Insect Fauna of Korea

Total Page:16

File Type:pdf, Size:1020Kb

Insect Fauna of Korea Insect Fauna of Korea Volume 13, Number 12 Pteromalinae Arthropoda: Insecta: Hymenoptera: Pteromalidae Flora and Fauna of Korea National Institute of Biological Resources Ministry of Environment Insect Fauna of Korea Volume 13, Number 12 Pteromalinae Arthropoda: Insecta: Hymenoptera: Pteromalidae 2019 National Institute of Biological Resources Ministry of Environment Insect Fauna of Korea Volume 13, Number 12 Pteromalinae Arthropoda: Insecta: Hymenoptera: Pteromalidae Copyright © 2019 by the National Institute of Biological Resources Published by the National Institute of Biological Resources Environmental Research Complex, 42, Hwangyeong-ro, Seo-gu Incheon 22689, Republic of Korea www.nibr.go.kr All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the National Institute of Biological Resources. ISBN: 978-89-6811-419-9(96470), 978-89-94555-00-3(Set) Government Publications Registration Number: 11-1480592-001637-01 Printed by Junghaengsa, Inc. in Korea on acid-free paper Publisher: National Institute of Biological Resources Authors: Jong-Wook Lee, Jin-Kyung Choi and Guk-Hyang Ko (Yeungnam University) Project Staff: Jinwhoa YUM, Junmi Hur, Seon-Yi Kim Published on November 30, 2019 Insect Fauna of Korea Volume 13, Number 12 Pteromalinae Arthropoda: Insecta: Hymenoptera: Pteromalidae Jong-Wook Lee, Jin-Kyung Choi and Guk-Hyang Ko Yeungnam University The Flora and Fauna of Korea logo was designed to represent six major target groups of the project including vertebrates, invertebrates, insects, algae, fungi, and bacteria. PREFACE Biological resources include all organisms and their genetic characteristics. Conservation and utiliza- tion of these resources have the capacity to improve human life and to enhance the world. Therefore it is required that the practical and potential values of these organisms are conserved and used wisely. The first step towards this goal is to document our biological diversity and to investigate them in detail. Biological resources increase the competitiveness of a nation through their use as fundamental resources for making highly valued products, such as new lines of cultivar, materials, and drugs. Many countries in the world are responsible for preserving their biodiversity and using the sustainable ways. The Ministry of Environment (MOE) of Korea has established “CBD-CHM Korea” to share of infor- mation of biodiversity. Each nation in the world is investigating and clearing information of native species within its territory. The National Institute of Biological Resources (NIBR) of MOE has published the ‘Flora and Fauna of Korea’ since 2009 to manage biological resources in comprehensive ways and to enhance national compe- titiveness by building up the foundation for the sovereignty rights over biological resources. Professional research groups, consisting of professors and other taxonomic experts, have systematically examined 15,545 species of vascular plants, animals and other organisms over the past 10 years and have published their find- ings in 191 volumes in Korean and 196 volumes in English, and two volumes of monographs covering 216 species of invertebrates. This year, 21 volumes of the Flora and Fauna of Korea in both Korean and English versions including 704 species of vascular plants, invertebrates and insects are additionally published. The NIBR will continue to publish and research of flora and fauna of Korea that contribute conserva- tion and sustainable use of biological resources. Finally, I would like to express my sincere appreciation to authors who made efforts in writing the manuscripts of the Flora and Fauna of Korea. Prof. Dr. Yeon Jae Bae President National Institute of Biological Resources CONTENTS