Use Mars Satellites Abstract Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Use Mars Satellites Abstract Introduction Copyright © 2008 by Jim Secosky. Published by the Mars Society with permission A GOOD WAY TO LEARN ABOUT MARS: USE MARS SATELLITES Jim Secosky email: [email protected] Website: Red Planet Trek: http://paws.flcc.edu/~secoskjj ABSTRACT NASA has allowed amateurs to suggest areas to be imaged with Mars satellites. From 2003, until contact was lost in the fall of 2006, amateurs picked sites to be photographed with the Mars Global Surveyor (MGS) under the public target program. In 2007, elementary, high school, and college students from around the world started to direct NASA to places to focus on with the powerful HiRISE on the Mars Reconnaissance Orbiter. Jim Secosky, a retired science teacher and amateur user of HST, suggested thousands of places to explore with MGS's Mars Orbiter Camera (MOC). From the over 500 Jim received, he has put together a series of images that illustrate many geological features. Key Words: Mars Global Surveyor, Arabia, layers, gullies INTRODUCTION The Mars Global Surveyor was launched in 1996 and finished its mission in 2001. In August 2003, after receiving 120,000 images (about 3% of the surface), NASA started to allow amateurs to suggest areas to be imaged with the Mars Orbiter Camera (MOC). By the time contact was lost with the spacecraft in November 2006, over 250,000 images had been taken, 4,000 suggestions were made by amateurs and about 1,000 images under the public target program were received. MOC took content images and high resolution images of three sizes. The image footprint was approximately 1 or 2 miles wide and about 6, 11, or 26 miles long. Amateurs suggested places to look at that showed most of the major features of Mars including dust devil tracks, layers, buttes, canyons, volcanoes, patterned ground, sand dunes, gullies, and possible glacial features. OBSERVATIONS Figure 1-MGS wide angle image showing ice cap and volcanoes. To give us some perspective, figure 1 shows some well-known major features. At the top is the northern ice cap. Olympus Mons, Alba Patera, Ascraeus Mons and Arsia Mons are the major 1 volcanoes on the Tharus Rise. Olympus Mons is three times higher than Earth's Mount Everest. Below Ascraeus Mons is a region of intersecting canyons knows as Noctis Labyrinthus or the labyrinth of the night. Just to its right or east the famous Valles Marineris begins. Figure 2-- MOLA elevation map This brightly colored map was done with a laser on the MGS. White represents the highest altitude, while dark blue the lowest. The high spots are volcanoes. Besides the volcanoes of the Tharus Rise, another smaller group of volcanoes are found with Elysium Mons. The deepest area, Hellas, represents a large impact. The Valles Marineris is a deep canyon, probably caused by tectonic forces from the great load of the Tharus Rise volcanoes. The highland/lowland dichotomy shows as a large difference in elevation between the northern plains and the southern highlands. Besides displaying a boundary in elevations, it is a boundary in surface ages. The southern highlands for the most part show a high density of impact craters. The older a surface is the more craters it will have. The northern plains are smooth with few craters so they are thought to be young--Amazonian in age. The south is an old surface called Noachian in age. In between the two great time periods is the Hesperian, named for the region to the northeast of Hellas. This display of Mars is often used; it has zero degrees longitude at the far left with the other lines of longitude being so many degrees east. HiRISE and the Mars Express both use this system of longitude. To the right of Olympus Mons are three large volcanoes in a line. Pavonis Mons, the middle one, sits right on the equator, thereby providing an easy reference to the location of the equator. Notice how Arabia has an old surface with many craters, yet has a lower elevation than the heavily cratered southern highlands. It is an interesting place. I suggested many areas for MGS to image in this region. It seems to have layered formations scattered throughout. Layers can be formed from volcanic processes, wind, or even under water. I was interested in tracing possible lakes and seas from the past, since life may once have thrived there. 