Whole Exome Sequencing Analyses Reveal Gene–Microbiota Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Whole Exome Sequencing Analyses Reveal Gene–Microbiota Interactions Inflammatory bowel disease Original research Whole exome sequencing analyses reveal gene– Gut: first published as 10.1136/gutjnl-2019-319706 on 10 July 2020. Downloaded from microbiota interactions in the context of IBD Shixian Hu ,1,2 Arnau Vich Vila ,1,2 Ranko Gacesa,1,2 Valerie Collij,1,2 Christine Stevens,3 Jack M Fu,4,5,6 Isaac Wong,4,5 Michael E Talkowski,4,5,6,7,8 Manuel A Rivas,9 Floris Imhann,1,2 Laura Bolte,1,2 Hendrik van Dullemen,1 Gerard Dijkstra ,1 Marijn C Visschedijk,1 Eleonora A Festen,1 Ramnik J Xavier,10,11 Jingyuan Fu,2,12 Mark J Daly,3 Cisca Wijmenga,2 Alexandra Zhernakova,2 Alexander Kurilshikov,2 Rinse K Weersma 1 ► Additional material is ABSTRact published online only. To view Objective Both the gut microbiome and host genetics Significance of this study please visit the journal online are known to play significant roles in the pathogenesis (http:// dx. doi. org/ 10. 1136/ What is already known about this subject? gutjnl- 2019- 319706). of IBD. However, the interaction between these two factors and its implications in the aetiology of IBD remain ► Gene–microbiome interactions are important in For numbered affiliations see the pathogenesis of IBD. end of article. underexplored. Here, we report on the influence of host genetics on the gut microbiome in IBD. ► Multiple genetic and epidemiological factors have been identified to be associated to Correspondence to Design To evaluate the impact of host genetics on Professor Rinse K Weersma; the gut microbiota of patients with IBD, we combined changes in gut microbiome homeostasis in both r. k. weersma@ mdl. umcg. nl whole exome sequencing of the host genome and whole IBD and the general population. genome shotgun sequencing of 1464 faecal samples ► The identified gene–microbiome interactions in SH, AVV, RG and VC are joint IBD contain mostly common genetic variants. first authors. from 525 patients with IBD and 939 population- based AZ, AK and RKW are joint senior controls. We followed a four- step analysis: (1) exome- What are the new findings? authors. wide microbial quantitative trait loci (mbQTL) analyses, ► Novel associations between common genomic (2) a targeted approach focusing on IBD- associated variants located in IBD implicated genes (MYRF, Received 23 August 2019 genomic regions and protein truncating variants (PTVs, Revised 8 April 2020 IL17REL, SEC16A and WDR78) or immune- http://gut.bmj.com/ Accepted 20 April 2020 minor allele frequency (MAF) >5%), (3) gene- based related genes (CABIN1) to the gut microbial Published Online First burden tests on PTVs with MAF <5% and exome copy features have been identified in both IBD and 10 July 2020 number variations (CNVs) with site frequency <1%, (4) the general population cohort. joint analysis of both cohorts to identify the interactions ► By using high- resolution sequencing data, we between disease and host genetics. were also able to identify rare and deleterious Results We identified 12 mbQTLs, including variants variants in five genes (GPR151, CYP2D6, TPTE2, in the IBD- associated genes IL17REL, MYRF, SEC16A LEKR1 and CD160) that may also be involved in on September 27, 2021 by guest. Protected copyright. and WDR78. For example, the decrease of the pathway the regulation of the gut microbiota. acetyl- coenzyme A biosynthesis, which is involved in ► Disease- specific host microbiota interactions short chain fatty acids production, was associated were assessed by taking into account potential with variants in the gene MYRF (false discovery rate cofounding factors such as medication use. <0.05). Changes in functional pathways involved in the metabolic potential were also observed in participants How might it impact on clinical practice in the carrying rare PTVs or CNVs in CYP2D6, GPR151 and foreseeable future? CD160 genes. These genes are known for their function ► Our research revealed the host–microbiota in the immune system. Moreover, interaction analyses interactions in context of IBD, which helps confirmed previously known IBD disease- specific mbQTLs us to understand the pathology of IBD and in TNFSF15. potentially move towards new therapeutic Conclusion This study highlights that both common targets for IBD. and rare genetic variants affecting the immune system are key factors in shaping the gut microbiota in the context of IBD and pinpoints towards potential Large- scale genome-wide association studies mechanisms for disease treatment. (GWAS) have identified more than 200 genetic loci © Author(s) (or their associated with IBD, including genes implicated in employer(s)) 2021. Re- use the immune pathways involved in responses to gut permitted under CC BY. microbes.2 Published by BMJ. INTRODUCTION Extensive changes in the composition of the gut To cite: Hu S, Vich Vila A, IBD, comprising Crohn’s disease (CD) and UC, is microbiota have been reported in patients with IBD. Gacesa R, et al. Gut a chronic inflammatory condition of the gut with Several