Characterization of an Extended Glutamate Receptor of the on Bipolar Neuron in the Vertebrate Retina'

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of an Extended Glutamate Receptor of the on Bipolar Neuron in the Vertebrate Retina' 0270-6474/&35/0501-0224$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 5, No. 1, pp. 224-233 Printed in U.S.A. January 1985 CHARACTERIZATION OF AN EXTENDED GLUTAMATE RECEPTOR OF THE ON BIPOLAR NEURON IN THE VERTEBRATE RETINA’ MALCOLM M. SLAUGHTER2 AND ROBERT F. MILLER Departments of Ophthalmology, Physiology, and Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 Received April 11, 1984; Revised June 25, 1984; Accepted June 29, 1984 Abstract The synaptic receptors of ON bipolar neurons are selectively activated by 2-amino-4-phosphonobutyrate, a glutamate analogue. This agent uniquely distinguishes these receptors from other types of excitatory amino acid receptors found in the retina. Various glutamate and aspartate analogues were used to assess the structure- activity characteristics of this receptor. The results suggest that it represents one class of glutamate receptor which can be distinguished by its preferential activation by acidic amino acid analogues that match the extended conformation of glutamate. A decade ago, Murakami et al. (1972, 1975) demonstrated glutamate analogue, 2-amino-4-phosphonobutyrate (APB), se- that aspartate and glutamate mimicked the actions of the lectively activates only the ON bipolar receptors when applied photoreceptor neurotransmitter in the fish retina. This finding at micromolar concentrations (Slaughter and Miller, 1981). has been generalized to other vertebrate retinas and amplified Although excitatory amino acid receptors are present on most upon in the fish. Neurotransmission at this junction is partic- neurons in both the inner and outer retina (Slaughter and ularly interesting because single photoreceptors provide input Miller, 1983a), APBs direct action is limited to the ON bipolar to several classes of neurons, and evidence from our laboratory synapse. This selectivity of one glutamate analogue, in a retina indicates that each class of second-order neuron possesses a that contains many types of glutamate-sensitive neurons, sug- distinct type of acidic amino acid receptor (Slaughter et al., gests that the ON bipolar synaptic receptor represents a distinct 1983). This synaptic arrangement, in which one presynaptic class of excitatory amino acid receptor. neurotransmitter interacts with several postsynaptic receptor Based on these observations we were interested in further subtypes, is akin to that described for acetylcholine receptors characterizing the ON bipolar receptor by testing molecular in the pleural ganglion of Aplysia (Kehoe, 1967, 1969) and conformations and substitutions of glutamate that produced a rabbit superior cervical sympathetic ganglion (Libet, 1979), and selective activation of these neurons. We were aided in this it offers an opportunity to compare the pharmacology of the effort by the synaptic arrangement of the distal retina which receptor subtypes. permitted a comparison of the pharmacology of the ON bipolar We have begun to explore differences in acidic amino acid with that of the OFF bipolar and the horizontal cell. This receptors in the mudpuppy retina which, like other vertebrates, enabled us to find agents that discriminated between the three has photoreceptors that synapse on three classes of second- synaptic glutamate receptors found at one anatomical locus. order neurons: ON bipolars, OFF bipolars, and horizontal cells The molecular analysis used in this study relied on the three- (Dowling and Werblin, 1969; Werblin and Dowling, 1969; Ka- point binding of excitatory amino acids to their receptors which neko, 1970). The synaptic physiology of the photoreceptor to was established by the pioneering studies of Curtis and Watkins ON bipolar connection is unusual, and this is reflected in the (1960). They demonstrated that the activity of acidic amino synaptic pharmacology as well. A dark-released photoreceptor acids depended upon three groups: one amino and two carboxyl neurotransmitter depolarizes OFF bipolars and horizontal cells moieties. The subsequent development of both agonists and by opening channels, but apparently the same neurotransmitter antagonists has relied on the alteration of the distance between hyperpolarizes the ON bipolars by closing ionic channels (Nel- these groups or on substitutions for these