Hirise Observations of Valles Marineris Layering Ross A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Durangoko Azoka & Durango Da Azoka
egitaraua Durangoko azoka & Durango da azoka Durango uriaren hegaletik Mañarierreka bideratzen da Kantauri itsasoaren bila. Erreka-bazterrean, urtero, 1965az geroztik, gizaki-tantekin osatutako Durangoko azoka izeneko ur-putzua sortzen izan da. Baina… nahiz eta urtero ur berria izan putzuak, lau hamarkada luze igaro ondoren tanta, beste tanta batzuekin bilduz, putzu izateari utzi eta erreka izatearen beharra ikusi zuten. Putzua Kulturerreka bihurtzea. Errekaondoko bidezidorrean zehar, abenduko euri zaparradako tangadak bilduz, euskal kulturaren uholdea sortu eta bideratu. Landakotik Larizdorre kalera kokatzen diren azoka, saguganbara, ahotsenea, irudienea, szenatokia eta beste izen batzuetako ur-putzuak lotuz Errekaondoko kultur bidezidorra burutu. Tabirako Uriberri guztira AZOKA zabalduz. Durangoko azoka & Durango da azoka. Aurkibidea 04 Durangoko mapa 06 Landako erakustazoka 08 Artisau Azoka 09 Abenduaren 5ean 13 Abenduaren 6an 17 Abenduaren 7an 21 Abenduaren 8an Erretentxu K. Kurutziaga Kalea Matxinestarta Kalea Ibaizabal Auzunea Pablo Pedro Astarloa Kalea Murueta Torre A. Murueta Torre Komentukalea Kalea Andra Mari Kalea 1 2 3 Antso Estegiz Zumardia Aldapa Azoka Kabi@ Areto Nagusia Arandoño Torre K. Kalebarria K. Azoka K. Goienkalea Kalea Monago K. P Parkinga Hiribidea Montevideo Artisau Azoka Kanpatorrosteta K. Artekalea Kalea Uribarri Kalea Barrenkalea K. Oiz Kalea 4 5 6 7 Lariz Torre K. Saguganbara Plateruena Ahotsenea Irudienea Zeharkalea K. Andra Mari K. Oiz Kalea Oiz Zumalakarregi K. Zumalakarregi K. 8 Szenatokia Arkotxa K. Arkotxa Turismo Ermodo Kalea Bulegoa Bus Geltokia Ezkurdi Plaza Arte eta Historia Museoa Juan Antonio Abasolo K Geltoki Zaharra Argazki Erakusketa “Noctis Labyrinthus” Josemiel Barandiaran K, Tronperri Kalea Galtzareta K. Tren Landako Hiribidea Geltokia Bruno Mauricio Zabala K. Fray Juan de Zumarraga K. 4 2013ko abenduaren 5etik 8ra Erretentxu K. -
Plains Volcanism on Mars Revisited: the Topography and Morphology of Low Shields and Related Landforms
Seventh International Conference on Mars 3287.pdf PLAINS VOLCANISM ON MARS REVISITED: THE TOPOGRAPHY AND MORPHOLOGY OF LOW SHIELDS AND RELATED LANDFORMS. E. Hauber1, 1Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, Germany ([email protected]). Introduction: The morphometry of Martian vol- cent study [1] used MOLA topography to measure the canoes provides critical input to the investigation of morphometric properties of several large Martian vol- their tectonic setting and the rheology of their eruption canoes. However, images of the Viking Orbiter mis- products. It is also an important prerequisite for studies sion showed that there are also numerous small and of comparative planetology, e.g., the comparison be- low shield volcanoes on Mars [2-7]. Almost all of tween terrestrial and planetary surface features. A re- these low shields are located within Tharsis and Ely- sium, the major volcanic provinces on Mars. A com- prehensive description of low shields in Tempe Terra based on Viking Orbiter images is given by [5], who describes shield fields with broad, very low shields, often associated with linear fissure vents, and several steeper edifices (Fig. 1). Many of the low shields have one or more summit craters. The craters are relatively small as compared to the basal diameter, and their form may be circular or elongated along the dominant tectonic trend. Plescia [ref. 5] compared low shields in the Tempe Terra region with terrestrial volcanoes and found that they are similar in many aspects to low shields in the eastern Snake River Plains in Idaho (USA; hereafter referred to as ESRP). -
The Role of Subsurface Volatiles in the Formational History of Noctis Labyrinthus, Mars