studies have described similar alteration on 2021;70:285–296. an increasing incidence in westernised countries.1 the faecal microbiota of patients with IBD, mainly Hu S, et al. Gut 2021;70:285–296. doi:10.1136/gutjnl-2019-319706 285 Inflammatory bowel disease a decreased microbial richness, the depletion of strictly anaer- WES and data processing obic commensal species and the expansion of pathobiont.3–5 WES was performed on blood samples. Library preparation Despite these observations, the gut microbiota composition and sequencing were done at the Broad Institute of MIT and Gut: first published as 10.1136/gutjnl-2019-319706 on 10 July 2020. Downloaded from of patients with IBD is heterogeneous and mainly influenced Harvard. On average, 86.06 million high- quality reads were by disease behaviour together with the impact of clinical and generated per sample and 98.85% of reads were aligned to environmental factors.6 7 As neither genetics nor microbiome a human reference genome (hg19). Moreover, 81% of the studies have revealed the triggering factors for IBD, there is an exonic regions were covered with a read depth >30×. Next, increasing need to study host–microbial interactions in order to the Genome Analysis Toolkit21 of the Broad Institute was used understand the aetiology and progression of the disease.8 9 for variant calling. Variants with a call rate <0.99 or Hardy- To date, both mouse models and human studies have shown Weinberg equilibrium test with p<0.0001 were excluded using that IBD-associated genes interact with the intestinal micro- PLINK tool (V.1.9). To remove genetic outliers, we combined biome via regulation of the mucosal physical barrier as well as WES data with genomes of Europeans from publically available immune responses. For example, the nucleotide- binding oligo- 1000 Genome Project (phase 3) data (http://www.internation - merisation domain (NOD)- like receptor 2 (NOD2) is involved algenome. org/), and performed principal component analysis in the bacterial peptidoglycan recognition.10 It has been shown (PCA) analysis based on single nucleotide polymorphisms (SNPs) that NOD2 knock- out mice show ineffective recognition and shared between datasets. Outliers were defined as samples which clearance of bacterial pathogens. As a consequence, these mice fall outside of a mean±3 SD interval in both of the first two present increased abundances of pathogenic bacteria from the PCs, and these samples were removed. We also removed sex- Bacteroides and Escherichia genera.11–13 Another host–micro- mismatching samples based on the inbreeding coefficient (lower biome interaction involves ATG16L1, a gene implicated in than 0.4 for females and higher than 0.7 for males) and related autophagy. In patients with CD, ATG16L1- T300A mutation samples with identity- by- descent>0.185.22 GATK germline copy carriers have more pathosymbionts in their gut mucosa.14 number variant (gCNV)23 was used for copy number variant Recently, genome-wide host–microbiota association analyses (CNV) detection. GATK-gCNV uses a Bayesian model to adjust have reported correlations between variants in immune- related for known bias factors of exome capture and sequencing, such genes and microbial features. For example, IL10 has been asso- as GC content and mappability, while also controlling for other ciated with the abundance of Enterobacteriaceae15 and IL1R2 technical and systematic differences. Raw sequencing files are associated with the overall community composition (beta compressed into read counts over the set of exons defined under diversity).16 Gencode Annotation (V.33). After processing, variant quality and Host genetics–microbiome association studies have been frequency filters (<1% site frequency) are applied to produce the described in cohorts based on the general population.15 16 These final CNV callset (https:// gatkforums. broadinstitute. org/ gatk). studies tend to miss the genetics signals that are more pronounced In summary, 73 164 common variants (minor allele frequency in a disease context like IBD. On the other hand, the microbial (MAF) >5%), 98 878 rare variants (MAF <5%) and 1046 CNVs quantitative trait loci (mbQTL) studies in IBD cohorts available (site frequency <1%) from 920 LifeLines-DEEP and 435 indi- to date have been limited in either sample size or in genomic and viduals with IBD were considered for further analyses. http://gut.bmj.com/ microbiome resolution. Also details in phenotypes capturing the heterogeneity present within IBD has been lacking in previous 17 18 Metagenomic sequencing and data processing studies. The discovery of host–microbiota interactions, Metagenomic sequencing was performed for faecal samples, moreover, has been hampered by the large influence of intrinsic using the Illumina MiSeq platform. Reads belonging to the and environmental factors on the gut microbiome and relatively 19 human genome were removed by mapping the data to the human low microbial heritability. reference genome (version NCBI37) with kneaddata (V.0.5.1, The aim of this study was to expand current knowledge of on September 27, 2021 by guest.