charged moieties. We son, 1973; Toyoda, 1973; Werblin, 1979) Glutamate is hypoth- used a similar approach to discern the three-dimensional ar- esized to be the cone transmitter onto all second-order neurons rangement of these binding sites at the ON bipolar receptor. in the mudpuppy retina (Slaughter and Miller, 1983a). One We found that the uniqueness of this excitatory amino acid receptor could be explained by its preferential binding to lj- gands which had an intercarboxyl distance that exceeded 4 A. 1 We wish to thank Drs. G. Marshall, H. McLennan, P. Krogsgaard- These results reveal one type of excitatory amino acid receptor, Larsen, and J. C. Watkins for generously donating excitatory amino identified by APB, which can be described as an “extended” acid analogues. This work was supported by National Eye Institute glutamate receptor. Grants ROl EY 05085 and ROl EY 03014. * To whom correspondence should be sent, at his present address: Materials and Methods Department of Biophysical Sciences, 118 Cary Hall, State University Experiments were performed in the superfused retina-eyecup prep- of New York at Buffalo, Buffalo, NY 14214. aration of the mudpuppy, Necturus maculosus, using standard electro- 224 The Journal of Neuroscience ON Bipolar Glutamate Receptors 225 physiological techniques. The animals were decapitated and pithed 1mM APB before the eye, and the surrounding tissue was removed from the skull. The retina was exposed by excising the cornea, iris, lens, and vitreous. The rim of the eyecup was covered with a Kimwipe, leaving only the retina exposed. This preparation rested on a wad of Ringer’s soaked cotton and was placed in a chamber inside a light-tight Faraday cage. A pipette, placed at the rim of the eyecup, was used to introduce perfusate which formed a bath in the eyecup over the retina. The perfusate consisted of a control solution of amphibian Ringer’s (111 mM NaCl, 2.5 mM KCl, 1.8 mM CaC12, 1 mM MgClz, 10 mM dextrose, and 5 mM HEPES buffered to pH 7.80) or a Ringer’s solution contain- I ing pharmacological agents. The different perfusion solutions were -O.lnA 15mV contained in a series of bottles which were connected through separate I- Teflon-lined valves and tubing to a mixing chamber. A short length of 20 set polyethylene tubing, that serves as the common exit from the mixing chamber, was fed into the perfusion pipette near the retina. The perfusates were bubbled with oxygen and the flow rate was maintained at approximately 2 ml/min. This system permitted the addition of two or more solutions to the retina simultaneously, and the exchange time on switching solutions (due to dead space in the lines) was about 15 to 25 sec. A dual-beam light bench projected focused images of a small spot (200 pm), an annulus (400 pm inner diameter; outer diameter > retinal diameter), or a diffuse light onto the retina (irradiance = 5 X 10e9/ cm*). Light responses were cone dominated under our experimental -O.lnA GO.1 nA conditions. Microelectrodes (250 to 600 megohms) were filled with 3 M potassium acetate and were advanced into the retina by a hydraulic microdrive using capacitative buzzing to facilitate cell penetration. Recordings were obtained using a Dagan model 8100 amplifier. Cellular 20mV conductance changes due to light stimuli or drug application were assessed by applying O.l-nA current pulses into the neuron through the 5 set recording electrode. Under control conditions, the voltage deflection Figure 1. APB and the photoreceptor neurotransmitter produce due to this current injection was eliminated by the bridge balance, and similar conductance changes in ON bipolar cells. In the top truce, a then the voltage deflection seen during stimulation was used to evaluate -O.l-nA current pulse is iniected into an ON bipolar cell during the changes in membrane conductance. More complete descriptions of the sustained portion-of the light response, when relatively little photore- methodology have been presented previously (Miller and Dacheux, ceptor transmitter is being released. The amplifier bridge is balanced 1976; Slaughter and Miller, 1983a). so that this current produces only a slight voltage deflection. During The n,L-2-amino-4-phosphonobutyyrate and the D,L-2-amino-3-phos- the application of APB, the light response is suppressed and the phonopropionate were obtained from Calbiochem. Dr. J. C. Watkins negative current produces a larger negative voltage deflection, indicat- kindly provided samples of