Sulphur Oxidising Bacteria in Mangrove Ecosystem: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Platyhelminthes, Nemertea, and "Aschelminthes" - A
BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. -
Spongejaspis Sp-Associated Bacteria Producing Protease Inhibitor
ORIGINAL ARTICLE Spongejaspis sp-Associated Bacteria Producing Protease Inhibitor DEDE MAHDIYAH1,2, ARIS TRI WAHYUDI3, WIDANARNI3, HELMIA FARIDA4 1 Sari Mulia University, Banjarmasin, Indonesia 2Doctoral Programm, Faculty of Medicine, Diponegoro University, Semarang, Indonesia 3Bogor Agricultural University, Bogor, Indonesia 4Faculty of Medicine, Diponegoro University, Semarang, Indonesia Correspondence to Dr. Dede Mahdiyah, Email :[email protected], Telp: +62-82250812565 ABSTRACT Background: Proteaseinhibitors are important in medicine, particularly in disabling proteases in the pathogenic processes of human diseases such as arthritis, cancer,HIV/AIDS and other infections. Sponges are excellent sources forbioactive compounds such as enzyme inhibitors, antiviral, antimicrobial. Aim: To explore sponge-associated bacteria as sources of protease inhibitors. Methods:This was an explorative descriptive study. Bacteria isolated from sponge Jaspis sp were screened using sea water complete and skim-milk double-layer plate. When the screening test positive, the activity of protease inhibitors was assessed using three substrates i.e proteinase-K, crude extract of protease (CEP) from Staphylococcus aureus, Pseudomonasaeruginosa, Enteropathogenic Escherichiacoli(EPEC) K11, and subtilisin. Optimum incubation time, temperature, and pH were determined to measure the activity ofthe protease inhibitors. Phenotypical characterization was performed using Gram and Microbact-kit. 16S-rRNA sequencing was done for identification. Results: Out of 136 isolates screened, three were positive for their potency as protease inhibitor producers, including oneGram-negative coccus and two Gram-positive cocci. The isolates showed protease inhibitor activity up to 90% toward the three substrates. The optimum time incubation toward three substratesranged 12-24 hours. The optimum temperatures for the three isolates were 30Co-60oC, 20o-30oC, and 30oC respectively. -
APP201895 APP201895__Appli
APPLICATION FORM DETERMINATION Determine if an organism is a new organism under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Application number APP201895 Applicant Neil Pritchard Key contact NPN Ltd www.epa.govt.nz 2 Application to determine if an organism is a new organism Important This application form is used to determine if an organism is a new organism. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This application form will be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0159 3 Application to determine if an organism is a new organism 1. Information about the new organism What is the name of the new organism? Briefly describe the biology of the organism. Is it a genetically modified organism? Pseudomonas monteilii Kingdom: Bacteria Phylum: Proteobacteria Class: Gamma Proteobacteria Order: Pseudomonadales Family: Pseudomonadaceae Genus: Pseudomonas Species: Pseudomonas monteilii Elomari et al., 1997 Binomial name: Pseudomonas monteilii Elomari et al., 1997. Pseudomonas monteilii is a Gram-negative, rod- shaped, motile bacterium isolated from human bronchial aspirate (Elomari et al 1997). They are incapable of liquefing gelatin. They grow at 10°C but not at 41°C, produce fluorescent pigments, catalase, and cytochrome oxidase, and possesse the arginine dihydrolase system. -
A Salt Lake Extremophile, Paracoccus Bogoriensis Sp. Nov., Efficiently Produces Xanthophyll Carotenoids