CONTENTS List of Taxa 4 Introduction 8 Materials and Methods 9 Taxonomic Notes 14 1. Acroclisoides sinicus (Huang and Liao) 19 2. Anisopteromalus apiovorus Rasplus 22 3. Anisopteromalus calandrae (Howard) 22 4. Caenacis peroni Kamijo 24 5. Callitula fulvipes Kamijo 26 6. Chlorocytus koreanus Kamijo 28 7. Conomorium patulum (Walker) 30 8. Coruna clavata Walker 32 9. Coruna laevis Kamijo and Takada 34 10. Cryptoprymna curta Huang 36 11. Dibrachys microgastri (Bouché) 38 12. Diconocara petiolata Dzhanokmen 41 13. Diglochis sylvicola (Walker) 43 14. Dinotiscus eupterus (Walker) 45 15. Erdoesina boarmiae Bouček 48 16. Euneura sopolis (Walker) 50 17. Euneura lachni (Ashmead) 52 18. Gastracanthus acutus (Kamijo) 54 19. Gastracanthus nigrescens Kamijo 56 20. Holcaeus stylatus Graham 58 21. Homoporus febriculosus (Girault) 61 22. Homoporus luniger (Nees) 63 23. Janssoniella albiclava Tselikh and Lee 65 24. Janssoniella intermedia Hedqvist 67 25. Janssoniella magna Tselikh and Lee 68 26. Lariophagus distinguendus (Förster) 70 27. Lariophagus obtusus Kamijo 72 28. Mesopolobus amaenus (Walker) 76 1 INSECT FAUNA OF KOREA Pteromalinae 29. Mesopolobus laticornis (Walker) 78 30. Mesopolobus teliformis (Walker) 80 31. Mesopolobus yasumatsui Kamijo 82 32. Miscogasteriella sulcata (Kamijo) 83 33. Mokrzeckia lazoensis Tselikh 86 34. Mokrzeckia pini (Hartig) 88 35. Muscidifurax raptor Girault and Sanders 89 36. Nasonia vitripennis (Walker) 91 37. Notoglyptus scutellaris (Dodd and Girault) 94 38. Pachycrepoideus vindemiae (Rondani) 95 39. Pachyneuron aphidis (Bouché) 97 40. Pachyneuron groenlandicum (Holmgren) 100 41. Pachyneuron solitarium (Hartig) 102 42. Panstenon oxylus (Walker) 104 43. Paracarotomus cephalotes Ashmead 106 44. Plutothrix scrobicula Kamijo 108 45. Plutothrix trifasciata (Thomson) 110 46. Psilocera concolor (Thomson) 112 47. Psilocera obscura Walker 114 48. Psilonotus adamas Walker 116 49. Pteromalus cardui (Erdös) 119 50. Pteromalus puparum (Linnaeus) 120 51. Rakosina deplanata Bouček 123 52. Rhopalicus quadratus (Ratzeburg) 124 53. Spaniopus japonicus Kamijo 127 54. Sphegigaster anamudiensis Sureshan and Narendran 128 55. Sphegigaster brunneicornis (Ferrière) 130 56. Sphegigaster hamugurivora Ishii 132 57. Sphegigaster hypocyrta Huang 133 58. Stenomalina laticeps (Walker) 135 59. Stenomalina micans (Olivier) 137 60. Synedrus kasparyani Tselikh 139 61. Syntomopus incurvus Walker 141 62. Syntomopus thoracicus Walker 143 63. Trichomalopsis apanteloctena (Crawford) 146 2 CONTENTS 64. Trichomalopsis closterae Kamijo 147 65. Trichomalopsis deplanata Kamijo and Grissell 149 66. Trichomalopsis oryzae Kamijo and Grissell 150 67. Trichomalopsis pappi Kamijo 151 68. Trichomalopsis shirakii Crawford 152 69. Trigonoderus fraxini Yang 154 70. Trigonoderus nigrocephalus Kamijo 156 71. Vrestovia fidenas (Walker) 158 Literatures Cited 161 Plates 169 Index to Scientific Names 232 3 INSECT FAUNA OF KOREA Pteromalinae LIST OF TAXA Class Insecta Order Hymenoptera Family Pteromalidae Subfamily Pteromalinae Dalman, 1820 Genus Acroclisoides Girault and Dodd, 1915 Acroclisoides sinicus (Huang and Liao, 1988) Genus Anisopteromalus Ruschka, 1912 Anisopteromalus apiovorus Rasplus, 1988 Anisopteromalus calandrae (Howard, 1881) Genus Caenacis Förster, 1856 Caenacis peroni Kamijo, 1981 Genus Callitula Spinola, 1811 Callitula fulvipes Kamijo,1981 Genus Chlorocytus Graham, 1956 Chlorocytus koreanus Kamijo, 1983 Genus Conomorium Masi, 1924 Conomorium patulum (Walker, 1835) Genus Coruna Walker, 1833 Coruna clavata Walker, 1833 Coruna laevis Kamijo and Takada, 1973 Genus Cryptoprymna Förster, 1856 Cryptoprymna curta Huang, 1986 Genus Dibrachys Förster, 1856 Dibrachys microgastri (Bouché, 1834) Genus Diconocara Dzhanokmen, 1986 Diconocara petiolata Dzhanokmen, 1986 