D,L-2-amino-5-phosphonovalerate, c&2,3- ing an increase in the input resistance of the cell. In another ON piperidine dicarboxylic acid, and the D and L isomers of 2-amino-4- bipolar, shown in the bottom trace, both negative and positive current phosphonobutyrate (these compounds are now commercially available pulses were applied. At the first arrow, a O.l-nA negative current pulse from Cambridge Research Biochemicals). Dr. H. McLennan generously produces a negative deflection in the dark, but a positive deflection supplied a sample of cis-1,3-amino-dicarboxylcyclopentane (ADCP), during the light response indicating that the photoreceptor transmitter and Dr. G. Marshall kindly donated 4-amino-4 phosphonobutyrate. All also increases the neuron’s input resistance in the dark. At the second other compounds were purchased from Sigma Chemical Co. arrow, a positive current pulse also indicated that the cell’s input Ibotenate, a glutamate analogue that was used in this study, can resistance was greater in the dark than in the light. The duration of apparently be converted to muscimol, a GABA analogue. This reaction drug application is indicated by the bar above the voltage trace and the can occur spontaneously or due to biological decarboxylation. When timing of diffuse light stimuli is denoted by the bars below the traces. we used this compound we periodically assessed its effects on inner retinal neurons, where GABA has a very potent inhibitory action.
Recommended publications
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • Neurotransmitters-Drugs Andbrain Function.Pdf
    Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Neurotransmitters, Drugs and Brain Function Edited by R. A. Webster Department of Pharmacology, University College London, UK JOHN WILEY & SONS, LTD Chichester Á New York Á Weinheim Á Brisbane Á Singapore Á Toronto Neurotransmitters, Drugs and Brain Function. Edited by Roy Webster Copyright & 2001 John Wiley & Sons Ltd ISBN: Hardback 0-471-97819-1 Paperback 0-471-98586-4 Electronic 0-470-84657-7 Copyright # 2001 by John Wiley & Sons Ltd. Bans Lane, Chichester, West Sussex PO19 1UD, UK National 01243 779777 International ++44) 1243 779777 e-mail +for orders and customer service enquiries): [email protected] Visit our Home Page on: http://www.wiley.co.uk or http://www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P0LP,UK, without the permission in writing of the publisher. Other Wiley Editorial Oces John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany John Wiley & Sons Australia, Ltd.
    [Show full text]
  • Lysophosphatidic Acid Signaling in the Nervous System
    Neuron Review Lysophosphatidic Acid Signaling in the Nervous System Yun C. Yung,1,3 Nicole C. Stoddard,1,2,3 Hope Mirendil,1 and Jerold Chun1,* 1Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA 2Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA 3Co-first author *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2015.01.009 The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural pro- cesses and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states. Introduction LPA synthesis/degradative enzymes (reviewed in Sigal et al., The human brain is composed of approximately 60%–70% lipids 2005; Brindley and Pilquil, 2009; Perrakis and Moolenaar, by dry weight (Svennerholm et al., 1994). These lipids can be 2014). In view of the broad neurobiological influences of LPA divided into two major pools, structural and signaling, which signaling, its dysregulation may lead to diverse neuropathologies include well-known families such as cholesterol, fatty acids, ei- (Bandoh et al., 2000; Houben and Moolenaar, 2011; Yung et al., cosanoids, endocannabinoids, and prostaglandins (Figure 1).
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • Chemical Labelling for Visualizing Native AMPA Receptors in Live Neurons
    ARTICLE Received 1 Aug 2016 | Accepted 8 Feb 2017 | Published 7 Apr 2017 DOI: 10.1038/ncomms14850 OPEN Chemical labelling for visualizing native AMPA receptors in live neurons Sho Wakayama1,*, Shigeki Kiyonaka1,*, Itaru Arai2, Wataru Kakegawa2, Shinji Matsuda2,3,4, Keiji Ibata2, Yuri L. Nemoto5, Akihiro Kusumi5,6, Michisuke Yuzaki2,7 & Itaru Hamachi1,7 The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders. 1 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku 615-8510, Japan. 2 Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan. 3 Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communication, Tokyo 182-8585, Japan.
