Neutrino Mass, Proton Decay, and Neutron Oscillations As Crucial Tests of Unification Models (A Review)

Total Page:16

File Type:pdf, Size:1020Kb

Neutrino Mass, Proton Decay, and Neutron Oscillations As Crucial Tests of Unification Models (A Review) Proc. Nati Acad. Sci. USA Vol. 79, pp. 3371-3375, May 1982 Review Neutrino mass, proton decay, and neutron oscillations as crucial tests of unification models (A Review) R. E. MARSHAK Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 Contributed by R. E. Marshak, September 14, 1981 ABSTRACT Several crucial tests of three popular unification hence predicts M(WL) = 77.9 GeV and M(Z0) = 88.7 GeV. models (of strong, electromagnetic, and weak interactions) are The standard electroweak model unifies the weak and elec- described. The models are SU(5) and SO(10) at the grand unifi- tromagnetic interactions by accepting as given the maximal par- cation theory (GUT) level and SU(4)c x SU(2)L x SU(2)R at the ity violation (left-handed character) of the weak interaction up partial unification theory (PUT) level. The tests selected for dis- to the highest energies. This, in turn, implies acceptance ofthe cussion are the finiteness ofthe neutrino mass in the electron volt masslessness of the neutrino, the surrender of the full region, the decay ofprotons into antileptons in the range of 1031±1 quark-lepton symmetry principle for weak interactions (since yr, and the detectability of neutron oscillations at all. The PUT there is no neutrino analog to the "up"* quark in the right- group can also be tested by establishing the existence offour gen- handed representations ofthe standard electroweak group) and erations of quarks and leptons. afuzziness in the physical meaning ofthe weakhypercharge that is part of the standard electroweak group. This last point is re- The development ofa unified theory ofelectromagnetic, weak, flected in the rather accidental cancellation of the triangle and strong interactions (and possibly the gravitational interac- anomalies associated with the SU(2)L x U(1) electroweak group, tion as well) is one ofthe grandiose goals ofparticle physics. The a condition essential for the maintenance of a renormalized past decade has seen much progress in the achievement ofthis spontaneous broken gauge theory. This cancellation is achieved goal through the unification of electromagnetic and weak in- by using the definitions ofYL = 2(Q - I3L) (where YL is the left- teractions on the basis of the electroweak group SU(2)L x U(1) handed hypercharge, Q is the electric charge, and I3L is the (1-3). Here SU(2)L is the left-handed (L) weak isospin group-of third component of IL) and YR = 2Q (where YR is the right- which the two charged current generators, JL+ andJLj, explain handed hypercharge), and then imposing the condition that all the charged weak current experiments up to the present time J(yL3 - YR3) = 0 where the sum is taken over the leptons and [V-A theory (4-6)] andJ3L is the neutral weak current generator quarks (of all three colors) of a single generation. Despite the that completes the group; U(1) is the weak hypercharge group. wide variation in the values ofYL and yR ofthe different leptons A series ofneutral weak current experiments (neutrino-hadron, and quarks, this sum miraculously vanishes (8). It seems likely charged lepton-hadron, and neutrino-electron), culminating in that there is a more natural explanation of the cancellation of the Stanford Linear Accelerator Center experiment (7), all can the triangle anomalies (see below). be explained by a total neutral weak current structure P(J3L Despite the caveats mentioned above, the success ofthe stan- - sin2OWjEM) where the two parameters are p (the ratio of dard electroweak model is highly impressive and has encour- neutral to charged weak current) and sin20W (0W is the Wein- aged theoretical attempts to unify the strong interaction with berg angle) and JEM is the electromagnetic current. This struc- the electroweak interaction by adjoining the color group SU(3)c ture is predicted by the SU(2)L X U(1) group when TL(e) (e (presumably representing the strong quark-gluon interaction) stands for the leptons ofa single generation) and TL(q) (q stands to the SU(2)L X U(1) electroweak group and looking for the for the quarks ofa single generation where it is understood that smallest simple group of which SU(3)c X SU(2)L X U(1) is the each quark exists in three colors) are placed in doublet repre- maximal subgroup. This led to the SU(5) grand unified group sentations of SU(2)L and TR(M) and TR(q) (R denotes right- (9, 10) of the strong, electromagnetic, and weak interactions. handed) are placed in singlet representations ofSU(2)L (thereby The two fermion representations {5} and {10} ofSU(5) represent implying a massless left-handed neutrino). When the further the left-handed quarks and antiquarks (of three colors) and the restriction