2 Figure 3 --map made by Malin Space Sciences using MOC on MGS This map with visible colors has zero degrees in the center. Longitude is sometimes measured west of this line. Syrtis Major is a very dark feature easily visible with backyard telescopes. Notice Arabia is quite some distance from the bulge of Olympus Mons. Some have suggested that Arabia was an old impact that was subsequently uplifted as an isostatic adjustment to the mass of Olympus Mons. Others have suggested that it was formed from a great impact that struck the northern region on an angle. Just to the north of Arabia lies Ismenius Lacus, an area having vast reaches of so-called frettered terrain. Two bands located 30-40 degrees north and south of the equator are where most gullies have been discovered. Gullies that are found on steep slopes may be caused by recent flows of liquid water. 3 Figure 4--Lee, Bell, Wolff photo showing Arabia up close Throughout Arabia layers of rock have been found. The infamous "Face of Mars" is found at the upper western edge of Arabia in an area called Cydonia. Figure 5--The "Face" on Mars This feature looked just like a face in the Viking photos back in 1976. A more detailed view with the MGS showed it to be just an eroded plateau. 4 Figure 6--various views of image R19-01445 of the public target program. The image in the upper right was part of an image suggested by an amateur astronomer under the public target program. The R of the identification number denotes the mission phase. This image was number 01445 taken in month 19 of the R mission phase. The context image in the upper right contains a rectangle that shows the image footprint for the high resolution image. Other photos show parts of the high resolution blown up. Note the many layers. Some may be due to an ancient lake. The sequence for this formation would most likely be a large impact crater followed by the deposition of many layers in the crater and perhaps above it. Later erosion removed all but the small buttes in the center of the crater. In other words, these layers probably filled the entire crater. Recently, HiRISE imaged this general area and revealed many more layers (PSP_008520_2085). 5 Figure 7--images S21-00038 and S21-00037 from Malin Space Science Systems/NASA Inside a crater over 1,000 km away lays another butte that contains many layers similar to those of the previous picture. Again, these layers may have formed from lake or sea deposits. Since layers are seen so far away from each other the conditions for lakes may have been widespread in Arabia. Figure 8--image S07-00496 from Malin Space Science/NASA About 1,000 km from the previous two sets of layers, this group of layers does not lie inside of a crater; rather it is between craters, so there was something about Arabia that caused layered deposits to form. 6 Figure 9--map of Arabia produced by U.S. Geological Survey. This map made from Viking photos shows the locations of the three sets of layered terrain. Extensive layered areas also are found in Henry and in craters just to the left of this frame. Also, of interest is the report of the detection of methane just to the left or west of the bottom. Methane has been reported from three locations on Mars. Methane should not last on Mars, so if these reports are validated, microbes may be producing the methane. The small, colored rectangles on the map represent image footprints for MGS high resolution photos. They are one or two miles in width and 6, 11, or 26 miles long. In the public target program one had to carefully avoid areas that had been photographed already. One had to have a very good reason to reimage a location. When I choose suggestions for the program, I often viewed the Viking maps in pieces 5 degrees square, looking for interesting features or things that looked different. 7 Figure 10--S02-00191, fretted terrain north of Arabia Just north of Arabia lays a vast region of fretted terrain, named for elongated features that resemble wrinkles. Fretted terrain contains large cliffs with wide, flat canyons. It is thought that as ice in the subsurface disappears by sublimation the material just crumbles. At the low Martian atmospheric pressures and temperatures ice does not melt; it just goes directly into a gas. The image footprint shows an attempt to view the cliff edge at high resolution. Figure 11--cliff in S02-00190 This is a high resolution view of part of the cliff in the previous photo. Estimated at over one half mile high, this cliff would look amazing if you were standing at the base. Earth's Grand Canyon is just twice as tall this cliff. Maybe someday people will fly around cliffs like this on Mars, just as people fly over the Grand Canyon. 8 Figure 12--Phoenicis Lacus with Noctis Labyrinthus Just south of the equator sits a vast system of interlocking canyons called Noctis Labyrinthus. This view is on a Viking map. The high resolution view will be at the end of the arrow.
