A Feedback Loop Between Nonsense-Mediated Decay and The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of Cpg Island Methylation on The
Edinburgh Research Explorer Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of CpG Island Methylation on the Inactive X Chromosome Citation for published version: Gendrel, AV, Apedaile, A, Coker, H, Termanis, A, Zvetkova, I, Godwin, J, Montana, G, Taylor, S, Giannoulatou, E, Heard, E, Stancheva, I & Brockdorff, N 2012, 'Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of CpG Island Methylation on the Inactive X Chromosome', Developmental Cell, vol. 23, no. 2, pp. 265–279. https://doi.org/10.1016/j.devcel.2012.06.011 Digital Object Identifier (DOI): 10.1016/j.devcel.2012.06.011 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Developmental Cell General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Developmental Cell Article Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of CpG Island Methylation on the Inactive X Chromosome Anne-Valerie Gendrel,1,7,8 Anwyn Apedaile,3,8 Heather Coker,1 Ausma Termanis,4 Ilona Zvetkova,3,9 Jonathan Godwin,1 Y. -
DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases Anna Karpukhina, Yegor Vassetzky
DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases Anna Karpukhina, Yegor Vassetzky To cite this version: Anna Karpukhina, Yegor Vassetzky. DUX4, a Zygotic Genome Activator, Is Involved in Onco- genesis and Genetic Diseases. Ontogenez / Russian Journal of Developmental Biology, MAIK Nauka/Interperiodica, 2020, 51 (3), pp.176-182. 10.1134/S1062360420030078. hal-02988675 HAL Id: hal-02988675 https://hal.archives-ouvertes.fr/hal-02988675 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ISSN 1062-3604, Russian Journal of Developmental Biology, 2020, Vol. 51, No. 3, pp. 176–182. © Pleiades Publishing, Inc., 2020. Published in Russian in Ontogenez, 2020, Vol. 51, No. 3, pp. 210–217. REVIEWS DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases Anna Karpukhinaa, b, c, d and Yegor Vassetzkya, b, * aCNRS UMR9018, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy, Villejuif, F-94805 France bKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, -
Neuromuscular Disease Journal Article on IRC 2019
Available online at www.sciencedirect.com Neuromuscular Disorders 29 (2019) 811–817 www.elsevier.com/locate/nmd Research conference report 26th Annual Facioscapulohumeral Dystrophy International Research Congress Marseille, France, 19–20 June 2019 a b, ∗ c June Kinoshita , Frédérique Magdinier , George W. Padberg a FSHD Society, 450 Bedford Street, Lexington, MA, USA b Aix Marseille Univ, INSERM, MMG, Marseille Medical Genetics, Marseille, France c Radboud UMC, Nijmegen, The Netherlands Received 2 August 2019 1. Introduction In the welcome session, Mark Stone, CEO of the FSHD Society, summarized the international patient advocacy group Research in Facioscapulohumeral Muscular Dystrophy meeting that was held on the previous day (June 18), which (FSHD) has reached the stage where we are seeing the gathered representatives of patients associations from six first drug trials aiming at reduction of its pathological gene European countries as well as Brazil, China, Israel, Japan, product DUX4. Driven by this development and by increased and the United States. international collaboration on translational research and trial preparedness, the FSHD Society has decided to hold its 2. Plenary and keynote lectures annual International Research Conference (IRC) alternating between the USA and in Europe, beginning this year with the The meeting opened with a plenary session aimed at 26th IRC held in Marseille, France. The meeting occurred on presenting the condition from the point of view of affected 19–20 June, 2019, at the Palais du Pharo, a historical palace individuals. A 10-min video gave an intimate look into the built in the second half of the 19th century by Napoleon III life of Pierre Laurian. -
VU Research Portal
VU Research Portal Genetic architecture and behavioral analysis of attention and impulsivity Loos, M. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Loos, M. (2012). Genetic architecture and behavioral analysis of attention and impulsivity. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 28. Sep. 2021 Genetic architecture and behavioral analysis of attention and impulsivity Maarten Loos 1 About the thesis The work described in this thesis was performed at the Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands. This work was in part funded by the Dutch Neuro-Bsik Mouse Phenomics consortium. The Neuro-Bsik Mouse Phenomics consortium was supported by grant BSIK 03053 from SenterNovem (The Netherlands). -