is made that only one Higgs doublet spontaneously left-handed leptons and antileptons of the first generation as breaks the initial gauge symmetry, the parameter p becomes follows 1 and the value of sin2Ow directly determines the mass of WL (9, 10): [WL is the (left-handed) charged weak boson-i.e., { } =e-{ d {10} {e+ ud: i i = 1,2,3 color. [1] M(WR) = s373 GeV] sinew The superscript c in Eq. 1 is the charge conjugate. The fact that and that of Z0 [the neutral weak boson-i.e., quarks and leptons are in the same representation opens up the possibility of baryon number and lepton number nonconser- vation. We note that there is no room in these two represen- = 74-6 GeV]. Mq sin2oW tations for a left-handed antineutrino [which, of course, can be The electroweak group SU(2)L x U(1) with only one Higgs doub- Abbreviations: GUT, grand unification theory; PUT, partial unification let is called the standard electroweak model (1-3). Fitting the theory. expression for the total neutral weak current with the experi- * The nomenclature "up" ("down") quark or lepton is used for the quark mental data yields sin20W = 0.229 ± 0.009 (±0.006) [the first or lepton with the third component of its weak isospin 13 = +1/2 error is experimental and the second is theoretical (8)] and (-V2). 3371 Downloaded by guest on September 27, 2021 3372 Review: Marshak Proc. Natd Acad. Sci. USA 79 (1982) given the status of an SU(5) singlet], thereby implying that we cillations or in otherways-the standard electroweak model and are still constrained to a massless left-handed neutrino. And we SU(5) GUT will have to be modified. Although it is true that also note that we must utilize two representations of SU(5) to both of these models can accommodate miniscule-mass neutri- cover all the left-handed leptons, antileptons, quarks, and an- nos (Dirac or Majorana) through additional neutrino or Higgs tiquarks of a single generation. boson representations, the elegant versions would be killed. With this said, some of the attractive features of the SU(5) Furthermore, ifthe neutrino has a nonminiscule mass, it seems grand unification theory (GUT) should be spelled out. SU(5) more plausible to use doublet representations for all right- GUT is the only group with a single coupling constant that has handed leptons (and afortiori quarks) ofeach generation. This SU(3)c x SU(2)L x U(1) as a maximal subgroup. The electric leads immediately to the left-right symmetric group-namely, charge is quantized (i.e., the quark and lepton charges are re- SU(2)L x SU(2)R x U(1)-as a serious alternative to the standard lated) in SU(5) GUT because the electric charge operator is an SU(2)L x U(1) group [with the left-handed leptons and quarks SU(5) generator; this, however, is nota unique property ofSU(5) of each generation being placed in doublet representations of GUT. The unification mass associated with SU(5) GUT, of the SU(2)L-and singlet representations of SU(2)R-and the right- order of1015 GeV, serves several purposes: it is the approximate handed leptons and quarks placed in the doublet representa- mass at which the very different coupling constants for the tions of SU(2)R-and singlet representations of SU(2)L]. strong, electromagnetic, and weak interactions (in the energy The left-right symmetric group has several interesting prop- regime in which we have thus far been operating) attain the erties that immediately distinguish it from the standard elec- same value (as is required by the concept of grand unification) troweak group. First, the "weak" Gell-Mann-Nishijima set of and it is also the mass that leads to a reasonable prediction for relations for the standard electroweak group-namely, Q = I3L sin20w (0.21, which is close to the experimental lower limit) and + YL/2 and Q = YR/2-are replaced by the single relation: Q this, in turn, leads to a prediction for the lifetime ofproton decay = '3L + I3R + (B-L)/2 [B is the baryon number of each quark that exceeds the present lower limit ofapproximately 103' years, (1/3) and L is the lepton number ofeach lepton (1)] (16, 17). The encouraging the hope that this baryon number-violating process left-right symmetric group was initially studied (18-20) with will be observed in the next round of experiments, say at the U(1) as U(1)L+R. The physical interpretation of U(1) as U(M)B.L, level of i03' years. based on the baryon-lepton symmetry principle, first discussed It should also be remarked that SU(5) GUT exhibits global by Gamba et aL (21), has led to the single relation. In other B-L conservation (11, 12), thereby permitting decays like p words, the "fluttering" weak hypercharge quantum number e+{17, n -> e+ir, etc., but not allowing electron decay chan- depending, in the case of the standard electroweak model, on nels (like p e-+ r++, etc.) or nonleptonic channels (like n the left-handed or right-handed character ofthe representation -ni).