African Journal of Microbiology Research Vol. 3(8) pp. 426-433 August, 2009 Available online http://www.academicjournals.org/ajmr ISSN 1996-0808 ©2009 Academic Journals Full Length Research Paper A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids George O. Osanjo1*, Elizabeth W. Muthike2, Leah Tsuma3, Michael W. Okoth2, Wallace D. Bulimo3, Heinrich Lünsdorf4, Wolf-Rainer Abraham4, Michel Dion5, Kenneth N. Timmis4 , Peter N. Golyshin4 and Francis J. Mulaa3 1School of Pharmacy, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya. 2Department of Food Science, Technology and Nutrition, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya. 3Department of Biochemistry, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya. 4Division of Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. 5Université de Nantes, UMR CNRS 6204, Biotechnologie, Biocatalyse, Biorégulation, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, Nantes, F- 44322, France. Accepted 27 July, 2009 A Gram-negative obligate alkaliphilic bacterium (BOG6T) that secretes carotenoids was isolated from the outflow of Lake Bogoria hot spring located in the Kenyan Rift Valley. The bacterium is motile by means of a polar flagellum, and forms red colonies due to the production of xanthophyll carotenoid pigments. 16S rRNA gene sequence analysis showed this strain to cluster phylogenetically within the genus Paracoccus. Strain BOG6T is aerobic, positive for both catalase and oxidase, and non- methylotrophic. The major fatty acid of the isolate is C18: 1ω7c. It accumulated polyhydroxybutyrate granules. Strain BOG6T gave astaxanthin yield of 0.4 mg/g of wet cells indicating a potential for application in commercial production of carotenoids. -
Metabarcoding Analysis on European Coastal Samples Reveals New
1 A research a rticle submitted to Scientific Reports 2 3 Metabarcoding analysis on European coastal samples 4 reveals new molecular metazoan diversity 5 6 David López -Escardó 1, Jordi Paps 2, Colomban de Vargas 3,4 , Ramon Massana 5, Iñaki 7 Ruiz -Trillo 1,6,7* , Javier del Campo 1,8* 8 Supplementary Figure Legends and Table s 9 Fig. S 1: Box plot distribution of relative metazoan abundance compar ed with all 10 eukaryotes. Relative abundance of metazoans compared to all eukaryotes in (a) 11 different oxic pelagic fractions, (b) different sites and in ( c) different depths. Note that 12 data is provided from just one sample in the anoxic sediments. 13 Fig. S2: Rarefaction curves . Rarefaction curves calculated with vegan from the 14 samples divided (a) by template (RNA or DNA) or (b) by env ironment keepig as well 15 divided the samples from RNA ( discontinuous line) or DNA ( continuous line ). Both 16 plots show the rarefaction curve of all the samples. 17 Fig. S3: Jackknife clustering analysis of phylogenetic composition of the samples . 18 The chart repr esents the relative abundance within metazoan phyla in each sample. 19 Samples from extracellular DNA and the ones with less than 100 reads (DNA+RNA) 20 were removed from the analysis. Sample characteristics are expressed in colors. On 21 the right site there is th e legend. RNA and DNA are expressed in white and black 22 respectively. Picoplanktonic, nanoplanktonic, micromesoplanktonic samples and the 23 samples from the sediments are representedwith yellow, green, dark red and purple 24 respectively. -
Characterization of Bacterial Communities Associated
www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5. -
The Evolutionary Pathways of Photoreceptors by Paul Nethercott
The Evolutionary Pathways Of Photoreceptors By Paul Nethercott August 2014 www.CreationismOnline.com www.wikipedia.com Evolution Of Photoreceptors And Eyes Sorted By Phyletic Group Phylum Meaning Common name Eyes Species Acanthocephala Thorny headed worms Thorny‐headed worms None 756 Acoelomorpha Without gut Acoels None 1 Annelida Little ring Segmented worms Ocelli, Compound Eyes 17,000 Arthropoda Jointed foot Arthropods Ocelli, Compound Eyes 1,134,000 Brachiopoda Arm foot Lamp shells None 400 Bryozoa Moss animals Moss animals, sea mats None 5,000 Chaetognatha Longhair jaw Arrow worms Compound Eyes 100 Chordata With a cord Chordates Single Lense 100,000 Cnidaria Stinging nettle Coelenterates Ocelli, Single Lense 11,000 Ctenophora Comb bearer Comb jellies None 100 Cycliophora Wheel carrying Symbion None 3 Echinodermata Spiny skin Echinoderms Ocelli 