51st Lunar and Planetary Science Conference (2020) 1997.pdf THE ROLE OF SUBSURFACE VOLATILES IN THE FORMATIONAL HISTORY OF NOCTIS LABYRINTHUS, MARS. Corbin L. Kling ([email protected])1, Paul K. Byrne1, and Karl W. Wegmann1, 1Depart- ment of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695. Introduction: Noctis Labyrinthus on Mars boasts Landforms of Noctis Labyrinthus: The region many interesting geomorphological signatures contains abundant normal faults, pit craters (collapse indicating a complex history (Figure 1). Situated pits with circular to elliptical/elongate shapes), and between the Tharsis Rise and Valles Marineris, Noctis rampart craters (impact craters with morphologies is understudied compared with its more famous indicating volatiles were mobilized in the ejecta) neighboring regions. Noctis Labyrinthus itself contains surrounding the deep troughs (Figure 1). The troughs abundant normal faults, pit craters, and deep troughs. contain many landforms indicating mass wasting The area was first mapped in 1977 on Mariner imagery processes and hint at the presence of ice. Landslides [1], and interpreted as akin to the East African Rift dominate trough slopes, whereas periglacial landforms system with respect to the large amount of faulting and are common along troughs floors. the orientations of those faults. The formational history The occurrence of landslides and periglacial features of Noctis Labyrinthus, however, is still debated, with in the large troughs of Noctis provide useful information explanations for its deep troughs ranging from lava tube regarding the final stages of formation, and potentially collapse [2] to groundwater release through faulting give clues to what process(es) contributed to the initial pathways and psuedokarst [3, 4]. -
Underlying Structural Control of Small-Scale Faults and Fractures in West Candor Chasma, Mars C
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E11001, doi:10.1029/2012JE004144, 2012 Underlying structural control of small-scale faults and fractures in West Candor Chasma, Mars C. Birnie,1 F. Fueten,1 R. Stesky,2 and E. Hauber3 Received 29 May 2012; revised 4 September 2012; accepted 18 September 2012; published 2 November 2012. [1] Orientations of small-scale faults and fractures within the interior layered deposits of West Candor Chasma were measured to investigate what information about the geologic history of Valles Marineris they can contribute. Deformational features were separated into six categories based on morphology and their orientations were analyzed. The elevations at which the deformational features formed are recorded, as a proxy for stratigraphic level. Deformational features occur over a continuous range of elevations and display regionally consistent preferred orientations, indicating their formation was controlled by a regional stress regime. The two most abundant preferred orientations of 35 and 110 are approximately parallel to the chasma walls and the inferred underlying normal faults. The alignment of three populations of small faults at 140, consistent with the morphology of release faults, indicates a large-scale fault underlying the southeastern border of Ceti Mensa. The preferred orientations imply these small-scale deformational features formed from a continuation of the same imposed stresses responsible for the formation of Valles Marineris, indicating these stresses existed past the formation of the interior layered deposits. The origins of a fourth preferred orientation of 70 is less clear but suggests the study area has undergone at least two periods of deformation. Citation: Birnie, C., F. -
NOCTIS LANDING: a Proposed Landing Site/Exploration Zone For
NOCTIS LANDING: A Proposed Landing Site/Exploration Zone for Human Missions to the Surface of Mars Pascal Lee1,2,3, Shannen Acedillo1,2, Stephen Braham1, Adrian Brown2, Richard Elphic3, Terry Fong3, Brian Glass3, Christopher Hoftun1, Brage W. Johansen1, Kira Lorber1, David Mittlefehldt4, Yuta Tagaki1,2, Peter Thomas5, Mi- chael West1, Stephen West1, Michael Zolensky4. 1Mars Institute, NASA Research Park, Moffett Field, CA 94035, USA, [email protected]. 