Recommended publications
  • International Centre for Theoretical Physics
    IC/80/62 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS QUANTUM CHROMODYNAMICS A THEORY OF THE NUCLEAR FORCE U.S. Craigie INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1980 MIRAMARE-TRIESTE IC/8O/6E International Atomic Energy Agency sad United Rations Educational Scientific and Cultural Organization IBTEHHATIOHAL CEHTHB FOR THEORETICAL PHYSICS QUAHTUM CHROMODIHAMICS A THBORT OF TIffl KUCLEAK FORCE • H.S. Craigie tnterna.ttgp«l Centre for Theoretical Phyaics, Trieste, Italy, and Ietltuto IFuiotude dl Fisiea Kucleare, Sezlone dl Trieste, Italy. MHUHHB- TRIESTE June l?60 aliven at tJse Int#rM*iotial SuB»er College on Physics ana Seeds, Nathiagali,Pakistan, 1&-28 Jtm« 1980, EARLY ID"Ad ON T'KK NVCLrAR F'JRCK AiO Tire uMEKOENCE OF1 THE tJCD LAGRANGIAN Let us recap a little of the early ideas on the nuclear force. [n the AIMS s, nuclear structure was thought to be described in terms of elementary protons and neutrons, which formed an isospin doublet 5 =| P\ vith I, = -^ In these lectures I hope to give a brief outline of a possible theory for the proton aiui T = -rz for the neutron, where isospiti, i.e. SU{2) of the nuclear force and the strong interactions between elementary particles, invariance, vas the recognised symmetry of nuclear interactions at ttvit time. which ve suppose is responsible for nuclear matter. The theory I will be Further, the nuclear force between these nucleons was thought to be mediated by describing is known as quantum chromodynamics because of its association vith an elementary meson, which was seen to form an isotriplet (IT ,tt ,n ) because i new kind of nuclear charge called colour and its resemblance to quantum of its three charged states- If all these particles were elementary, then in electrodynamics.
    [Show full text]
  • Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Physics Commons Baas, Alessandra Edda, "Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond" (2010). Masters Theses 1911 - February 2014. 503. Retrieved from https://scholarworks.umass.edu/theses/503 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2010 Department of Physics © Copyright by Alessandra Edda Baas 2010 All Rights Reserved THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Approved as to style and content by: Eugene Golowich, Chair Benjamin Brau, Member Donald Candela, Department Chair Department of Physics To my loving parents. ACKNOWLEDGMENTS Writing a Thesis is never possible without the help of many people. The greatest gratitude goes to my supervisor, Prof. Eugene Golowich who gave my the opportunity of working with him this year.