Genus Diglochis Förster, 1856 Diglochis sylvicola (Walker, 1835) Genus Dinotiscus Ghesquière, 1946 Dinotiscus eupterus (Walker, 1836) Genus Erdoesina Graham, 1957 Erdoesina boarmiae Bouček, 1967 4 LIST OF TAXA Genus Euneura Walker, 1844 Euneura sopolis (Walker, 1840) Euneura lachni (Ashmead, 1887) Genus Gastracanthus Westwood, 1833 Gastracanthus acutus (Kamijo, 1960) Gastracanthus nigrescens Kamijo, 1960 Genus Holcaeus Thomson, 1878 Holcaeus stylatus Graham, 1969 Genus Homoporus Thomson, 1878 Homoporus febriculosus (Girault, 1917) Homoporus luniger (Nees, 1834) Genus Janssoniella Kerrich, 1957 Janssoniella albiclava Tselikh and Lee, 2017 Janssoniella intermedia Hedqvist, 1968 Janssoniella magna Tselikh and Lee, 2017 Genus Lariophagus Crawford, 1909 Lariophagus distinguendus (Förster, 1841) Lariophagus obtusus Kamijo, 1981 Genus Mesopolobus Westwood, 1833 Mesopolobus amaenus (Walker, 1834) Mesopolobus laticornis (Walker, 1834) Mesopolobus teliformis (Walker, 1834) Mesopolobus yasumatsui Kamijo, 1981 Genus Miscogasteriella Girault, 1915 Miscogasteriella sulcata (Kamijo, 1962) Genus Mokrzeckia Mokrzecki, 1934 Mokrzeckia lazoensis Tselikh, 2012 Mokrzeckia pini (Hartig, 1838) Genus Muscidifurax Girault and Sanders, 1910 Muscidifurax raptor Girault and Sanders, 1910 Genus Nasonia Ashmead, 1904 Nasonia vitripennis (Walker, 1836) Genus Notoglyptus Masi, 1917 Notoglyptus scutellaris (Dodd and Girault, 1915) Genus Pachycrepoideus Ashmead, 1904 5 INSECT FAUNA OF KOREA Pteromalinae Pachycrepoideus vindemiae (Rondani, 1875) Genus Pachyneuron Walker, 1833 Pachyneuron aphidis (Bouché, 1834) Pachyneuron groenlandicum (Holmgren, 1872) Pachyneuron solitarium (Hartig, 1838) Genus Panstenon Walker, 1846 Panstenon oxylus (Walker, 1839) Genus Paracarotomus Ashmead, 1894 Paracarotomus cephalotes Ashmead, 1894 Genus Plutothrix Förster, 1856 Plutothrix scrobicula Kamijo, 2004 Plutothrix trifasciata (Thomson,
Recommended publications
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • Hymenoptera: Chalcidoidea) of Morocco
    Graellsia, 77(1): e139 enero-junio 2021 ISSN-L: 0367-5041 https://doi.org/10.3989/graellsia.2021.v77.301 ANNOTATED CHECK-LIST OF PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) OF MOROCCO. PART II Khadija Kissayi1,*, Mircea-Dan Mitroiu2 & Latifa Rohi3 1 National School of Forestry, Department of Forest Development, B.P. 511, Avenue Moulay Youssef, Tabriquet, 11 000, Salé, Morocco. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-3494-2250 2 Alexandru Ioan Cuza, University of Iaşi, Faculty of Biology, Research Group on Invertebrate Diversity and Phylogenetics, Bd. Carol I 20A, 700 505, Iaşi, Romania. Email: [email protected] – ORCID iD: https://orcid.org/0000-0003-1368-7721 3 University Hassan II, Faculty of Sciences Ben M’sik, Laboratory of ecology and environment, Avenue Driss El Harti, B.P. 7955, Casablanca, 20 800 Morocco. Email: [email protected] / or [email protected] – ORCID iD: https://orcid.org/0000-0002-4180-1117 * Corresponding author: [email protected] ABSTRACT In this second part, we present the subfamily Pteromalinae in Morocco, which includes 86 species belonging to 50 genera. Fifteen genera and 37 species are listed for the first time in the Moroccan fauna, among which 9 have been newly identified, 24 have been found in the bibliography and 4 deposited in natural history museums. An updated list of Moroccan species is given, including their distribution by regions, their general distribution and their hosts. Keywords: Pteromalinae; distribution; hosts; new record; Morocco; Palaearctic Region. RESUMEN Lista comentada de Pteromalidae (Hymenoptera: Chalcidoidea) de Marruecos. Parte II En esta segunda parte, presentamos la subfamilia Pteromalinae en Marruecos, que incluye 86 especies pertenecientes a 50 géneros.