2SETI Institute, 3NASA Ames Research Center, 4NASAJohnson Space Center, 5Cornell University. Exploration Zone Name: Noctis Landing Landing Site Coordinates: 6o 29’ 38.33” S, 92o 27’ 12.34” W. The proposed Noctis Landing Landing Site/Exploration Zone (LS/EZ) is shown in Figure 1. Our preliminary study suggests that the proposed site meets all key Science and Resources (incl. Civil Engineering) requirements. The site is of significant interest, as the EZ not only offers a large number and wide range of regions of interest (ROIs) for short-term exploration, it is also located strategically at the crossroads between Tharsis and Valles Marineris, which are key for long-term exploration. Figure 1: Map of the Noctis Landing LS/EZ. The solid red circle marks the distance of 100 km radial range from the Landing Site (LS), defining the primary Exploration Zone (EZ). The dotted red circle marks 200 km radial range from the LS. Areas circled (or ellipsed) in blue are high value science targets located within the primary EZ. Areas outlined in yellow are high-value science targets located outside the EZ, but within 200 km radial range from the LS. White dotted lines represent potential paths for pressurized rover traverses. -
Gypsum, Opal, and Fluvial Channels Within a Trough of Noctis
Planetary and Space Science 87 (2013) 130–145 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Gypsum, opal, and fluvial channels within a trough of Noctis Labyrinthus, Mars: Implications for aqueous activity during the Late Hesperian to Amazonian Catherine M. Weitz a,n, Janice L. Bishop b, John A. Grant c a Planetary Science Institute, 1700 E. Fort Lowell, Suite 106, Tucson, AZ 85719, United States b SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, United States c Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, 6th at Independence Ave. SW, Washington, DC 20560, United States article info abstract Article history: We investigate in detail the morphology, mineralogy, and stratigraphy of light-toned deposits within one Received 27 March 2013 trough of Noctis Labyrinthus, centered at À6.81N, 261.11E. CRISM spectra taken from light-toned layered Received in revised form deposits in the northern portion of the trough exhibit absorptions around 1.41, 1.92 and 2.21 μm, 3 July 2013 consistent with mixtures of opal and Al-clays that are exposed beneath younger lava flows and between Accepted 8 August 2013 high-standing mesas of chaotic terrain. In the southern portion of the trough, opal occurs as a patchy Available online 22 August 2013 surficial deposit along the southwestern lower wall. Gypsum appears to be present in the southern Keywords: portion of the trough where spectra show triplet absorptions at 1.44, 1.48, and 1.54 μm, and additional Mars absorptions at 1.20, 1.74, 1.95, 2.22, 2.27, and 2.49 μm. -
11Th International Congress for Veterinary Virology 12Th Annual Meeting of EPIZONE
11th International Congress for Veterinary Virology 12th Annual Meeting of EPIZONE August 27–30, 2018 University of Veterinary Medicine Vienna © Vetmeduni Vienna © Vetmeduni Table of contents Programme at a glance 4 General information 8 Location 10 Committees 11 Sponsors 11 Programme 12 Monday, August 27, 2018 12 Opening & Plenary Session 1 12 Tuesday, August 28, 2018 13 Plenary Session 2 13 Oral Sessions 1 & 2 13 Poster Sessions 1 & 2 15 Plenary Session 3 15 Oral Session 3 15 Wednesday, August 29, 2018 20 Plenary Session 4 20 Oral Sessions 4 & 5 20 Poster Sessions 3 & 4 22 Oral Session 6 22 Thursday, August 30, 2018 27 Closing Session 27 Oral Session 7 27 4 Programme at a glance Monday, August 27, 2018 Time “Festsaal” “Festsaal” building “Festsaal” building Main Hall Ground floor Ground floor & 1st floor 14:00–16:00 Registration 16:00–16:30 Opening session Welcome to Vienna, Norbert Nowotny & Till Rümenapf Welcome address by the President of ESVV, Emmanuel Albina Welcome address by the President of EPIZONE, Wim van der Poel 16:30–18:30 Plenary session 1 Keynote lecture 1 Veterinary virology in the post truth era Ilaria Capua Podium discussion with representatives of OIE, FAO/IAEA, EFSA, ECDC and the Austrian Federal Ministry of Labour, Social Affairs, Health and Consumer Protection How do international organizations involved in animal health deal with the challenges in veterinary virology 2018? 18:30–18:40 Conference opening by the Rector of the University of Veterinary Medicine Vienna, Petra Winter 18:45–21:30 Welcome Reception ESVV 2018 | 11th International Congress for Veterinary Virology Programme at a glance Tuesday, August 28, 2018 Time Lecture Hall Main Hall Lecture Hall “Festsaal” building “Hörsaal” B “Festsaal” “Hörsaal” M Ground floor 08:30–10:00 Plenary session 2 Registration Keynote lectures 2 & 3 Martin Groschup Zoonotic arboviruses – enhancing our awareness Anthony R. -
