Field Measurements of Terrestrial and Martian Dust Devils
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Open University | Watch?V=Sk5tpzhhw50
The Open University | watch?v=SK5tPzHHW50 [MUSIC PLAYING] KAREN FOLEY: So Jan Raack, welcome to the studio. What do you think of our audience's ideas? Aren't they creative? JAN RAACK: Of course, yes. So I joined the online chat a couple of minutes. KAREN FOLEY: I hear you've doing very well. JAN RAACK: Yeah, it was my first time-- KAREN FOLEY: Bringing some sense to the conversation, I hear. JAN RAACK: A little bit of science, yes, but not so much. Yes. KAREN FOLEY: No, that's brilliant. No, thank you. What's it like then for you? You're an academic at the Open University. You've been here not since very long. So you started here in March so it's all been quite new. What's it been like talking with-- and we've got a lot of science students out there. What's it been like as an academic then talking to everybody in this sort of environment? How have you found it? JAN RAACK: A little bit weird, to be honest, because I was a student a couple of years ago, too. And for me, it's a step further from students to ask questions-- to answer questions. So for me, it's really new and I am excited with it, really, and I enjoyed it. Yes. KAREN FOLEY: Excellent. You're now doing a lot of research. So you were from Germany and you've now come to the Open University here in sunny Milton Keynes. JAN RAACK: Sunny, yes. KAREN FOLEY: Well, not really, is it? We won't lie. -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
Field Measurements of Terrestrial and Martian Dust Devils Journal Item
Open Research Online The Open University’s repository of research publications and other research outputs Field Measurements of Terrestrial and Martian Dust Devils Journal Item How to cite: Murphy, Jim; Steakley, Kathryn; Balme, Matt; Deprez, Gregoire; Esposito, Francesca; Kahanpää, Henrik; Lemmon, Mark; Lorenz, Ralph; Murdoch, Naomi; Neakrase, Lynn; Patel, Manish and Whelley, Patrick (2016). Field Measurements of Terrestrial and Martian Dust Devils. Space Science Reviews, 203(1) pp. 39–87. For guidance on citations see FAQs. c 2016 Springer https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Accepted Manuscript Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1007/s11214-016-0283-y Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk 1 Field Measurements of Terrestrial and Martian Dust Devils 2 Jim Murphy1, Kathryn Steakley1, Matt Balme2, Gregoire Deprez3, Francesca 3 Esposito4, Henrik Kahapää5, Mark Lemmon6, Ralph Lorenz7, Naomi Murdoch8, Lynn 4 Neakrase1, Manish Patel2, Patrick Whelley9 5 1-New Mexico State University, Las Cruces NM, USA 2 - Open University, Milton Keynes UK 6 3 - Laboratoire Atmosphères, Guyancourt, France 4 - INAF - Osservatorio Astronomico di 7 Capodimonte, Naples, Italy 5 - Finnish Meteorological Institute, Helsinki, Finland 6 - Texas 8 A&M University, College Station TX, USA 7 -Johns Hopkins University Applied Physics Lab, 9 Laurel MD USA 8 - ISAE-SUPAERO, Toulouse University, France 9 - NASA Goddard 10 Space Flight Center, Greenbelt MD, USA 11 submitted to SSR 10 May, 2016 12 Revised manuscript 08 August 2016 13 ABSTRACT 14 Surface-based measurements of terrestrial and martian dust devils/convective vortices 15 provided from mobile and stationary platforms are discussed. -
Large-Eddy Simulations of Dust Devils and Convective Vortices
Large-Eddy Simulations of Dust Devils and Convective Vortices Aymeric Spiga, Erika Barth, Zhaolin Gu, Fabian Hoffmann, Junshi Ito, Bradley Jemmett-Smith, Martina Klose, Seiya Nishizawa, Siegfried Raasch, Scot Rafkin, et al. To cite this version: Aymeric Spiga, Erika Barth, Zhaolin Gu, Fabian Hoffmann, Junshi Ito, et al.. Large-Eddy Simulations of Dust Devils and Convective Vortices. Space Science Reviews, Springer Verlag, 2016, 203, pp.245 - 275. 10.1007/s11214-016-0284-x. hal-01457992 HAL Id: hal-01457992 https://hal.sorbonne-universite.fr/hal-01457992 Submitted on 6 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Large-Eddy Simulations of dust devils and convective vortices Aymeric Spiga∗1, Erika Barth2, Zhaolin Gu3, Fabian Hoffmann4, Junshi Ito5, Bradley Jemmett-Smith6, Martina Klose7, Seiya Nishizawa8, Siegfried Raasch9, Scot Rafkin10, Tetsuya Takemi11, Daniel Tyler12, and Wei Wei13 1 Laboratoire de M´et´eorologieDynamique, UMR CNRS 8539, Institut Pierre-Simon Laplace, Sorbonne Universit´es,UPMC Univ Paris 06, Paris, France 2SouthWest -
The Dryline______1900 English Road, Amarillo, TX 79108 806.335.1121
