 18:06 Species New to Science: [Mammalogy • 2018] Taxonomic Review of th... http://novataxa.blogspot.com.br/2017/12/cyclopes.html [Ichthyology • 2018] Spectracanthicus javae • A New Species of the Genus Spectracanthicus (Loricariidae, Hypostominae, Ancistrini) from the Rio s (Rio Araguaia Basin), with A Description ofיJava Gross Brain Morphology Spectracanthicus javae Chamon, Pereira, Mendonca & Akama, 2018 DOI: 10.1111/jfb.13526 Abstract A new species o... [Entomology • 2018] Drepanosticta emtrai • A New Species of Damselfly (Odonata: Zygoptera: Platystictidae) from Vietnam with A Discussion of Drepanosticta vietnamica Asahina, 1997 Drepanosticta emtrai Dow, Kompier & Phan , 2018 DOI: 10.11646/zootaxa.4374.2.7 VNCreatures.net Abstract ... [Paleontology • 2018] Kootenayscolex barbarensis • A New Burgess Shale Polychaete and the Origin of the Annelid Head Revisited Kootenayscolex barbarensis Nanglu & Caron, 2018 DOI: 10.1016/j.cub.2017.12.019 Highlights: •An abundant C..
    [Show full text]
  • Fish and Amphibians
    Fish and Amphibians Geology 331 Paleontology Phylum Chordata: Subphyla Urochordata, Cephalochordata, and: Subphylum Vertebrata Class Agnatha: jawless fish, includes the hagfish, conodonts, lampreys, and ostracoderms (armored jawless fish) Gnathostomates: jawed fish Class Chondrichthyes: cartilaginous fish Class Placoderms: armored fish Class Osteichthyes: bony fish Subclass Actinopterygians: ray-finned fish Subclass Sarcopterygians: lobe-finned fish Order Dipnoans: lung fish Order Crossopterygians: coelocanths and rhipidistians Class Amphibia Urochordates: Sea Squirts. Adults have a pharynx with gill slits. Larval forms are free-swimming and have a notochord. Chordates are thought to have evolved from the larval form by precocious sexual maturation. Chordate evolution Cephalochordate: Branchiostoma, the lancelet Pikaia, a cephalochordate from the Burgess Shale Yunnanozoon, a cephalochordate from the Lower Cambrian of China Haikouichthys, agnathan, Lower Cambrian of China - Chengjiang fauna, scale is 5 mm A living jawless fish, the lamprey, Class Agnatha Jawless fish do have teeth! A fossil jawless fish, Class Agnatha, Ostracoderm, Hemicyclaspis, Silurian Agnathan, Ostracoderm, Athenaegis, Silurian of Canada Agnathan, Ostracoderm, Pteraspis, Devonian of the U.K. Agnathan, Ostracoderm, Liliaspis, Devonian of Russia Jaws evolved by modification of the gill arch bones. The placoderms were the armored fish of the Paleozoic Placoderm, Dunkleosteus, Devonian of Ohio Asterolepis, Placoderms, Devonian of Latvia Placoderm, Devonian of Australia Chondrichthyes: A freshwater shark of the Carboniferous Fossil tooth of a Great White shark Chondrichthyes, Great White Shark Chondrichthyes, Carcharhinus Sphyrna - hammerhead shark Himantura - a ray Manta Ray Fish Anatomy: Ray-finned fish Osteichthyes: ray-finned fish: clownfish Osteichthyes: ray-finned fish, deep water species Lophius, an Eocene fish showing the ray fins. This is an anglerfish.
    [Show full text]
  • New Evolutionary and Ecological Advances in Deciphering the Cambrian Explosion of Animal Life
    Journal of Paleontology, 92(1), 2018, p. 1–2 Copyright © 2018, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.140 New evolutionary and ecological advances in deciphering the Cambrian explosion of animal life Zhifei Zhang1 and Glenn A. Brock2 1Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an, 710069, China 〈[email protected]〉 2Department of Biological Sciences and Marine Research Centre, Macquarie University, Sydney, NSW, 2109, Australia 〈[email protected]〉 The Cambrian explosion represents the most profound animal the body fossil record of ecdysozoans and deuterostomes is very diversification event in Earth history. This astonishing evolu- poorly known during this time, potentially the result of a distinct tionary milieu produced arthropods with complex compound lack of exceptionally preserved faunas in the Terreneuvian eyes (Paterson et al., 2011), burrowing worms (Mángano and (Fortunian and the unnamed Stage 2). However, this taxonomic Buatois, 2017), and a variety of swift predators that could cap- ‘gap’ has been partially filled with the discovery of exceptionally ture and crush prey with tooth-rimmed jaws (Bicknell and well-preserved stem group organisms in the Kuanchuanpu Paterson, 2017). The origin and evolutionary diversification of Formation (Fortunian Stage, ca. 535 Ma) from Ningqiang County, novel animal body plans led directly to increased ecological southern Shaanxi Province of central China. High diversity and complexity, and the roots of present-day biodiversity can be disparity of soft-bodied cnidarians (see Han et al., 2017b) and traced back to this half-billion-year-old evolutionary crucible.