Myopia in African Americans Is Significantly Linked to Chromosome 7P15.2-14.2
Genetics Myopia in African Americans Is Significantly Linked to Chromosome 7p15.2-14.2 Claire L. Simpson,1,2,* Anthony M. Musolf,2,* Roberto Y. Cordero,1 Jennifer B. Cordero,1 Laura Portas,2 Federico Murgia,2 Deyana D. Lewis,2 Candace D. Middlebrooks,2 Elise B. Ciner,3 Joan E. Bailey-Wilson,1,† and Dwight Stambolian4,† 1Department of Genetics, Genomics and Informatics and Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States 2Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States 3The Pennsylvania College of Optometry at Salus University, Elkins Park, Pennsylvania, United States 4Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States Correspondence: Joan E. PURPOSE. The purpose of this study was to perform genetic linkage analysis and associ- Bailey-Wilson, NIH/NHGRI, 333 ation analysis on exome genotyping from highly aggregated African American families Cassell Drive, Suite 1200, Baltimore, with nonpathogenic myopia. African Americans are a particularly understudied popula- MD 21131, USA; tion with respect to myopia. [email protected]. METHODS. One hundred six African American families from the Philadelphia area with a CLS and AMM contributed equally to family history of myopia were genotyped using an Illumina ExomePlus array and merged this work and should be considered co-first authors. with previous microsatellite data. Myopia was initially measured in mean spherical equiv- JEB-W and DS contributed equally alent (MSE) and converted to a binary phenotype where individuals were identified as to this work and should be affected, unaffected, or unknown. -
2021 IRC Abstract Book
ABSTRACT BOOK THANK YOU TO OUR SPONSORS S = session; P = poster; author in bold = presenting author Page | 2 SPEAKER PRESENTATIONS DAY 1 – THURSDAY, JUNE 24, 2021 . Discovery Research S1.100 Transient DUX4 expression provokes long-lasting cellular and molecular muscle alterations Darko Bosnakovski, Ahmed Shams, Madison Douglas, Natalie Xu, Christian Palumbo, David Oyler, Elizabeth Ener, Daniel Chi, Erik Toso, Michael Kyba S1.101 Identification of the first endogenous inhibitor of DUX4 in FSHD muscular dystrophy Paola Ghezzi, Valeria Runfola, Maria Pannese, Claudia Caronni, Roberto Giambruno, Annapaola Andolfo, Davide Gabellini S1.102 Use of snRNA-seq to characterize the skeletal muscle microenvironment during pathogenesis in FSHD Anugraha Raman, Anthony Accorsi, Michelle Mellion, Bobby Riehle, Lucienne Ronco, L. Alejandro Rojas, Christopher Moxham . Genetics & Epigenetics S2.200 Identification of a druggable epigenetic target required for DUX4 expression and DUX4-mediated toxicity in FSHD muscular dystrophy Emanuele Mocciaro, Roberto Giambruno, Stefano Micheloni, Cristina Consonni, Maria Pannese, Valeria Runfola, Giulia Ferri, Davide Gabellini S2.201 Accessing D4Z4 (epi)genetics with long-read sequencing Quentin Gouil, Ayush Semwal, Frédérique Magdinier, Marnie Blewitt . Pathology & Disease Mechanisms S3.300 System biology approach links muscle weakening to alteration of the contractile apparatus in FSHD Camille Laberthonnière, Megane Delourme, Raphael Chevalier, Elva-Maria Novoa-del-Toro, Emmanuelle Salort Campana, Shahram Attarian, -
The Role of Long Non-Coding Rnas in the Pathogenesis of Hereditary Diseases Peter Sparber1*, Alexandra Filatova1, Mira Khantemirova2,3 and Mikhail Skoblov1,4
Sparber et al. BMC Medical Genomics 2019, 12(Suppl 2):42 https://doi.org/10.1186/s12920-019-0487-6 REVIEW Open Access The role of long non-coding RNAs in the pathogenesis of hereditary diseases Peter Sparber1*, Alexandra Filatova1, Mira Khantemirova2,3 and Mikhail Skoblov1,4 From 11th International Multiconference “Bioinformatics of Genome Regulation and Structure\Systems Biology” - BGRS\SB- 2018 Novosibirsk, Russia. 20-25 August 2018 Abstract Background: Thousands of long non-coding RNA (lncRNA) genes are annotated in the human genome. Recent studies showed the key role of lncRNAs in a variety of fundamental cellular processes. Dysregulation of lncRNAs can drive tumorigenesis and they are now considered to be a promising therapeutic target in cancer. However, how lncRNAs contribute to the development of hereditary diseases in human is still mostly unknown. Results: This review is focused on hereditary diseases in the pathogenesis of which long non-coding RNAs play an important role. Conclusions: Fundamental research in the field of molecular genetics of lncRNA is necessary for a more complete understanding of their significance. Future research will help translate this knowledge into clinical practice which will not only lead to an increase in the diagnostic rate but also in the future can help with the development of etiotropic treatments for hereditary diseases. Keywords: Long non-coding RNA, lncRNA, Hereditary disease, Gene regulation, Medical genetics Introduction The second group includes rRNAs and long non-coding In 1958, Francis Crick proposed the central dogma of mo- RNAs (lncRNAs), which to date are very poorly function- lecular biology in which he explained the flow of genetic ally annotated. -
Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders
Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders Andrew H. Chiang Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Andrew H. Chiang All Rights Reserved Abstract Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders Andrew H. Chiang Autism spectrum disorders (ASD) are a group of related neurodevelopmental diseases displaying significant genetic and phenotypic heterogeneity. Despite recent progress in ASD genetics, the nature of phenotypic heterogeneity across probands is not well understood. Notably, likely gene- disrupting (LGD) de novo mutations affecting the same gene often result in substantially different ASD phenotypes. We find that truncating mutations in a gene can result in a range of relatively mild decreases (15-30%) in gene expression due to nonsense-mediated decay (NMD), and show that more severe autism phenotypes are associated with greater decreases in expression. We also find that each gene with recurrent ASD mutations can be described by a parameter, phenotype dosage sensitivity (PDS), which characteriZes the relationship between changes in a gene’s dosage and changes in a given phenotype. Using simple linear models, we show that changes in gene dosage account for a substantial fraction of phenotypic variability in ASD. We further observe that LGD mutations affecting the same exon frequently lead to strikingly similar phenotypes in unrelated ASD probands. These patterns are observed for two independent proband cohorts and multiple important ASD-associated phenotypes. The observed phenotypic similarities are likely mediated by similar changes in gene dosage and similar perturbations to the relative expression of splicing isoforms. -
CIC-DUX4 Induces Small Round Cell Sarcomas Distinct from Ewing Sarcoma
Author Manuscript Published OnlineFirst on April 12, 2017; DOI: 10.1158/0008-5472.CAN-16-3351 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. CIC-DUX4 induces small round cell sarcomas distinct from Ewing sarcoma Toyoki Yoshimoto 1, 2, Miwa Tanaka1, Mizuki Homme1, Yukari Yamazaki1, Yutaka Takazawa3, Cristina R Antonescu4, and Takuro Nakamura1 1Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan. 2Department of Pathology, Toranomon Hospital, Tokyo Japan. 3Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo Japan. 4Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York. Running title: Mouse model for CIC-DUX4 sarcoma Keywords: CIC-DUX4, sarcoma model, Ccnd2, Muc5ac, biomarker The abbreviations used are: CDS, CIC-DUX4 sarcoma; ES, Ewing sarcoma; eMC, embryonic mesenchymal cell; SS, synovial sarcoma; RS, rhabdomyosarcoma; EMCS, extraskeletal myxoid chondrosarcoma; GSEA, gene set enrichment analysis; ECM, extracellular matrix; MSC, mesenchymal stem cell. Grant Support: The study was supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (no. 26250029 to T. Nakamura), and Cancer Center Support grants (P50 CA140146 and P30-CA008747 to C. R. Antonescu) from the U.S. National Institute of Health. Corresponding Author: Takuro Nakamura, Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan. Phone: 81-3-3570-0462; E-mail: [email protected] T. Yoshimoto and M. Tanaka contributed equally to this article. The manuscript includes 3,775 words, five figures and two tables. -
A Quantitative Telomeric Chromatin Isolation Protocol Identifies Different Telomeric States