TThhee DDrryylliinnee The Official Newsletter of the National Weather Service in Amarillo TEXAS COUNTY EARNS Summer STORMREADY® RECOGNITION 2008 FROM TORNADOES TO FLOODS, TEXAS COUNTY IS PREPARED By Steve Drillette, Warning Coordination Meteorologist Tornadoes, Landspouts and Texas County was presented with a NOAA National Weather Service Dust Devils – Certificate recognizing local officials and citizens for their efforts in Page 2 earning the distinguished StormReady® designation. The ceremony was held April 7, 2008 at the County Courthouse in Guymon. Texas Flood Safety – th County became the 11 StormReady Community to be recognized Page 4 across the Texas and Oklahoma Panhandles since our first community was recognized in 2002. Weather Review The ceremony was led by Jose Garcia, Meteorologist-In-Charge of the and Outlook – National Weather Service office in Amarillo. Mr. Garcia presented Page 6 Texas County Emergency Manager, Harold Tyson, with a StormReady® certificate and two StormReady® highway signs. Mr. In YOUR Kevin Starbuck, Emergency Management Coordinator of Amarillo and Community – member of the Amarillo StormReady® Advisory Board, also Page 7 participated in the presentation. Guymon Emergency Manager Clark Purdy, several county commissioners and other local officials were also on hand to accept the awards. NWS OFFICE FAREWELLS – StormReady® is a voluntary program, and is offered as a means of Page 8 providing guidance and incentive to local and county officials interested in improving hazardous weather operations. To receive StormReady® recognition, communities are required to meet minimum criteria in hazardous weather preparedness, as established through a partnership of the NWS and federal, state, and local emergency management professionals. ―Texas County officials are to be commended for their efforts in meeting and exceeding the StormReady® criteria,‖ said Mr. -
DRY (?) MARS: AEOLIAN PROCESSES, MASS WASTING, and ROCKS 7:00 P.M
Lunar and Planetary Science XXXVI (2005) sess44.pdf Tuesday, March 15, 2005 POSTER SESSION I: DRY (?) MARS: AEOLIAN PROCESSES, MASS WASTING, AND ROCKS 7:00 p.m. Fitness Center Mullins K. F. Hayward R. K. Titus T. N. Bourke M. C. Fenton L. K. Mars Digital Dune Database: A Quantitative Look at the Geographic Distribution of Dunes on Mars [#1986] Initial steps in developing a digital dune database in a global geographic context for Mars have been completed. This database currently contains information delineating the dune fields between ±65 degrees latitude. Banks M. Bridges N. T. Benzit M. Measurements of the Coefficient of Restitution of Quartz Sand on Basalt: Implications for Abrasion Rates on Earth and Mars [#2116] Using high speed video to assess grain-rock interactions, it was found that the KE lost on impact is generally proportional to incoming velocity and impact angle, but that only a fraction of this energy goes into direct abrasion of the rock surface. Neakrase L. D. V. Greeley R. Williams D. A. Reiss D. Michaels T. I. Rafkin S. C. R. Neukum G. HRSC Team Hecates Tholus, Mars: Nighttime Aeolian Activity Suggested by Thermal Images and Mesoscale Atmospheric Model Simulations [#1898] Previously unidentified wind streaks identified on nighttime IR images on Hecates Tholus volcano on Mars agree with predictions of nighttime patterns by an atmospheric model, suggesting that nighttime winds are responsible for modifying the surface in contrast to afternoon winds. Neakrase L. D. V. Greeley R. Iversen J. D. Balme M. R. Foley D. J. Eddlemon E. E. Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold [#1857] The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces pertaining to dust devils on Earth and Mars. -
DUST DEVIL METEOROLOGY Jack R
NOAA~NWS /1(}q, 3~;).. ~ . NOAA Technicai ·Memoran_dlim Nws·CR-42 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Adminlstretian National Weather Service DUST 1DEV-IL... ,. METEOROLOGY.. .. ... .... - 1!. Jack ,R. .Cooley \ i ,. CiHTRAL REGION Kansas City.. Mo. () U. S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE NOAA Technical Memoran:l.um NWS CR-42 Il.JST DEVIL METEOROLOGY Jack R. Cooley CENTRAL REJJION KANSAS CITY, MISSOORI May 1971 CONTENTS () l. Page No. INTRODUCTION 1 1.1 Some Early Accounts of Dust Devils 1 1.2 Definition 2 1.3 The Atmospheric Circulation Family 2 1.4 Other Similar Small-Scale Circulations 2 1.41 Small Waterspouts 3 l. 42 Whirlies 3 1.43 Fire 1-!hirhdnds 3 1.44 Whirlwinds Associated With Cold Fronts 4 l. 5 Damage Caused by Dust Devils 4 1.51 Dust DeVils Vs. Aircraft Safety 5 2. FORMATION 5 2.1 Optimum Locations (Macro and Micro) 5 2.2 Optimum Time of Occurrence (During Day and Year) 6 2.3 Conditions Favoring Dust Devil Formation 7 2.31 Factors Favoring Steep Lapse Rates Near the Ground 7 A. Large Incident Solar Radiation Angles 7 B. Minimum Cloudiness 7 C. Lmr Humidity 8 D. Dry Barren Soil 8 E. Surface Winds Below a Critical Value 9 2.32 Potential Lapse Rates Near the Ground 9 2.33 Favorable Air Flow 12 2 ,34 Abundant Surface Material 12 2.35 Level Terrain 13 2.4 Triggering Devices 13 2.5 Size and Shape 14. 2.6 Dust Size·and Distribution 14 2.7 Duration 15 2.8 Direction of Rotation 16 2.9 Lateral Speed and Direction of Movement 17 3. -