    [Show full text]
  • Exploring the Heteromeric Interface of the 5-HT2A-Mglu2 Receptor Complex
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2020 Exploring the Heteromeric Interface of the 5-HT2A-mGlu2 Receptor Complex Mohamed Aarif Abdul Kareem Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Nervous System Diseases Commons, Other Psychiatry and Psychology Commons, Physiological Processes Commons, and the Translational Medical Research Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/6235 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Exploring the Heteromeric Interface of the 5-HT2A-mGlu2 Receptor Complex A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physiology and Biophysics at Virginia Commonwealth University By: Mohamed Aarif Abdul Kareem B.A. Neurobiology, Boston University, 2018 Mentor: Javier González-Maeso Associate Professor Department of Physiology and Biophysics Virginia Commonwealth University Richmond, Virginia April 30, 2020 Acknowledgments: Thank you to my peers for their continued support of my dreams and aspirations. Thank you to my mentors for pushing and supporting me every step of the way. Thank you to Virginia Commonwealth University for providing opportunities which foster my passion for science and allow it to continue to flourish. Indeed, I owe much gratitude to my parents, Abdul & Jasmine Kareem, who have guided me in becoming a strong, independent student, and encourage me to take calculated risks and face challenges head on.
    [Show full text]
  • Mechanism of Action of Ethylenediamine On
    Stone, T.W., Lui, C. and Addae, J.I. (2010) Effects of ethylenediamine – a putative GABA-releasing agent – on rat hippocampal slices and neocortical activity in vivo. European Journal of Pharmacology, 650 (2-3). pp. 568-578. ISSN 0014-2999. http://eprints.gla.ac.uk/46340/ Deposited on: 22 November 2010 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Effects of ethylenediamine – a putative GABA-releasing agent – on rat hippocampal slices and neocortical activity in vivo Trevor W Stone1 , Caleb Lui1 and Jonas I. Addae2 1 Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K. 2 Dept of Preclinical Sciences, St. Augustine Campus University of the West Indies, Trinidad and Tobago. Correspondence: Prof T. W. Stone, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK. Tel - +44 141 330 4481; fax - +44 141 330 5481; e-mail - [email protected] 1 ABSTRACT The simple diamine diaminoethane (ethylenediamine, EDA) has been shown to activate GABA receptors in the central and peripheral nervous systems, partly by a direct action and partly by releasing endogenous GABA. These effects have been shown to be produced by the complexation of EDA with bicarbonate to form a carbamate. The present work has compared EDA, GABA and β-alanine responses in rat CA1 neurons using extracellular and intracellular recordings, as well as neocortical evoked potentials in vivo. Superfusion of GABA onto hippocampal slices produced depolarisation and a decrease of field epsps, both effects fading rapidly, but showing sensitivity to blockade by bicuculline.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Interactions Between Ethanol and the Endocannabinoid System at Gabaergic Synapses on Basolateral Amygdala Principal Neurons
    Alcohol 49 (2015) 781e794 Contents lists available at ScienceDirect Alcohol journal homepage: http://www.alcoholjournal.org/ Interactions between ethanol and the endocannabinoid system at GABAergic synapses on basolateral amygdala principal neurons Giuseppe Talani a,b, David M. Lovinger a,* a Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA b Institute of Neuroscience, National Research Council, Monserrato, Cagliari, Italy article info abstract Article history: The basolateral amygdala (BLA) plays crucial roles in stimulus value coding, as well as drug and alcohol Received 14 April 2015 dependence. Ethanol alters synaptic transmission in the BLA, while endocannabinoids (eCBs) produce Received in revised form presynaptic depression at BLA synapses. Recent studies suggest interactions between ethanol and eCBs 11 August 2015 that have important consequences for alcohol drinking behavior. To determine how ethanol and eCBs Accepted 25 August 2015 interact in the BLA, we examined the physiology and pharmacology of GABAergic synapses onto BLA pyramidal neurons in neurons from young rats. Application of ethanol at concentrations relevant to intoxication increased, in both young and adult animals, the frequency of spontaneous and miniature Keywords: Alcohol GABAergic inhibitory postsynaptic currents, indicating a presynaptic site of ethanol action. Ethanol did CB1 receptor not potentiate sIPSCs during inhibition of adenylyl cyclase while still exerting its effect during inhibition Synapse of protein kinase A. Activation of type 1 cannabinoid receptors (CB1) in the BLA inhibited GABAergic Inhibition transmission via an apparent presynaptic mechanism, and prevented ethanol potentiation. Surprisingly, Arachidonoyl ethanolamide ethanol potentiation was also prevented by CB1 antagonists/inverse agonists.