Recommended publications
  • The Open University | Watch?V=Sk5tpzhhw50
    The Open University | watch?v=SK5tPzHHW50 [MUSIC PLAYING] KAREN FOLEY: So Jan Raack, welcome to the studio. What do you think of our audience's ideas? Aren't they creative? JAN RAACK: Of course, yes. So I joined the online chat a couple of minutes. KAREN FOLEY: I hear you've doing very well. JAN RAACK: Yeah, it was my first time-- KAREN FOLEY: Bringing some sense to the conversation, I hear. JAN RAACK: A little bit of science, yes, but not so much. Yes. KAREN FOLEY: No, that's brilliant. No, thank you. What's it like then for you? You're an academic at the Open University. You've been here not since very long. So you started here in March so it's all been quite new. What's it been like talking with-- and we've got a lot of science students out there. What's it been like as an academic then talking to everybody in this sort of environment? How have you found it? JAN RAACK: A little bit weird, to be honest, because I was a student a couple of years ago, too. And for me, it's a step further from students to ask questions-- to answer questions. So for me, it's really new and I am excited with it, really, and I enjoyed it. Yes. KAREN FOLEY: Excellent. You're now doing a lot of research. So you were from Germany and you've now come to the Open University here in sunny Milton Keynes. JAN RAACK: Sunny, yes. KAREN FOLEY: Well, not really, is it? We won't lie.
    [Show full text]
  • Field Measurements of Terrestrial and Martian Dust Devils Journal Item
    Open Research Online The Open University’s repository of research publications and other research outputs Field Measurements of Terrestrial and Martian Dust Devils Journal Item How to cite: Murphy, Jim; Steakley, Kathryn; Balme, Matt; Deprez, Gregoire; Esposito, Francesca; Kahanpää, Henrik; Lemmon, Mark; Lorenz, Ralph; Murdoch, Naomi; Neakrase, Lynn; Patel, Manish and Whelley, Patrick (2016). Field Measurements of Terrestrial and Martian Dust Devils. Space Science Reviews, 203(1) pp. 39–87. For guidance on citations see FAQs. c 2016 Springer https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Accepted Manuscript Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1007/s11214-016-0283-y Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk 1 Field Measurements of Terrestrial and Martian Dust Devils 2 Jim Murphy1, Kathryn Steakley1, Matt Balme2, Gregoire Deprez3, Francesca 3 Esposito4, Henrik Kahapää5, Mark Lemmon6, Ralph Lorenz7, Naomi Murdoch8, Lynn 4 Neakrase1, Manish Patel2, Patrick Whelley9 5 1-New Mexico State University, Las Cruces NM, USA 2 - Open University, Milton Keynes UK 6 3 - Laboratoire Atmosphères, Guyancourt, France 4 - INAF - Osservatorio Astronomico di 7 Capodimonte, Naples, Italy 5 - Finnish Meteorological Institute, Helsinki, Finland 6 - Texas 8 A&M University, College Station TX, USA 7 -Johns Hopkins University Applied Physics Lab, 9 Laurel MD USA 8 - ISAE-SUPAERO, Toulouse University, France 9 - NASA Goddard 10 Space Flight Center, Greenbelt MD, USA 11 submitted to SSR 10 May, 2016 12 Revised manuscript 08 August 2016 13 ABSTRACT 14 Surface-based measurements of terrestrial and martian dust devils/convective vortices 15 provided from mobile and stationary platforms are discussed.