    [Show full text]
  • Physics at the Tevatron
    Top Physics at Hadron Colliders Sandra Leone INFN Pisa Gottingen HASCO School 2018 1 Outline . Motivations for studying top . A brief history t . Top production and decay b ucds . Identification of final states . Cross section measurements . Mass determination . Single top production . Study of top properties 2 Motivations for Studying Top . Only known fermion with a mass at the natural electroweak scale. Similar mass to tungsten atomic # 74, 35 times heavier than b quark. Why is Top so heavy? Is top involved in EWSB? -1/2 (Does (2 2 GF) Mtop mean anything?) Special role in precision electroweak physics? Is top, or the third generation, special? . New physics BSM may appear in production (e.g. topcolor) or in decay (e.g. Charged Higgs). b t ucds 3 Pre-history of the Top quark 1964 Quarks (u,d,s) were postulated by Gell-Mann and Zweig, and discovered in 1968 (in electron – proton scattering using a 20 GeV electron beam from the Stanford Linear Accelerator) 1973: M. Kobayashi and T. Maskawa predict the existence of a third generation of quarks to accommodate the observed violation of CP invariance in K0 decays. 1974: Discovery of the J/ψ and the fourth (GIM) “charm” quark at both BNL and SLAC, and the τ lepton (also at SLAC), with the τ providing major support for a third generation of fermions. 1975: Haim Harari names the quarks of the third generation "top" and "bottom" to match the "up" and "down" quarks of the first generation, reflecting their "spin up" and "spin down" membership in a new weak-isospin doublet that also restores the numerical quark/ lepton symmetry of the current version of the standard model.
    [Show full text]
  • Astro-Ph/0410417V1 18 Oct 2004 Nwihteeaen Tbeconfigurations
    Preon stars: a new class of cosmic compact objects J. Hansson∗ & F. Sandin† Department of Physics, Lule˚aUniversity of Technology, SE-971 87 Lule˚a, Sweden In the context of the standard model of particle physics, there is a definite upper limit to the density of stable compact stars. However, if a more fundamental level of elementary particles exists, in the form of preons, stability may be re-established beyond this limiting density. We show that a degenerate gas of interacting fermionic preons does allow for stable compact stars, with densities far beyond that in neutron stars and quark stars. In keeping with tradition, we call these objects “preon stars”, even though they are small and light compared to white dwarfs and neutron stars. We briefly note the potential importance of preon stars in astrophysics, e.g., as a candidate for cold dark matter and sources of ultra-high energy cosmic rays, and a means for observing them. PACS numbers: 12.60.Rc - 04.40.Dg - 97.60.-s - 95.35.+d I. INTRODUCTION The three different types of compact objects traditionally considered in astrophysics are white dwarfs, neutron stars (including quark and hybrid stars), and black holes. The first two classes are supported by Fermi pressure from their constituent particles. For white dwarfs, electrons provide the pressure counterbalancing gravity. In neutron stars, the neutrons play this role. For black holes, the degeneracy pressure is overcome by gravity and the object collapses indefinitely, or at least to the Planck density. arXiv:astro-ph/0410417v1 18 Oct 2004 The distinct classes of degenerate compact stars originate directly from the properties of gravity, as was made clear by a theorem of Wheeler and collaborators in the mid 1960s [1].
    [Show full text]
  • Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays
    Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays !Resonances !Heavy Meson and Baryons !Decays and Quantum numbers !CKM matrix 1 Announcements •No lecture on Friday. •Remaining lectures: •Tuesday 13 March •Friday 16 March •Tuesday 20 March •Friday 23 March •Tuesday 27 March •Friday 30 March •Tuesday 3 April •Remaining Tutorials: •Monday 26 March •Monday 2 April 2 From Friday: Mesons and Baryons Summary • Quarks are confined to colourless bound states, collectively known as hadrons: " mesons: quark and anti-quark. Bosons (s=0, 1) with a symmetric colour wavefunction. " baryons: three quarks. Fermions (s=1/2, 3/2) with antisymmetric colour wavefunction. " anti-baryons: three anti-quarks. • Lightest mesons & baryons described by isospin (I, I3), strangeness (S) and hypercharge Y " isospin I=! for u and d quarks; (isospin combined as for spin) " I3=+! (isospin up) for up quarks; I3="! (isospin down) for down quarks " S=+1 for strange quarks (additive quantum number) " hypercharge Y = S + B • Hadrons display SU(3) flavour symmetry between u d and s quarks. Used to predict the allowed meson and baryon states. • As baryons are fermions, the overall wavefunction must be anti-symmetric. The wavefunction is product of colour, flavour, spin and spatial parts: ! = "c "f "S "L an odd number of these must be anti-symmetric. • consequences: no uuu, ddd or sss baryons with total spin J=# (S=#, L=0) • Residual strong force interactions between colourless hadrons propagated by mesons. 3 Resonances • Hadrons which decay due to the strong force have very short lifetime # ~ 10"24 s • Evidence for the existence of these states are resonances in the experimental data Γ2/4 σ = σ • Shape is Breit-Wigner distribution: max (E M)2 + Γ2/4 14 41.