Programme Book
EPSC2018 European Planetary Science Congress 2018 16–21 September 2018 TU Berlin | Berlin | Germany Programme Book © TU Berlin/Dahl access to access to cafeteria area first floor area Information & registration Jupiter room Ground floor area H0104 Ground floor area EPSCEuropean Planetary Science Congress Mars Venus Saturn Uranus Neptune room room room room room H0112 H0111 H0110 H0107 H0106 access to ground floor area Cafeteria area Cafeteria area EPSCEuropean Planetary Science Congress Mercury Press conference Press room room room H2035 H2036 H2037 Second floor area Second floor area EPSCEuropean Planetary Science Congress EEuropeaPn PlanetarSy Science CCongress Table of contents 1 Welcome …………………………………2 General information …………………………………4 Exhibitors, Community events …………………………………6 Splinter meetings & workshops .………………………….….…7 Session overview ……………………………..….8 Monday – Oral programme ..……………………………….9 Tuesday – Oral programme ……………………………….19 Tuesday – Poster programme .………………………………30 Wednesday – Oral programme .……….…………………..…42 Wednesday – Poster programme .………………………………51 Thursday – Oral programme ……………………………….60 Thursday – Poster programme ……………………………….71 Friday – Oral programme ……………………………….81 Author index ……………………………….91 European Planetary Science Congress 2018 2 Welcome Message from the Organizers amateur astronomers, policy makers, the next generation of scientists and engineers, and On behalf of the Executive Committee, the planetary scientists around the world. Scientific Organizing Committee and the Local Organizing Committee, welcome -
A Proposed Future Mars Landing Site in Noctis Labyrinthus
42nd Lunar and Planetary Science Conference (2011) 1874.pdf A PROPOSED FUTURE MARS LANDING SITE IN NOCTIS LABYRINTHUS. C. M. Weitz1 and J. L. Bishop2, 1Planetary Science Institute, 1700 E Fort Lowell, Suite 106, Tucson, AZ 85719, [email protected]; 2The SETI Institute&NASA-Ames Research Center, Mountain View, CA 94043. Introduction: We have studied the geologic set- ting and identified candidate rover traverses and scien- Table 1: Noctis Labyrinthus Landing Site tific targets within a proposed landing ellipse in one of Site Name Noctis Labyrinthus the troughs of Noctis Labyrinthus (Figure 1). A stereo Center Coordinates 261.03E, -6.86N pair of HiRISE images covering a portion of the trough Latitude, longitude was used to produce a Digital Terrain Model (DTM). Elevation 2.22 km wrt MOLA CRISM spectral parameter maps were then co- Ellipse Size 15 km by 10 km registered and overlain on the DTM to aide in the in- Prime Science Tar- Smectites, Gypsum, Opal terpretation of stratigraphic relationships. The prime gets [Highest Priority], science targets are not within the 15x10 km landing Other light-toned units of ellipse but rather a few kms southwest of the ellipse uncertain composition, and include possible Al-smectites, Ca-sulfates (gyp- valleys, mesas, and Ama- sum or bassanite), and hydrated silica (opal) [1,2]. A zonian volcanics [Lower landing site within this trough could potentially ad- Priority] dress questions concerning the ages, setting, and for- Distance of Science Smectites – 8 km to SW mation of clays and sulfates, including the potential Targets from Ellipse Gypsum, Opal – 12 km to habitability of this region in the martian past. -
Evolution of Major Sedimentary Mounds on Mars: Build-Up Via Anticompensational Stacking Modulated by Climate Change
Evolution of major sedimentary mounds on Mars: build-up via anticompensational stacking modulated by climate change Edwin S. Kite1,*, Jonathan Sneed1, David P. Mayer1, Kevin W. Lewis2, Timothy I. Michaels3, Alicia Hore4, Scot C.R. Rafkin5. 1. University of Chicago. 2. Johns Hopkins University. 3. SETI Institute. 4. Brock University. 