    [Show full text]
  • DRY (?) MARS: AEOLIAN PROCESSES, MASS WASTING, and ROCKS 7:00 P.M
    Lunar and Planetary Science XXXVI (2005) sess44.pdf Tuesday, March 15, 2005 POSTER SESSION I: DRY (?) MARS: AEOLIAN PROCESSES, MASS WASTING, AND ROCKS 7:00 p.m. Fitness Center Mullins K. F. Hayward R. K. Titus T. N. Bourke M. C. Fenton L. K. Mars Digital Dune Database: A Quantitative Look at the Geographic Distribution of Dunes on Mars [#1986] Initial steps in developing a digital dune database in a global geographic context for Mars have been completed. This database currently contains information delineating the dune fields between ±65 degrees latitude. Banks M. Bridges N. T. Benzit M. Measurements of the Coefficient of Restitution of Quartz Sand on Basalt: Implications for Abrasion Rates on Earth and Mars [#2116] Using high speed video to assess grain-rock interactions, it was found that the KE lost on impact is generally proportional to incoming velocity and impact angle, but that only a fraction of this energy goes into direct abrasion of the rock surface. Neakrase L. D. V. Greeley R. Williams D. A. Reiss D. Michaels T. I. Rafkin S. C. R. Neukum G. HRSC Team Hecates Tholus, Mars: Nighttime Aeolian Activity Suggested by Thermal Images and Mesoscale Atmospheric Model Simulations [#1898] Previously unidentified wind streaks identified on nighttime IR images on Hecates Tholus volcano on Mars agree with predictions of nighttime patterns by an atmospheric model, suggesting that nighttime winds are responsible for modifying the surface in contrast to afternoon winds. Neakrase L. D. V. Greeley R. Iversen J. D. Balme M. R. Foley D. J. Eddlemon E. E. Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold [#1857] The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces pertaining to dust devils on Earth and Mars.
    [Show full text]
  • Durangoko Azoka & Durango Da Azoka
    egitaraua Durangoko azoka & Durango da azoka Durango uriaren hegaletik Mañarierreka bideratzen da Kantauri itsasoaren bila. Erreka-bazterrean, urtero, 1965az geroztik, gizaki-tantekin osatutako Durangoko azoka izeneko ur-putzua sortzen izan da. Baina… nahiz eta urtero ur berria izan putzuak, lau hamarkada luze igaro ondoren tanta, beste tanta batzuekin bilduz, putzu izateari utzi eta erreka izatearen beharra ikusi zuten. Putzua Kulturerreka bihurtzea. Errekaondoko bidezidorrean zehar, abenduko euri zaparradako tangadak bilduz, euskal kulturaren uholdea sortu eta bideratu. Landakotik Larizdorre kalera kokatzen diren azoka, saguganbara, ahotsenea, irudienea, szenatokia eta beste izen batzuetako ur-putzuak lotuz Errekaondoko kultur bidezidorra burutu. Tabirako Uriberri guztira AZOKA zabalduz. Durangoko azoka & Durango da azoka. Aurkibidea 04 Durangoko mapa 06 Landako erakustazoka 08 Artisau Azoka 09 Abenduaren 5ean 13 Abenduaren 6an 17 Abenduaren 7an 21 Abenduaren 8an Erretentxu K. Kurutziaga Kalea Matxinestarta Kalea Ibaizabal Auzunea Pablo Pedro Astarloa Kalea Murueta Torre A. Murueta Torre Komentukalea Kalea Andra Mari Kalea 1 2 3 Antso Estegiz Zumardia Aldapa Azoka Kabi@ Areto Nagusia Arandoño Torre K. Kalebarria K. Azoka K. Goienkalea Kalea Monago K. P Parkinga Hiribidea Montevideo Artisau Azoka Kanpatorrosteta K. Artekalea Kalea Uribarri Kalea Barrenkalea K. Oiz Kalea 4 5 6 7 Lariz Torre K. Saguganbara Plateruena Ahotsenea Irudienea Zeharkalea K. Andra Mari K. Oiz Kalea Oiz Zumalakarregi K. Zumalakarregi K. 8 Szenatokia Arkotxa K. Arkotxa Turismo Ermodo Kalea Bulegoa Bus Geltokia Ezkurdi Plaza Arte eta Historia Museoa Juan Antonio Abasolo K Geltoki Zaharra Argazki Erakusketa “Noctis Labyrinthus” Josemiel Barandiaran K, Tronperri Kalea Galtzareta K. Tren Landako Hiribidea Geltokia Bruno Mauricio Zabala K. Fray Juan de Zumarraga K. 4 2013ko abenduaren 5etik 8ra Erretentxu K.