    [Show full text]
  • 7. Gamma and X-Ray Interactions in Matter
    Photon interactions in matter Gamma- and X-Ray • Compton effect • Photoelectric effect Interactions in Matter • Pair production • Rayleigh (coherent) scattering Chapter 7 • Photonuclear interactions F.A. Attix, Introduction to Radiological Kinematics Physics and Radiation Dosimetry Interaction cross sections Energy-transfer cross sections Mass attenuation coefficients 1 2 Compton interaction A.H. Compton • Inelastic photon scattering by an electron • Arthur Holly Compton (September 10, 1892 – March 15, 1962) • Main assumption: the electron struck by the • Received Nobel prize in physics 1927 for incoming photon is unbound and stationary his discovery of the Compton effect – The largest contribution from binding is under • Was a key figure in the Manhattan Project, condition of high Z, low energy and creation of first nuclear reactor, which went critical in December 1942 – Under these conditions photoelectric effect is dominant Born and buried in • Consider two aspects: kinematics and cross Wooster, OH http://en.wikipedia.org/wiki/Arthur_Compton sections http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=22551 3 4 Compton interaction: Kinematics Compton interaction: Kinematics • An earlier theory of -ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of h or • The failure of the Thomson theory to describe high-energy photon scattering necessitated the • Inelastic collision • After the collision the electron departs
    [Show full text]
  • The Algebra of Grand Unified Theories
    The Algebra of Grand Unified Theories John Baez and John Huerta Department of Mathematics University of California Riverside, CA 92521 USA May 4, 2010 Abstract The Standard Model is the best tested and most widely accepted theory of elementary particles we have today. It may seem complicated and arbitrary, but it has hidden patterns that are revealed by the relationship between three ‘grand unified theories’: theories that unify forces and particles by extend- ing the Standard Model symmetry group U(1) × SU(2) × SU(3) to a larger group. These three are Georgi and Glashow’s SU(5) theory, Georgi’s theory based on the group Spin(10), and the Pati–Salam model based on the group SU(2)×SU(2)×SU(4). In this expository account for mathematicians, we ex- plain only the portion of these theories that involves finite-dimensional group representations. This allows us to reduce the prerequisites to a bare minimum while still giving a taste of the profound puzzles that physicists are struggling to solve. 1 Introduction The Standard Model of particle physics is one of the greatest triumphs of physics. This theory is our best attempt to describe all the particles and all the forces of nature... except gravity. It does a great job of fitting experiments we can do in the lab. But physicists are dissatisfied with it. There are three main reasons. First, it leaves out gravity: that force is described by Einstein’s theory of general relativity, arXiv:0904.1556v2 [hep-th] 1 May 2010 which has not yet been reconciled with the Standard Model.