    [Show full text]
  • G-Protein-Coupled Receptors in CNS: a Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits
    cells Review G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits Shofiul Azam 1 , Md. Ezazul Haque 1, Md. Jakaria 1,2 , Song-Hee Jo 1, In-Su Kim 3,* and Dong-Kug Choi 1,3,* 1 Department of Applied Life Science & Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; shofi[email protected] (S.A.); [email protected] (M.E.H.); md.jakaria@florey.edu.au (M.J.); [email protected] (S.-H.J.) 2 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia 3 Department of Integrated Bioscience & Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea * Correspondence: [email protected] (I.-S.K.); [email protected] (D.-K.C.); Tel.: +82-010-3876-4773 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.) Received: 16 January 2020; Accepted: 18 February 2020; Published: 23 February 2020 Abstract: Neurodegenerative diseases are a large group of neurological disorders with diverse etiological and pathological phenomena. However, current therapeutics rely mostly on symptomatic relief while failing to target the underlying disease pathobiology. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system (CNS) disorders. Many currently available antipsychotic therapeutics also act as either antagonists or agonists of different GPCRs. Therefore, GPCR-based drug development is spreading widely to regulate neurodegeneration and associated cognitive deficits through the modulation of canonical and noncanonical signals.
    [Show full text]
  • Mechanism for Neurotransmitter-Receptor Matching
    Mechanism for neurotransmitter-receptor matching Dena R. Hammond-Weinbergera,1,2, Yunxin Wanga, Alex Glavis-Blooma, and Nicholas C. Spitzera,b,1 aNeurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357; and bCenter for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92161 Contributed by Nicholas C. Spitzer, January 6, 2020 (sent for review September 25, 2019; reviewed by Laura N. Borodinsky and Joshua R. Sanes) Synaptic communication requires the expression of functional neurons lead to the appearance of functional neuromuscular postsynaptic receptors that match the presynaptically released junctions expressing GluR1 and GluR2 (alias GluA1 and GluA2) neurotransmitter. The ability of neurons to switch the transmitter subunits, which are blocked by the AMPA receptor antagonist they release is increasingly well documented, and these switches GYKI 52466 (16, 17). In the central nervous system, the natural require changes in the postsynaptic receptor population. Al- developmental transmitter switch from GABA to glycine in the though the activity-dependent molecular mechanism of neuro- auditory nervous system is accompanied by alterations in the transmitter switching is increasingly well understood, the basis properties of postsynaptic receptors (18, 19). Changes in illumi- of specification of postsynaptic neurotransmitter receptors match- nation during development or in photoperiod in the adult lead to ing the newly expressed transmitter is unknown. Using a func- changes in the numbers of neurons expressing dopamine in the tional assay, we show that sustained application of glutamate to embryonic vertebrate skeletal muscle cells cultured before hypothalamus that are accompanied by corresponding up- or innervation is necessary and sufficient to up-regulate ionotropic down-regulation of dopamine receptor expression in postsynaptic glutamate receptors from a pool of different receptors expressed neurons (5, 7).
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]