Modeling the Development of Martian Sublimation Thermokarst Landforms
Icarus 262 (2015) 154–169 Contents lists available at ScienceDirect Icarus journal homepage: www.journals.elsevier.com/icarus Modeling the development of martian sublimation thermokarst landforms a, b b Colin M. Dundas ⇑, Shane Byrne , Alfred S. McEwen a Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001, USA b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA article info abstract Article history: Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsur- Received 8 August 2014 face. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid- Revised 17 June 2015 latitudes and considered likely thermokarst features. We describe a landscape evolution model that cou- Accepted 29 July 2015 ples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thou- Available online 21 August 2015 sands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the martian surface, starting from much smaller initial disturbances. The model also Keywords: indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with Mars, surface morphologies similar to observed landforms on the martian northern plains. In order to produce these Geological processes Mars, climate landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non- deflated surface. We suggest that martian thermokarst features are consistent with formation by subli- mation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the martian mid-latitudes. -
Download the Acquired Data Or to Fix Possible Problem
Università degli Studi di Napoli Federico II DOTTORATO DI RICERCA IN FISICA Ciclo 30° Coordinatore: Prof. Salvatore Capozziello Settore Scientifico Disciplinare FIS/05 Characterisation of dust events on Earth and Mars the ExoMars/DREAMS experiment and the field campaigns in the Sahara desert Dottorando Tutore Gabriele Franzese dr. Francesca Esposito Anni 2014/2018 A birbetta e giggione che sono andati troppo veloci e a patata che invece adesso va piano piano Summary Introduction ......................................................................................................................... 6 Chapter 1 Atmospheric dust on Earth and Mars............................................................ 9 1.1 Mineral Dust ....................................................................................................... 9 1.1.1 Impact on the Terrestrial land-atmosphere-ocean system .......................... 10 1.1.1.1 Direct effect ......................................................................................... 10 1.1.1.2 Semi-direct and indirect effects on the cloud physics ......................... 10 1.1.1.3 Indirect effects on the biogeochemical system .................................... 11 1.1.1.4 Estimation of the total effect ............................................................... 11 1.2 Mars .................................................................................................................. 12 1.2.1 Impact on the Martian land-atmosphere system ......................................... 13 1.3 -
Large-Scale Extratropical Cyclogenesis and Frontal Waves: Effects on Mars Dust
Workshop on Planetary Atmospheres (2007) 9077.pdf LARGE-SCALE EXTRATROPICAL CYCLOGENESIS AND FRONTAL WAVES: EFFECTS ON MARS DUST. J.L. Hollingsworth1, M.A. Kahre1, R.M. Haberle1, 1Space Science and Astrobiology Division, Planetary Systems Branch, NASA Ames Research Center, Moffett Field, CA 94035, ([email protected]). Introduction: Mars reveals similar, yet also vastly scimitar-shaped dust fronts in the northern extratropi- different, atmospheric circulation patterns compared to cal and subtropical environment during late autumn and those found on Earth [1]. Both planets exhibit ther- early spring [8,9]. mally indirect (i.e., eddy-driven) Ferrel circulation cells Results: The time and zonally-averaged tempera- inmiddleandhighlatitudes. Duringlateautumnthrough tureandzonalwindfieldfromourbaselinehigh-resolution early spring, Mars’ extratropics indicateintense equator- (i.e., 2.0 × 3.0◦ longitude-latitude) simulation is shown to-pole temperature contrasts (i.e., mean “baroclinic- in Fig. 1. The mean zonal temperatures appear rather