    [Show full text]
  • Quark-Lepton Unification and Proton Decay
    \\£ IC/80/72 INTERNATIONAL CENTRE FOR •2t i / -Tr/ THEORETICAL PHYSICS QUARK-LEPTON UNIFICATION AND PROTON DECAY Jogesh C. Pati and Abdus Salam INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1980 MIRAMARE-TRIESTE IC/60/72 QUABK-LEFTON UNIFICATION AND PROTON DECAY I. INTRODUCTION Jogesh C. Pati The hypothesis of prnncS unification servinR to unify all basic particles - quarks and leptons - and their force:; - weak, International Centre for Theoretical Physics, Trieste, Italy, electromagnetic as well as strong - stands at present primarily and on its aesthetic merits. It gives the flavour of synthesis in that it provides a rationale for the existence of quarks and Department of Physics, University of Maryland, College Park, leptons by assigning the two sets of particles to one multiplet + Maryland, USA, of a gauge symmetry G. It derives their forces through one principle-gauge unification. and With quarks and leptons in one multiplet of a local sponta- neously broken gauge symmetry G, baryon and lepton number conserv- ation cannot be absolute. This line of reasoning had led us to Abdiis Salam suggest in 1973 that the lightest baryon - the proton - must ultimately decay into leptons 2. Theoretical considerations International Centre for Theoretical Physics, Trieste, Italy, suggest a lifetime for the proton in the ran^e of 102° to 1033 a and years "5. Its decay modes and corresponding branching ratios depend In general upon the details of the structure of the symmetry Imperial College, London, England. Kroup and its breaking Dattern. What is worth noticing »t this Junction Is that studies of (i) proton decay modes, (il) n-n oscillation (iii) neutrinoless double 6-deeay and (iv) the weak angle T sin26y are perhaps the only effective tools we would have for sometiae to probe into the underlying design of grand unification.
    [Show full text]
  • – 1– LEPTOQUARK QUANTUM NUMBERS Revised September
    {1{ LEPTOQUARK QUANTUM NUMBERS Revised September 2005 by M. Tanabashi (Tohoku University). Leptoquarks are particles carrying both baryon number (B) and lepton number (L). They are expected to exist in various extensions of the Standard Model (SM). The possible quantum numbers of leptoquark states can be restricted by assuming that their direct interactions with the ordinary SM fermions are dimensionless and invariant under the SM gauge group. Table 1 shows the list of all possible quantum numbers with this assumption [1]. The columns of SU(3)C,SU(2)W,andU(1)Y in Table 1 indicate the QCD representation, the weak isospin representation, and the weak hypercharge, respectively. The spin of a leptoquark state is taken to be 1 (vector leptoquark) or 0 (scalar leptoquark). Table 1: Possible leptoquarks and their quan- tum numbers. Spin 3B + L SU(3)c SU(2)W U(1)Y Allowed coupling c c 0 −2 311¯ /3¯qL`Loru ¯ReR c 0 −2 314¯ /3 d¯ReR c 0−2331¯ /3¯qL`L cµ c µ 1−2325¯ /6¯qLγeRor d¯Rγ `L cµ 1 −2 32¯ −1/6¯uRγ`L 00327/6¯qLeRoru ¯R`L 00321/6 d¯R`L µ µ 10312/3¯qLγ`Lor d¯Rγ eR µ 10315/3¯uRγeR µ 10332/3¯qLγ`L If we do not require leptoquark states to couple directly with SM fermions, different assignments of quantum numbers become possible [2,3]. The Pati-Salam model [4] is an example predicting the existence of a leptoquark state. In this model a vector lepto- quark appears at the scale where the Pati-Salam SU(4) “color” gauge group breaks into the familiar QCD SU(3)C group (or CITATION: S.
    [Show full text]
  • The Maxwell-Cassano Equations of an Electromagnetic-Nuclear Field Yields the Fermion & Hadron Architecture
    ISSN: 2639-0108 Research Article Advances in Theoretical & Computational Physics The Maxwell-Cassano Equations of an Electromagnetic-nuclear Field Yields the Fermion & Hadron Architecture Claude Michael Cassano *Corresponding author Claude Michael Cassano, Santa Clara, California, USA; E-mail: cloudmichael@ Santa Clara, California, USA hotmail.com Submitted: 16 July 2019; Accepted: 23 July 2019; Published: 05 Aug 2019 Abstract The Helmholtzian operator and factorization, via the Maxwell-Cassano equations yields a fermion architecture table equivalent to that of the standard model and lead to linear transformation groups of the mesons and baryons, respectively; plus a straightforward elementary description of quark colour based on integral indices: 1,0,1, rather than the subjective, correlative explanation using: {R,G,B;Y} indexes. keywords: Helmholtzian, Klein-Gordon equation, electromag- where: netism, preon, elementary particles, standard model, elementary (2) particle, particle interactions, fermions, leptons, quarks, hadrons, mesons, baryons, Pauli matrices, Gell-Mann matrices, Hermitian (3) matrices, Lie algebra, su(2), Yukawa potential Similarly, mass-generalized electric and magnetic potentials for the Introduction Helmholtzian operator factorization : Using the principles of the analysis of a linear function of a linear variable [1], constuctive algebras developed using the weighted matrix product [2] leads to the d’Alembertian operator and it’s factorization [3], and a space with all smooth functions satisfying Maxwell’s equations [4] [5] [6] [7]. This leads to the Helmholtzian operator and factorization[8], and a space in which all smooth functions satisfy the Maxwell-Cassano equations[9] (which generalizes both Maxwell’s equations and the Dirac equation [10] [11] [12]) - a linearization of the Klein-Gordon equations [13] [14] [12].