    [Show full text]
  • Synonymic List of Neotropical Ants (Hymenoptera: Formicidae)
    BIOTA COLOMBIANA Special Issue: List of Neotropical Ants Número monográfico: Lista de las hormigas neotropicales Fernando Fernández Sebastián Sendoya Volumen 5 - Número 1 (monográfico), Junio de 2004 Instituto de Ciencias Naturales Biota Colombiana 5 (1) 3 -105, 2004 Synonymic list of Neotropical ants (Hymenoptera: Formicidae) Fernando Fernández1 and Sebastián Sendoya2 1Profesor Asociado, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, AA 7495, Bogotá D.C, Colombia. [email protected] 2 Programa de Becas ABC, Sistema de Información en Biodiversidad y Proyecto Atlas de la Biodiversidad de Colombia, Instituto Alexander von Humboldt. [email protected] Key words: Formicidae, Ants, Taxa list, Neotropical Region, Synopsis Introduction Ant Phylogeny Ants are conspicuous and dominant all over the All ants belong to the family Formicidae, in the superfamily globe. Their diversity and abundance both peak in the tro- Vespoidea, within the order Hymenoptera. The most widely pical regions of the world and gradually decline towards accepted phylogentic schemes for the superfamily temperate latitudes. Nonetheless, certain species such as Vespoidea place the ants as a sister group to Vespidae + Formica can be locally abundant in some temperate Scoliidae (Brother & Carpenter 1993; Brothers 1999). countries. In the tropical and subtropical regions numerous Numerous studies have demonstrated the monophyletic species have been described, but many more remain to be nature of ants (Bolton 1994, 2003; Fernández 2003). Among discovered. Multiple studies have shown that ants represent the most widely accepted characters used to define ants as a high percentage of the biomass and individual count in a group are the presence of a metapleural gland in females canopy forests.
    [Show full text]
  • Online Dictionary of Invertebrate Zoology: A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: A Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott Lyell, "Online Dictionary of Invertebrate Zoology: A" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 16. https://digitalcommons.unl.edu/onlinedictinvertzoology/16 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 2 abdominal filament see cercus A abdominal ganglia (ARTHRO) Ganglia of the ventral nerve cord that innervate the abdomen, each giving off a pair of principal nerves to the muscles of the segment; located between the alimentary canal and the large ventral mus- cles. abactinal a. [L. ab, from; Gr. aktis, ray] (ECHINOD) Of or per- taining to the area of the body without tube feet that nor- abdominal process (ARTHRO: Crustacea) In Branchiopoda, mally does not include the madreporite; not situated on the fingerlike projections on the dorsal surface of the abdomen. ambulacral area; abambulacral. abactinally adv. abdominal somite (ARTHRO: Crustacea) Any single division of abambulacral see abactinal the body between the thorax and telson; a pleomere; a pleonite.
    [Show full text]
  • Fauna Europaea: Hymenoptera – Apocrita (Excl
    Biodiversity Data Journal 3: e4186 doi: 10.3897/BDJ.3.e4186 Data Paper Fauna Europaea: Hymenoptera – Apocrita (excl. Ichneumonoidea) Mircea-Dan Mitroiu‡§, John Noyes , Aleksandar Cetkovic|, Guido Nonveiller†,¶, Alexander Radchenko#, Andrew Polaszek§, Fredrick Ronquist¤, Mattias Forshage«, Guido Pagliano», Josef Gusenleitner˄, Mario Boni Bartalucci˅, Massimo Olmi ¦, Lucian Fusuˀ, Michael Madl ˁ, Norman F Johnson₵, Petr Janstaℓ, Raymond Wahis₰, Villu Soon ₱, Paolo Rosa₳, Till Osten †,₴, Yvan Barbier₣, Yde de Jong ₮,₦ ‡ Alexandru Ioan Cuza University, Faculty of Biology, Iasi, Romania § Natural History Museum, London, United Kingdom | University of Belgrade, Faculty of Biology, Belgrade, Serbia ¶ Nusiceva 2a, Belgrade (Zemun), Serbia # Schmalhausen Institute of Zoology, Kiev, Ukraine ¤ Uppsala University, Evolutionary Biology