    [Show full text]
  • Plains Volcanism on Mars Revisited: the Topography and Morphology of Low Shields and Related Landforms
    Seventh International Conference on Mars 3287.pdf PLAINS VOLCANISM ON MARS REVISITED: THE TOPOGRAPHY AND MORPHOLOGY OF LOW SHIELDS AND RELATED LANDFORMS. E. Hauber1, 1Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, Germany ([email protected]). Introduction: The morphometry of Martian vol- cent study [1] used MOLA topography to measure the canoes provides critical input to the investigation of morphometric properties of several large Martian vol- their tectonic setting and the rheology of their eruption canoes. However, images of the Viking Orbiter mis- products. It is also an important prerequisite for studies sion showed that there are also numerous small and of comparative planetology, e.g., the comparison be- low shield volcanoes on Mars [2-7]. Almost all of tween terrestrial and planetary surface features. A re- these low shields are located within Tharsis and Ely- sium, the major volcanic provinces on Mars. A com- prehensive description of low shields in Tempe Terra based on Viking Orbiter images is given by [5], who describes shield fields with broad, very low shields, often associated with linear fissure vents, and several steeper edifices (Fig. 1). Many of the low shields have one or more summit craters. The craters are relatively small as compared to the basal diameter, and their form may be circular or elongated along the dominant tectonic trend. Plescia [ref. 5] compared low shields in the Tempe Terra region with terrestrial volcanoes and found that they are similar in many aspects to low shields in the eastern Snake River Plains in Idaho (USA; hereafter referred to as ESRP).
    [Show full text]
  • Modeling the Development of Martian Sublimation Thermokarst Landforms
    Icarus 262 (2015) 154–169 Contents lists available at ScienceDirect Icarus journal homepage: www.journals.elsevier.com/icarus Modeling the development of martian sublimation thermokarst landforms a, b b Colin M. Dundas ⇑, Shane Byrne , Alfred S. McEwen a Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001, USA b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA article info abstract Article history: Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsur- Received 8 August 2014 face. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid- Revised 17 June 2015 latitudes and considered likely thermokarst features. We describe a landscape evolution model that cou- Accepted 29 July 2015 ples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thou- Available online 21 August 2015 sands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the martian surface, starting from much smaller initial disturbances. The model also Keywords: indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with Mars, surface morphologies similar to observed landforms on the martian northern plains. In order to produce these Geological processes Mars, climate landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non- deflated surface. We suggest that martian thermokarst features are consistent with formation by subli- mation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the martian mid-latitudes.
    [Show full text]
  • Download the Acquired Data Or to Fix Possible Problem
    Università degli Studi di Napoli Federico II DOTTORATO DI RICERCA IN FISICA Ciclo 30° Coordinatore: Prof. Salvatore Capozziello Settore Scientifico Disciplinare FIS/05 Characterisation of dust events on Earth and Mars the ExoMars/DREAMS experiment and the field campaigns in the Sahara desert Dottorando Tutore Gabriele Franzese dr. Francesca Esposito Anni 2014/2018 A birbetta e giggione che sono andati troppo veloci e a patata che invece adesso va piano piano Summary Introduction ......................................................................................................................... 6 Chapter 1 Atmospheric dust on Earth and Mars............................................................ 9 1.1 Mineral Dust ....................................................................................................... 9 1.1.1 Impact on the Terrestrial land-atmosphere-ocean system .......................... 10 1.1.1.1 Direct effect ......................................................................................... 10 1.1.1.2 Semi-direct and indirect effects on the cloud physics ......................... 10 1.1.1.3 Indirect effects on the biogeochemical system .................................... 11 1.1.1.4 Estimation of the total effect ............................................................... 11 1.2 Mars .................................................................................................................. 12 1.2.1 Impact on the Martian land-atmosphere system ......................................... 13 1.3
    [Show full text]
  • The Role of Subsurface Volatiles in the Formational History of Noctis Labyrinthus, Mars