    [Show full text]
  • LETTER Doi:10.1038/Nature13414
    LETTER doi:10.1038/nature13414 A primitive fish from the Cambrian of North America Simon Conway Morris1 & Jean-Bernard Caron2,3 Knowledge of the early evolution of fish largely depends on soft- (Extended Data Fig. 4f). Incompleteness precludes a precise estimate of bodied material from the Lower (Series 2) Cambrian period of South size range, but themostcomplete specimens (Fig.1a,b) areabout 60 mm China1,2. Owing to the rarity of some of these forms and a general in length and 8–13 mm in height. Laterally the body is fusiform, widest lack of comparative material from other deposits, interpretations of near the middle, tapering to a fine point posteriorly (Fig. 1a, b and Ex- various features remain controversial3,4, as do their wider relation- tended Data Fig. 4a), whereas in dorsal view the anterior termination is ships amongst post-Cambrian early un-skeletonized jawless verte- rounded (Fig. 1d and Extended Data Fig. 4c–e). The animal was com- brates. Here we redescribe Metaspriggina5 on the basis of new material pressed laterally, as is evident from occasional folding of the body as well from the Burgess Shale and exceptionally preserved material collected as specimensindorso-ventral orientation being conspicuously narrower near Marble Canyon, British Columbia6, and three other Cambrian (Fig. 1a and Extended Data Fig. 5a). Along the anterior ventral margin Burgess Shale-type deposits from Laurentia. This primitive fish dis- there was a keel-like structure (Fig. 1b, g, i, k, l), but no fins have been plays unambiguous vertebrate features: a notochord, a pair of prom- recognized. In the much more abundant specimens of Haikouichthys1,3,4 inent camera-type eyes, paired nasal sacs, possible cranium and arcualia, fins are seldom obvious, suggesting that their absence in Metaspriggina W-shaped myomeres, and a post-anal tail.
    [Show full text]
  • The Fossil Record of the Cambrian “Explosion”: Resolving the Tree of Life Critics As Posing Challenges to Evolution
    Article The Fossil Record of the Cambrian “Explosion”: 1 Resolving the Tree of Life Keith B. Miller Keith B. Miller The Cambrian “explosion” has been the focus of extensive scientifi c study, discussion, and debate for decades. It has also received considerable attention by evolution critics as posing challenges to evolution. In the last number of years, fossil discoveries from around the world, and particularly in China, have enabled the reconstruction of many of the deep branches within the invertebrate animal tree of life. Fossils representing “sister groups” and “stem groups” for living phyla have been recognized within the latest Precambrian (Neoproterozoic) and Cambrian. Important transitional steps between living phyla and their common ancestors are preserved. These include the rise of mollusks from their common ancestor with the annelids, the evolution of arthropods from lobopods and priapulid worms, the likely evolution of brachiopods from tommotiids, and the rise of chordates and echinoderms from early deuterostomes. With continued new discoveries, the early evolutionary record of the animal phyla is becoming ever better resolved. The tree of life as a model for the diversifi cation of life over time remains robust, and strongly supported by the Neoproterozoic and Cambrian fossil record. he most fundamental claim of bio- (such as snails, crabs, or sea urchins) as it logical evolution is that all living does to the fi rst appearance and diversi- T organisms represent the outer tips fi cation of dinosaurs, birds, or mammals. of a diversifying, upward- branching tree This early diversifi cation of invertebrates of life. The “Tree of Life” is an extreme- apparently occurred around the time of ly powerful metaphor that captures the the Precambrian/Cambrian boundary over essence of evolution.
    [Show full text]