7,000 Entoprocta Inside anus Goblet worm Ocelli 150 Gastrotricha Hair stomach Meiofauna Ocelli 690 Gnathostomulida Jaw orifice Jaw worms None 100 Hemichordata Half cord Acorn worms None 100 Kinorhyncha Motion snout Mud dragons Ocelli 150 Loricifera Corset bearer Brush heads None 122 Micrognathozoa Tiny jaw animals — None 1 Mollusca Soft Mollusks Ocelli 112,000 Nematoda Thread like Round worms Ocelli 100,000 Nematomorpha Thread form Horsehair worms None 320 Nemertea A sea nymph Ribbon worms Ocelli 1,200 Onychophora Claw bearer Velvet worms Ocelli 200 Orthonectida Straight swim None 20 Phoronida Zeus's mistress Horseshoe worms None 11 Placozoa Plate animals None 1 Platyhelminthes Flat worms Flat -
A Soil Actinobacterium Scavenges Atmospheric H2 Using Two Membrane-Associated, Oxygen-Dependent [Nife] Hydrogenases
A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases Chris Greeninga,b, Michael Berneya,c, Kiel Hardsa, Gregory M. Cooka,1, and Ralf Conradb,1 aDepartment of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; bMax-Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany; and cDepartment of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 Edited by Edward F. DeLong, Massachusetts Institute of Technology, Cambridge, MA, and approved January 23, 2014 (received for review November 1, 2013) In the Earth’s lower atmosphere, H2 is maintained at trace concen- The majority of characterized hydrogen-oxidizing soil bacteria trations (0.53 ppmv/0.40 nM) and rapidly turned over (lifetime ≤ (e.g., Paracoccus denitrificans, Ralstonia eutropha) have a low −1 2.1 y ). It is thought that soil microbes, likely actinomycetes, serve affinity for H2 (Km ≥ 1 μM, threshold ≥ 1 nM) and hence are as the main global sink for tropospheric H2. However, no study has probably responsible for the former process; their uptake ever unambiguously proven that a hydrogenase can oxidize this hydrogenases (principally group 1 [NiFe] hydrogenases) serve to trace gas. In this work, we demonstrate, by using genetic disse- recycle the relatively high levels of H2 produced by biological ction and sensitive GC measurements, that the soil actinomycete processes (8, 13, 14). However, it has recently been shown that 2 Mycobacterium smegmatis mc 155 constitutively oxidizes subtro- certain soil-dwelling actinomycetes are capable of scavenging H2 pospheric concentrations of H2. We show that two membrane- at tropospheric concentrations (12, 15). -
Evolutionary History of Nickel-Dependent Enzymes
Evolutionary History of Nickel-Dependent Enzymes: Implications for the Origins of Life. Reem Hallak Degree project in biology, Master of science (2 years), 2020 Examensarbete i biologi 60 hp till masterexamen, 2020 Biology Education Centre and Department of Earth Sciences, Palaeobiology, Uppsala University Supervisors: Aodhán Butler and Anna Neubeck External opponent: Brenda Irene Medina Jimenez Table of Contents ABSTRACT .................................................................................................................................................. 5 INTRODUCTION ...................................................................................................................................... 6 METHODOLOGY ................................................................................................................................... 11 ▪ Brief Summary .................................................................................................................................................... 11 ▪ Operating Principle of HMMER ................................................................................................................. 11 ▪ Detailed Summary - Collecting Query Sequences ............................................................................ 13 a. From Published Study: ............................................................................................................................... 13 b. From Databases:.......................................................................................................................................... -