    [Show full text]
  • Pages from C13-03-02 3.Pdf
    The GIM Mechanism: origin, predictions and recent uses Luciano Maiani CERN, Geneva, Switzerland Dipartimento di Fisica, Universita di Roma La Sapienza, Roma, Italy The GIM Mechanism was introduced by Sheldon L. Glashow, John Iliopoulos and Luciano Maiani in 1970) to explain the suppression of Delta S=l, 2 neutral current processes and is an important element of the unified theories of the weak and electromagnetic interactions. Origin, predictions and uses of the GIM Mechanism are illustrated. Flavor changing neutral current processes (FCNC) represent today an important benchmark for the Standard Theory and give strong limitations to theories that go beyond ST in the fewTe V region. Ideas on the ways constraints on FCNC may be imposed are briefly described. 1 Setting the scene The final years of the sixties marked an important transition period for the physics of elementary particles. Two important discoveries made in the early sixties, quarks and Cabibbo theory, had been consolidated by a wealth of new data and there was the feeling that a more complete picture of the strong and of the electro-weak interactions could be at hand. The quark model of hadrons introduced by M. Gell-Mann 1 and G. Zweig2 explained neatly the spectrum of the lowest lying mesons and baryons as qij and qqq states, respectively, with: (1) and electric charges Q 2/3 1/3 /3 respectively. 1 Doubts persisted on= quarks, - being, - real, physical entities or rather a simple mathematical tool to describe hadrons. This was due to the symmetry puzzle, namely the fact that one had to assume an overall symmetric configuration of the three quarks to describe the spin-charge structure of the baryons, rather than the antisymmetric configuration required by the fermion nature of physical, spin 1/2, quark$'.
    [Show full text]
  • Detection of a Hypercharge Axion in ATLAS
    Detection of a Hypercharge Axion in ATLAS a Monte-Carlo Simulation of a Pseudo-Scalar Particle (Hypercharge Axion) with Electroweak Interactions for the ATLAS Detector in the Large Hadron Collider at CERN Erik Elfgren [email protected] December, 2000 Division of Physics Lule˚aUniversity of Technology Lule˚a, SE-971 87, Sweden http://www.luth.se/depts/mt/fy/ Abstract This Master of Science thesis treats the hypercharge axion, which is a hy- pothetical pseudo-scalar particle with electroweak interactions. First, the theoretical context and the motivations for this study are discussed. In short, the hypercharge axion is introduced to explain the dominance of matter over antimatter in the universe and the existence of large-scale magnetic fields. Second, the phenomenological properties are analyzed and the distin- guishing marks are underlined. These are basically the products of photons and Z0swithhightransversemomentaandinvariantmassequaltothatof the axion. Third, the simulation is carried out with two photons producing the axion which decays into Z0s and/or photons. The event simulation is run through the simulator ATLFAST of ATLAS (A Toroidal Large Hadron Col- lider ApparatuS) at CERN. Finally, the characteristics of the axion decay are analyzed and the crite- ria for detection are presented. A study of the background is also included. The result is that for certain values of the axion mass and the mass scale (both in the order of a TeV), the hypercharge axion could be detected in ATLAS. Preface This is a Master of Science thesis at the Lule˚a University of Technology, Sweden. The research has been done at Universit´edeMontr´eal, Canada, under the supervision of Professor Georges Azuelos.
    [Show full text]