Centre, Uppsala, Sweden « Swedish Museum of Natural History, Stockholm, Sweden » Museo Regionale di Scienze Naturi, Torino, Italy ˄ Private, Linz, Austria ˅ Museo de “La Specola”, Firenze, Italy ¦ Università degli Studi della Tuscia, Viterbo, Italy ˀ Alexandru Ioan Cuza University of Iasi, Faculty of Biology, Iasi, Romania ˁ Naturhistorisches Museum Wien, Wien, Austria ₵ Museum of Biological Diversity, Columbus, OH, United States of America ℓ Charles University, Faculty of Sciences, Prague, Czech Republic ₰ Gembloux Agro bio tech, Université de Liège, Gembloux, Belgium ₱ University of Tartu, Institute of Ecology and Earth Sciences, Tartu, Estonia ₳ Via Belvedere 8d, Bernareggio, Italy ₴ Private, Murr, Germany ₣ Université
    [Show full text]
  • Assemblage of Hymenoptera Arriving at Logs Colonized by Ips Pini (Coleoptera: Curculionidae: Scolytinae) and Its Microbial Symbionts in Western Montana
    University of Montana ScholarWorks at University of Montana Ecosystem and Conservation Sciences Faculty Publications Ecosystem and Conservation Sciences 2009 Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana Celia K. Boone Diana Six University of Montana - Missoula, [email protected] Steven J. Krauth Kenneth F. Raffa Follow this and additional works at: https://scholarworks.umt.edu/decs_pubs Part of the Ecology and Evolutionary Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Boone, Celia K.; Six, Diana; Krauth, Steven J.; and Raffa, Kenneth F., "Assemblage of Hymenoptera Arriving at Logs Colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its Microbial Symbionts in Western Montana" (2009). Ecosystem and Conservation Sciences Faculty Publications. 33. https://scholarworks.umt.edu/decs_pubs/33 This Article is brought to you for free and open access by the Ecosystem and Conservation Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Ecosystem and Conservation Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. 172 Assemblage of Hymenoptera arriving at logs colonized by Ips pini (Coleoptera: Curculionidae: Scolytinae) and its microbial symbionts in western Montana Celia K. Boone Department of Entomology, University of Wisconsin,
    [Show full text]
  • Biodiversity Summary: Port Phillip and Westernport, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]
  • Synchrotron X-Ray Microtomography of Fossil Wasps in Amber 151
    Synchrotron X-ray microtomography of fossil wasps in amber 151 Entomologie heute 26 (2014): 151-160 Scanning the Past – Synchrotron X-Ray Microtomography of Fossil Wasps in Amber Die Vergangenheit scannen – Synchrotron-Röntgenmikrotomographie fossiler Wespen in Bernstein THOMAS VAN DE KAMP, TOMY DOS SANTOS ROLO, TILO BAUMBACH & LARS KROGMANN Summary: Synchrotron-based X-ray microtomography has become an important technique to examine fossil insects in amber. The method allows a non-destructive visualization of amber inclu- sions without distracting particles or refl ections and even facilitates the examination of internal anatomical characters. Recent experiments on fossil wasps from various types of amber revealed a remarkable degree of variation regarding the conditions of the fossils. While many inclusions are just insect-shaped voids, others contain undefi ned particles, degenerated organs or even well preserved internal anatomical structures. Keywords: Synchrotron, X-rays, microtomography, amber inclusions, Hymenoptera Zusammenfassung: Synchrotron-basierte Röntgenmikrotomographie eignet sich hervorragend, um fossile Insekten in Bernstein zu untersuchen. Die Methode erlaubt die zerstörungsfreie Visu- alisierung von Bernsteininklusen, ohne dass störende Partikel oder Refl ektionen die Sicht auf das Objekt behindern, und ermöglicht sogar die Untersuchung innerer anatomischer Merkmale. Aktuelle Experimente an fossilen Wespen aus verschiedenen Bernsteinarten zeigten eine bemerkenswerte Variation hinsichtlich des Erhaltungszustands der Fossilien.