Host-Microbe Interactions in Octocoral Holobionts - Recent Advances and Perspectives Jeroen A
van de Water et al. Microbiome (2018) 6:64 https://doi.org/10.1186/s40168-018-0431-6 REVIEW Open Access Host-microbe interactions in octocoral holobionts - recent advances and perspectives Jeroen A. J. M. van de Water* , Denis Allemand and Christine Ferrier-Pagès Abstract Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities. -
Phylogenomic Methods Assessing the Root of Bilaterian Animals with Scalable
Downloaded from rspb.royalsocietypublishing.org on 10 November 2009 Assessing the root of bilaterian animals with scalable phylogenomic methods Andreas Hejnol, Matthias Obst, Alexandros Stamatakis, Michael Ott, Greg W. Rouse, Gregory D. Edgecombe, Pedro Martinez, Jaume Baguñà, Xavier Bailly, Ulf Jondelius, Matthias Wiens, Werner E. G. Müller, Elaine Seaver, Ward C. Wheeler, Mark Q. Martindale, Gonzalo Giribet and Casey W. Dunn Proc. R. Soc. B 2009 276, 4261-4270 first published online 16 September 2009 doi: 10.1098/rspb.2009.0896 Supplementary data "Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2009/09/15/rspb.2009.0896.DC1.h tml References This article cites 40 articles, 6 of which can be accessed free http://rspb.royalsocietypublishing.org/content/276/1677/4261.full.html#ref-list-1 Subject collections Articles on similar topics can be found in the following collections taxonomy and systematics (160 articles) bioinformatics (66 articles) evolution (1169 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Proc. R. Soc. B go to: http://rspb.royalsocietypublishing.org/subscriptions This journal is © 2009 The Royal Society Downloaded from rspb.royalsocietypublishing.org on 10 November 2009 Proc. R. Soc. B (2009) 276, 4261–4270 doi:10.1098/rspb.2009.0896 Published online 16 September 2009 Assessing the root of bilaterian animals with scalable phylogenomic methods Andreas Hejnol1,*, Matthias Obst2, Alexandros Stamatakis3, Michael Ott3,GregW.Rouse4, Gregory D. Edgecombe5, Pedro Martinez6, Jaume Bagun˜ a` 6, Xavier Bailly7, Ulf Jondelius8, Matthias Wiens9, Werner E. -
Animal Phylogeny and the Ancestry of Bilaterians: Inferences from Morphology and 18S Rdna Gene Sequences
EVOLUTION & DEVELOPMENT 3:3, 170–205 (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences Kevin J. Peterson and Douglas J. Eernisse* Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA; and *Department of Biological Science, California State University, Fullerton CA 92834-6850, USA *Author for correspondence (email: [email protected]) SUMMARY Insight into the origin and early evolution of the and protostomes, with ctenophores the bilaterian sister- animal phyla requires an understanding of how animal group, whereas 18S rDNA suggests that the root is within the groups are related to one another. Thus, we set out to explore Lophotrochozoa with acoel flatworms and gnathostomulids animal phylogeny by analyzing with maximum parsimony 138 as basal bilaterians, and with cnidarians the bilaterian sister- morphological characters from 40 metazoan groups, and 304 group. We suggest that this basal position of acoels and gna- 18S rDNA sequences, both separately and together. Both thostomulids is artifactal because for 1000 replicate phyloge- types of data agree that arthropods are not closely related to netic analyses with one random sequence as outgroup, the annelids: the former group with nematodes and other molting majority root with an acoel flatworm or gnathostomulid as the animals (Ecdysozoa), and the latter group with molluscs and basal ingroup lineage. When these problematic taxa are elim- other taxa with spiral cleavage. Furthermore, neither brachi- inated from the matrix, the combined analysis suggests that opods nor chaetognaths group with deuterostomes; brachiopods the root lies between the deuterostomes and protostomes, are allied with the molluscs and annelids (Lophotrochozoa), and Ctenophora is the bilaterian sister-group.