ARTICLE Received 20 Aug 2013 | Accepted 31 Oct 2013 | Published 25 Nov 2013 DOI: 10.1038/ncomms3848 A quantitative telomeric chromatin isolation protocol identifies different telomeric states Larissa Grolimund1,2,*, Eric Aeby1,2,*, Romain Hamelin1,3, Florence Armand1,3, Diego Chiappe1,3, Marc Moniatte1,3 & Joachim Lingner1,2 Telomere composition changes during tumourigenesis, aging and in telomere syndromes in a poorly defined manner. Here we develop a quantitative telomeric chromatin isolation protocol (QTIP) for human cells, in which chromatin is cross-linked, immunopurified and analysed by mass spectrometry. QTIP involves stable isotope labelling by amino acids in cell culture (SILAC) to compare and identify quantitative differences in telomere protein com- position of cells from various states. With QTIP, we specifically enrich telomeric DNA and all shelterin components. We validate the method characterizing changes at dysfunctional tel- omeres, and identify and validate known, as well as novel telomere-associated polypeptides including all THO subunits, SMCHD1 and LRIF1. We apply QTIP to long and short telomeres and detect increased density of SMCHD1 and LRIF1 and increased association of the shel- terins TRF1, TIN2, TPP1 and POT1 with long telomeres. Our results validate QTIP to study telomeric states during normal development and in disease. 1 EPFL-Ecole Polytechnique Fe´de´rale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland. 2 ISREC-Swiss Institute fro Experimental Cancer Research at EPFL, CH-1015 Lausanne, Switzerland. 3 Proteomics Core Facility at EPFL, CH-1015 Lausanne, Switzerland. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to J.L. -
Conservation and Innovation in the DUX4-Family Gene Network
© Copyright 2016 Jennifer L. Whiddon i Conservation and Innovation in the DUX4-family Gene Network Jennifer L. Whiddon A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Stephen J. Tapscott, Chair Michael Emerman Edith H. Wang Program Authorized to Offer Degree: Molecular and Cellular Biology ii University of Washington Abstract Conservation and Innovation in the DUX4-family Gene Network Jennifer L. Whiddon Chair of the Supervisory Committee: Professor Stephen J. Tapscott Department of Neurology Facioscapulohumeral dystrophy (FSHD) is caused by the mis-expression of the DUX4 transcription factor in skeletal muscle. Animal models of FSHD have been hampered by incomplete knowledge of the conservation of the DUX4 transcriptional program in other species besides humans. We demonstrate that both mouse Dux and human DUX4 activate repetitive elements and genes associated with cleavage-stage embryos when expressed in muscle cells of their respective species. Specifically, mouse DUX activated the transcription of MERV-L retrotransposons and genes such as Gm4340 (a.k.a. Gm6763), Slc34a2, Tcstv1/3, Tdpoz 3/4, Usp17la-e and Zfp352, all of which are characteristic of mouse two-cell embryos. Human DUX4 activated transcription of orthologs of mouse DUX-induced genes, including orthologs of genes characteristic of mouse two-cell embryos. Despite functional conservation, we found that the binding motifs of mouse DUX and human DUX4 have diverged. To better understand the extent of conservation or divergence between these factors and to assess current mouse models of FSHD, we expressed human DUX4 in mouse muscle cells. -
SMCHD1 Polyclonal Antibody Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP57717
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 SMCHD1 Polyclonal Antibody Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP57717 Specification SMCHD1 Polyclonal Antibody - Product Information Application IHC-P Primary Accession A6NHR9 Reactivity Rat, Pig, Dog, Cow Host Rabbit Clonality Polyclonal Calculated MW 226374 SMCHD1 Polyclonal Antibody - Additional Information Paraformaldehyde-fixed, paraffin embedded Gene ID 23347 (Rat testis); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Other Names Block endogenous peroxidase by 3% Structural maintenance of chromosomes hydrogen peroxide for 20 minutes; Blocking flexible hinge domain-containing protein 1, buffer (normal goat serum) at 37°C for 3.6.1.-, SMCHD1 (<a href="http://www.gen enames.org/cgi-bin/gene_symbol_report?hg 30min; Antibody incubation with (SMCHD1) nc_id=29090" Polyclonal Antibody, Unconjugated target="_blank">HGNC:29090</a>) (bs-19929R) at 1:400 overnight at 4°C, followed by operating according to SP Format Kit(Rabbit) (sp-0023) instructionsand DAB 0.01M TBS(pH7.4) with 1% BSA, 0.09% staining. (W/V) sodium azide and 50% Glyce Storage Store at -20 ℃ for one year. Avoid repeated freeze/thaw cycles. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 ℃. SMCHD1 Polyclonal Antibody - Protein Information Name SMCHD1 (HGNC:29090) Paraformaldehyde-fixed, paraffin embedded (Mouse brain); Antigen retrieval by boiling in Function sodium citrate buffer (pH6.0) for 15min; Non-canonical member of the structural Block endogenous peroxidase by 3% maintenance of chromosomes (SMC) hydrogen peroxide for 20 minutes; Blocking protein family that plays a key role in buffer (normal goat serum) at 37°C for epigenetic silencing by regulating 30min; Antibody incubation with (SMCHD1) chromatin architecture (By similarity).