    [Show full text]
  • Lepidoptera: Erebidae: Arctiinae: Lithosiini)
    Ecologica Montenegrina 36: 53-77 (2020) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2020.36.5 https://zoobank.org/urn:lsid:zoobank.org:pub:DCEA508B-BE69-45C9-977D-211F36B04EFD Revision of the genus Palaeugoa Durante, 2012, with descriptions of seven new species (Lepidoptera: Erebidae: Arctiinae: Lithosiini) ANTON V. VOLYNKIN1, 2,* & GYULA M. LÁSZLÓ1 1The African Natural History Research Trust (ANHRT), Street Court Leominster, Kingsland, HR6 9QA, United Kingdom. E-mails: [email protected], [email protected] 2Altai State University, Lenina Avenue 61, RF-656049, Barnaul, Russia * Corresponding author Received 24 October 2020 │ Accepted by V. Pešić: 12 November 2020 │ Published online 13 November 2020. Abstract The paper provides the taxonomic revision of the genus Palaeugoa Durante, 2012. Seven new species are described: P. moa Volynkin & László, sp. nov. (Sierra Leone), P. smithi Volynkin & László, sp. nov. (Gabon, Cameroon, Republic of the Congo, Democratic Republic of the Congo, Uganda), P. megala Volynkin & László, sp. nov. (Rwanda), P. takanoi Volynkin & László, sp. nov. (Gabon), P. asafis Volynkin & László, sp. nov. (Cameroon), P. aristophanousi Volynkin & László, sp. nov. (Gabon) and P. ngoko Volynkin & László, sp. nov. (Cameroon). Nolidia peregrina Hacker, 2014 described in the family Nolidae is transferred to the genus Palaeugoa Durante, 2012 of the family Erebidae: Palaeugoa peregrina (Hacker, 2014), comb. nov. The lectotype of Xanthetis spurrelli Hampson, 1914 is designated. Adults, male and female genitalia of all species discussed are illustrated in 27 colour and 29 black and white figures. Key words: Sub-Saharan Africa, Afrotropical Region, lectotype, new combination, Nolidae, Nolinae, taxonomy.
    [Show full text]
  • E:\Jega\Index\2003\MAY03~1
    REVIEW ZOOS' PRINT JOURNAL 18(5): 1099-1110 A CHECKLIST OF PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) FROM THE INDIAN SUBCONTINENT P.M. Sureshan 1* and T.C. Narendran 2 1 Zoological Survey of India, Western Ghats Field Research Station, Kozhikode, Kerala 673002, India. 2 Systematic Entomology Laboratory, Department of Zoology, University of Calicut, Tengipalam, Kerala, 673635, India. Email: 1 [email protected]; 2 [email protected] Abstract and Subba Rao (1985, 1986) keyed out and catalogued the A checklist of the genera and species of Pteromalidae pteromalid genera and species known from the region. In recent (Hymenoptera: Chalcidoidea) so far reported from the years, several new genera and species of Pteromalidae have Indian subcontinent is provided. Of the 96 genera, 84 been described from the forested tracts of southern Western with 185 identified species and 12 genera with Ghats, a biodiversity hotspot centre in India (Sureshan, 1999a,b; unidentified species are listed. 2000a,b; 2001a,b,c; Sureshan & Narendran, 1995a,b; 1998; Narendran & Mini, 1999, etc.) and from other regions in India. Keywords Accordingly an updated checklist of the pteromalid fauna of the Indian subcontinent is presented here. It includes Chalcidoidea, checklist, distribution, habitat, host altogether 96 genera, 84 of them with 185 identified species and data, hymenoptera, Indian Subcontinent, locality, 12 genera with unidentified species. In the present work, the pteromalidae, synonymy, classification of the family given by Boucek (1988) is followed. Introduction Arrangement of the checklist The Pteromalidae is one of the largest and difficult families of In the checklist, pteromalid genera known so far from the Indian Chalcidoidea (Hymenoptera) to define taxonomically and subcontinent are grouped under separate subfamilies.
    [Show full text]
  • Dysdercus Cingulatus
    Prelims (F) Page i Monday, August 25, 2003 9:52 AM Biological Control of Insect Pests: Southeast Asian Prospects D.F. Waterhouse (ACIAR Consultant in Plant Protection) Australian Centre for International Agricultural Research Canberra 1998 Prelims (F) Page ii Monday, August 25, 2003 9:52 AM The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World ©Australian Centre for International Agricultural Research GPO Box 1571, Canberra, ACT 2601. Waterhouse, D.F. 1998, Biological Control of Insect Pests: Southeast Asian Prospects. ACIAR Monograph No. 51, 548 pp + viii, 1 fig. 16 maps. ISBN 1 86320 221 8 Design and layout by Arawang Communication Group, Canberra Cover: Nezara viridula adult, egg rafts and hatching nymphs. Printed by Brown Prior Anderson, Melbourne ii Prelims (F) Page iii Monday, August 25, 2003 9:52 AM Contents Foreword vii 1 Abstract 1 2 Estimation of biological control
    [Show full text]