5. Southwest Research Institute. (*[email protected]) Abstract. We present a new database of >300 layer-orientations from sedimentary mounds on Mars. These layer orientations, together with draped landslides, and draping of rocks over differentially- eroded paleo-domes, indicate that for the stratigraphically-uppermost ~1 km, the mounds formed by the accretion of draping strata in a mound-shape. The layer-orientation data further suggest that layers lower down in the stratigraphy also formed by the accretion of draping strata in a mound-shape. The data are consistent with terrain-influenced wind erosion, but inconsistent with tilting by flexure, differential compaction over basement, or viscoelastic rebound. We use a simple landscape evolution model to show how the erosion and deposition of mound strata can be modulated by shifts in obliquity. The model is driven by multi-Gyr calculations of Mars’ chaotic obliquity and a parameterization of terrain-influenced wind erosion that is derived from mesoscale modeling. Our results suggest that mound-spanning unconformities with kilometers of relief emerge as the result of chaotic obliquity shifts. Our results support the interpretation that Mars’ rocks record intermittent liquid-water runoff during a 108-yr interval of sedimentary rock emplacement. 1. Introduction. Understanding how sediment accumulated is central to interpreting the Earth’s geologic records (Allen & Allen 2013, Miall 2010). -
Table 1: Classical Albedo Names from Ancient Geography
Gangale & Dudley-Flores Proposed Additions to the Cartographic Database of Mars 18 Table 1: Classical Albedo Names From Ancient Geography Feature Name Type Latitude East Longitude Origin Usage Abalos Undae Undae 78.52 272.5 A district of Scandinavia, thought to be an island, noted for amber. Abalos Colles Colles 76.83 288.35 A district of Scandinavia, thought to be an island, noted for amber. Abalos Mensa Mensa 81.17 284.4 A district of Scandinavia, thought to be an island, noted for amber. Abalos Scopuli Scopuli 80.72 283.44 A district of Scandinavia, thought to be an island, noted for amber. Abus Vallis Vallis -5.49 212.8 Classical name for Humber River in England. Acheron Catena Catena 37.47 259.2 "Joyless" in Greek. 1) A river of Bithynia, falling into the Euxine near Heraclea. 2) A river of Bruttium, falling into the Crathis flume near Consentia. 3) A river of Epirus, falling into the Adriatic at Glykys portus. There was an oracle on its banks, where the dead were evoked. In Greek mythology, the son of Gaea and Demeter, turned into the river of woe in the underworld as a punishment for supplying the Titans with water in their struggle with Zeus. 4) a River of Triphylia, falling into the Alpheus near Typana. Gangale & Dudley-Flores Proposed Additions to the Cartographic Database of Mars 19 Feature Name Type Latitude East Longitude Origin Usage Acheron Fossae Fossae 38.27 224.98 "Joyless" in Greek. 1) A river of Bithynia, falling into the Euxine near Heraclea. 2) A river of Bruttium, falling into the Crathis flume near Consentia. -
Stephen Mackwell – Director Dr
APPENDIX 1 Research Productivity of Staff Scientists January 2002–September 2003 Dr. Stephen Mackwell – Director Dr. Steve Clifford – Staff Scientist Dr. Robbie Herrick – Staff Scientist Dr. Walter Kiefer – Staff Scientist Dr. Laurel Kirkland – Postdoctoral Fellow Dr. Pat McGovern – Staff Scientist Dr. Julie Moses – Associate Staff Scientist Dr. Paul Schenk – Staff Scientist Dr. Tom Stepinski – Staff Scientist Dr. Alan Treiman – Senior Staff Scientist 36 STEPHEN MACKWELL Director RESEARCH FOCUS: PLANETARY MATERIALS — Laboratory-based research into the physical, chemical and mechanical properties of geological materials under conditions relevant to the mantle and crust of Earth and other terrestrial planets. Transport of fluid components in mantle and crustal rocks on the microscopic and macroscopic scales, and on the effects of such components on mechanical properties. RESEARCH ACTIVITY SINCE JANUARY 1, 2002 — Refereed Publications: Bolfan-Casanova, N., Mackwell S., Keppler H., and Rubie D. C. Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth’s lower mantle, Geophys. Res. Letters, 29(10), 10.1029/2001GL014457, 2002. Jacobsen S. D., Reichmann H. J., Spetzle H. A., Mackwell S. J., Smyth J. R., Angel R. J., and McCammon C. A. Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating GHz-frequency shear waves for ultrasonics. J. Geophys. Res, 107, 1029/2001JB000490, 2002. Jacobsen S. D., Spetzler H. A., Reichmann H. J., Smyth J. R., Mackwell S. J., Angel R. J., and Bassett W. A. Gigahertz ultrasonic interferometry at high P and T: New tools for obtaining a thermodynamic equation of state.