ity”). From data collected during the Viking era and re- symmetric about the equator. Upon closer inspection, it cent observationsfromtheMarsGlobal Surveyor(MGS) can be seen that in the northern extratropics the north- mission, such strong temperature contrasts supports in- south temperature contrasts at this season, particularly tense eastward-traveling weather systems (i.e., transient near the surface, are significantly stronger than in the synoptic-period waves) [2,3,4] associated with the dy- southern hemisphere. This asymmetry in mean zonal namical process of baroclinic instability. The travel- fields is also apparent in the mean zonal wind (Fig. 1, ing disturbances and their poleward transports of heat bottom) where the northern hemisphere’s westerly po- and momentum, profoundly influence the global atmo- lar vortex is roughly twice as strong than in the south, spheric energy budget. -
IRPA13 Final Program
IRPA13 v v Final Programme v DOCHART CARRON To Clyde Auditorium, Forth and Gala Rooms and Hotel HALL 4 LOMOND BOISDALE ALSH 13 - 18 May 2012 CLYDE AUDITORIUMCLYDE AUDITORIUM Magnox Fuel Pond Alternative ILW Treatment Bradwell turbine hall MagnoxDecommissioning Fuel Pond Alternative& Disposition ILW Treatment demolitionBradwell turbine hall FORTH ROOM Decommissioning & Disposition demolition (GROUND FLOOR) GALA ROOM (FIRST FLOOR) ProvidingProviding integrated integrated services andand solutions to the global nuclear industry TOILETS (WC’s) M-MALE F-FEMALE TOILETS CLOAKROOM solutions to the global nuclear industry TOILETS FOR DISABLED SHOP EnergySolutions is an international nuclear services company MEDICAL CENTRE BABYCARE ROOMS Magnox Fuel Pond Alternative ILW Treatment Bradwell turbine hall INFORMATION & BUSINESS CENTRE CATERING DecommissioningEnergywith operationsSolutions aroundis& anDisposition international the world, Energy nuclearSolutions’ servicesdemolition work company BOX OFFICE LIFT withspans operations the nuclear around life cycle the world, from operating EnergySolutions’ nuclear power work BANK RECEPTION spansstations the throughnuclear late-life life cycle management from operating and on nuclear to defueling, power stationsdecommissioning, through late-life waste management processing and and packaging, on to defueling, and Providingdecommissioning,complete integrated site restoration. waste processing services and packaging, and and complete site restoration. Registration, Exhibition, solutionsIn the UK,to wethe manage, global on behalf nuclear of the Nuclear industry Hall 4 SECC, Glasgow Posters and Catering Decommissioning Authority, 22 Magnox reactors across 10 In sites,the UK, over we seeing manage, the safe on behalfdelivery of of the continued Nuclear operations. Opening Ceremony, Plenary EnergyDecommissioningSolutions is an Authorit internationaly, 22 Magnox nuclear reactors services across 10 company Clyde Auditorium sites,For further over information seeing contact: the safe delivery of continued operations. -
Dust Devil Track Survey at the Insight Landing Sites: Implications for the Probability of Solar Panel Clearing Events
46th Lunar and Planetary Science Conference (2015) 2070.pdf DUST DEVIL TRACK SURVEY AT THE INSIGHT LANDING SITES: IMPLICATIONS FOR THE PROBABILITY OF SOLAR PANEL CLEARING EVENTS. D. Reiss1 and R. D. Lorenz2, Institut für Planeto- logie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany, 2Johns Hopkins Uni- versity Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA. Introduction: The InSight robotic lander is scheduled Morphology. Fig. 2 shows an example of a typical newly to land on Mars in September 2016. InSight was designed to formed DDT. The DDTs in the study region are relatively perform the first comprehensive surface-based geophysical straight which is also expressed in their low mean sinuosity investigation of Mars [1]. Passage of vortices may have a of 1.03 (standard deviation = 0.004). The sinuosity is lower number of influences on the geophysical measurements to be compared to mean values of ~1.3 and ~1.08 measured by [8] made by InSight. Seismic data could be influenced by dust in Russell and Gusev crater, respectively. devils and vortices via several mechanisms such as loading of the elastic ground by a surface pressure field which causes a local tilt [e.g. 2]. In addition, the power supply of the In- Sight instruments is provided by solar arrays. Solar-powered missions on Mars like the Sojourner rover in 1997 were af- fected by a decline in electrical power output by 0.2-0.3 % per day caused by steadily dust deposition on its horizontal Fig. 2. Example of observed track formation between HiRISE imag- solar panel [3].