    51st Lunar and Planetary Science Conference (2020) 1997.pdf THE ROLE OF SUBSURFACE VOLATILES IN THE FORMATIONAL HISTORY OF NOCTIS LABYRINTHUS, MARS. Corbin L. Kling ([email protected])1, Paul K. Byrne1, and Karl W. Wegmann1, 1Depart- ment of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695. Introduction: Noctis Labyrinthus on Mars boasts Landforms of Noctis Labyrinthus: The region many interesting geomorphological signatures contains abundant normal faults, pit craters (collapse indicating a complex history (Figure 1). Situated pits with circular to elliptical/elongate shapes), and between the Tharsis Rise and Valles Marineris, Noctis rampart craters (impact craters with morphologies is understudied compared with its more famous indicating volatiles were mobilized in the ejecta) neighboring regions. Noctis Labyrinthus itself contains surrounding the deep troughs (Figure 1). The troughs abundant normal faults, pit craters, and deep troughs. contain many landforms indicating mass wasting The area was first mapped in 1977 on Mariner imagery processes and hint at the presence of ice. Landslides [1], and interpreted as akin to the East African Rift dominate trough slopes, whereas periglacial landforms system with respect to the large amount of faulting and are common along troughs floors. the orientations of those faults. The formational history The occurrence of landslides and periglacial features of Noctis Labyrinthus, however, is still debated, with in the large troughs of Noctis provide useful information explanations for its deep troughs ranging from lava tube regarding the final stages of formation, and potentially collapse [2] to groundwater release through faulting give clues to what process(es) contributed to the initial pathways and psuedokarst [3, 4].
    [Show full text]
  • Dust Devil Track Survey at the Insight Landing Sites: Implications for the Probability of Solar Panel Clearing Events
    46th Lunar and Planetary Science Conference (2015) 2070.pdf DUST DEVIL TRACK SURVEY AT THE INSIGHT LANDING SITES: IMPLICATIONS FOR THE PROBABILITY OF SOLAR PANEL CLEARING EVENTS. D. Reiss1 and R. D. Lorenz2, Institut für Planeto- logie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany, 2Johns Hopkins Uni- versity Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA. Introduction: The InSight robotic lander is scheduled Morphology. Fig. 2 shows an example of a typical newly to land on Mars in September 2016. InSight was designed to formed DDT. The DDTs in the study region are relatively perform the first comprehensive surface-based geophysical straight which is also expressed in their low mean sinuosity investigation of Mars [1]. Passage of vortices may have a of 1.03 (standard deviation = 0.004). The sinuosity is lower number of influences on the geophysical measurements to be compared to mean values of ~1.3 and ~1.08 measured by [8] made by InSight. Seismic data could be influenced by dust in Russell and Gusev crater, respectively. devils and vortices via several mechanisms such as loading of the elastic ground by a surface pressure field which causes a local tilt [e.g. 2]. In addition, the power supply of the In- Sight instruments is provided by solar arrays. Solar-powered missions on Mars like the Sojourner rover in 1997 were af- fected by a decline in electrical power output by 0.2-0.3 % per day caused by steadily dust deposition on its horizontal Fig. 2. Example of observed track formation between HiRISE imag- solar panel [3].
    [Show full text]
  • Scalloped Terrains in the Peneus and Amphitrites Paterae Region of Mars As Observed by Hirise
    Icarus 205 (2010) 259–268 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE A. Lefort *, P.S. Russell, N. Thomas Space Research and Planetary Sciences, Physikalisches Institut, Universität Bern, 3012 Bern, Switzerland article info abstract Article history: The Peneus and Amphitrites Paterae region of Mars displays large areas of smooth, geologically young Received 10 October 2008 terrains overlying a rougher and older topography. These terrains may be remnants of the mid-latitude Revised 15 May 2009 mantle deposit, which is thought to be composed of ice-rich material originating from airfall deposition Accepted 3 June 2009 during a high-obliquity period less than 5 Ma ago. Within these terrains, there are several types of poten- Available online 14 June 2009 tially periglacial features. In particular, there are networks of polygonal cracks and scalloped-shaped depressions, which are similar to features found in Utopia Planitia in the northern hemisphere. This area Keywords: also displays knobby terrain similar to the so-called ‘‘basketball terrains” of the mid and high martian lat- Mars, Surface itudes. We use recent high resolution images from the High Resolution Imaging Science Experiment (HiR- Geological processes Ices ISE) along with data from previous Mars missions to study the small-scale morphology of the scalloped terrains, and associated polygon network and knobby terrains. We compare these with the features observed in Utopia Planitia and attempt to determine their formation process. While the two sites share many general features, scallops in Peneus/Amphitrites Paterae lack the diverse polygon network (i.e.
    [Show full text]
  • Mars Surface Change Detection from Multi-Temporal Orbital Images
    Home Search Collections Journals About Contact us My IOPscience Mars Surface Change Detection from Multi-temporal Orbital Images This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 IOP Conf. Ser.: Earth Environ. Sci. 17 012015 (http://iopscience.iop.org/1755-1315/17/1/012015) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 210.72.26.120 This content was downloaded on 19/05/2014 at 11:02 Please note that terms and conditions apply. 35th International Symposium on Remote Sensing of Environment (ISRSE35) IOP Publishing IOP Conf. Series: Earth and Environmental Science 17 (2014) 012015 doi:10.1088/1755-1315/17/1/012015 Mars Surface Change Detection from Multi-temporal Orbital Images Kaichang Di1, Yiliang Liu, Wenmin Hu, Zongyu Yue, Zhaoqin Liu State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences E-mail: (kcdi, ylliu, huwm, yuezy, liuzq)@ irsa.ac.cn Abstract. A vast amount of Mars images have been acquired by orbital missions in recent years. With the increase of spatial resolution to metre and decimetre levels, fine-scale geological features can be identified, and surface change detection is possible because of multi- temporal images. This study briefly reviews detectable changes on the Mars surface, including new impact craters, gullies, dark slope streaks, dust devil tracks and ice caps. To facilitate fast and efficient change detection for subsequent scientific investigations, a featured-based change detection method is developed based on automatic image registration, surface feature extraction and difference information statistics.
    [Show full text]
  • NOCTIS LANDING: a Proposed Landing Site/Exploration Zone For
    NOCTIS LANDING: A Proposed Landing Site/Exploration Zone for Human Missions to the Surface of Mars Pascal Lee1,2,3, Shannen Acedillo1,2, Stephen Braham1, Adrian Brown2, Richard Elphic3, Terry Fong3, Brian Glass3, Christopher Hoftun1, Brage W. Johansen1, Kira Lorber1, David Mittlefehldt4, Yuta Tagaki1,2, Peter Thomas5, Mi- chael West1, Stephen West1, Michael Zolensky4. 1Mars Institute, NASA Research Park, Moffett Field, CA 94035, USA, [email protected]. 2SETI Institute, 3NASA Ames Research Center, 4NASAJohnson Space Center, 5Cornell University. Exploration Zone Name: Noctis Landing Landing Site Coordinates: 6o 29’ 38.33” S, 92o 27’ 12.34” W. The proposed Noctis Landing Landing Site/Exploration Zone (LS/EZ) is shown in Figure 1. Our preliminary study suggests that the proposed site meets all key Science and Resources (incl. Civil Engineering) requirements. The site is of significant interest, as the EZ not only offers a large number and wide range of regions of interest (ROIs) for short-term exploration, it is also located strategically at the crossroads between Tharsis and Valles Marineris, which are key for long-term exploration. Figure 1: Map of the Noctis Landing LS/EZ. The solid red circle marks the distance of 100 km radial range from the Landing Site (LS), defining the primary Exploration Zone (EZ). The dotted red circle marks 200 km radial range from the LS. Areas circled (or ellipsed) in blue are high value science targets located within the primary EZ. Areas outlined in yellow are high-value science targets located outside the EZ, but within 200 km radial range from the LS. White dotted lines represent potential paths for pressurized rover traverses.
    [Show full text]