Recommended publications
  • REPORT Germline Mutation of INI1/SMARCB1 in Familial Schwannomatosis
    REPORT Germline Mutation of INI1/SMARCB1 in Familial Schwannomatosis Theo J. M. Hulsebos, Astrid S. Plomp, Ruud A. Wolterman, Els C. Robanus-Maandag, Frank Baas, and Pieter Wesseling Patients with schwannomatosis develop multiple schwannomas but no vestibular schwannomas diagnostic of neurofi- bromatosis type 2. We report an inactivating germline mutation in exon 1 of the tumor-suppressor gene INI1 in a father and daughter who both had schwannomatosis. Inactivation of the wild-type INI1 allele, by a second mutation in exon 5 or by clear loss, was found in two of four investigated schwannomas from these patients. All four schwannomas displayed complete loss of nuclear INI1 protein expression in part of the cells. Although the exact oncogenetic mechanism in these schwannomas remains to be elucidated, our findings suggest that INI1 is the predisposing gene in familial schwannomatosis. Schwannomatosis (MIM 162091) is characterized by the 10 Only two families with an INI1 germline mutation, an development of multiple spinal, peripheral, and cranial- exon 4 frameshift mutation,11 and an exon 7 donor splice nerve schwannomas in the absence of vestibular schwan- site mutation12 have been described in which multiple nomas.1 The presence of vestibular schwannomas is di- generations were affected by malignant (rhabdoid) tumors agnostic of neurofibromatosis type 2 (NF2 [MIM 101000]). in infancy. In both of these families, clear cases of no- Molecular analyses identified somatically acquired mu- nexpressing obligate carriers of the INI1 mutation were
    [Show full text]
  • Modulated in Intestinal Inflammation A
    BTNL2, a Butyrophilin/B7-Like Molecule, Is a Negative Costimulatory Molecule Modulated in Intestinal Inflammation This information is current as Heather A. Arnett, Sabine S. Escobar, Eva Gonzalez-Suarez, of September 28, 2021. Alison L. Budelsky, Lori A. Steffen, Norman Boiani, Ming Zhang, Gerald Siu, Avery W. Brewer and Joanne L. Viney J Immunol 2007; 178:1523-1533; ; doi: 10.4049/jimmunol.178.3.1523 http://www.jimmunol.org/content/178/3/1523 Downloaded from References This article cites 40 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/178/3/1523.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology BTNL2, a Butyrophilin/B7-Like Molecule, Is a Negative Costimulatory Molecule Modulated in Intestinal Inflammation Heather A. Arnett,1* Sabine S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • MBNL1 Regulates Essential Alternative RNA Splicing Patterns in MLL-Rearranged Leukemia
    ARTICLE https://doi.org/10.1038/s41467-020-15733-8 OPEN MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia Svetlana S. Itskovich1,9, Arun Gurunathan 2,9, Jason Clark 1, Matthew Burwinkel1, Mark Wunderlich3, Mikaela R. Berger4, Aishwarya Kulkarni5,6, Kashish Chetal6, Meenakshi Venkatasubramanian5,6, ✉ Nathan Salomonis 6,7, Ashish R. Kumar 1,7 & Lynn H. Lee 7,8 Despite growing awareness of the biologic features underlying MLL-rearranged leukemia, 1234567890():,; targeted therapies for this leukemia have remained elusive and clinical outcomes remain dismal. MBNL1, a protein involved in alternative splicing, is consistently overexpressed in MLL-rearranged leukemias. We found that MBNL1 loss significantly impairs propagation of murine and human MLL-rearranged leukemia in vitro and in vivo. Through transcriptomic profiling of our experimental systems, we show that in leukemic cells, MBNL1 regulates alternative splicing (predominantly intron exclusion) of several genes including those essential for MLL-rearranged leukemogenesis, such as DOT1L and SETD1A.Wefinally show that selective leukemic cell death is achievable with a small molecule inhibitor of MBNL1. These findings provide the basis for a new therapeutic target in MLL-rearranged leukemia and act as further validation of a burgeoning paradigm in targeted therapy, namely the disruption of cancer-specific splicing programs through the targeting of selectively essential RNA binding proteins. 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA. 2 Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA. 3 Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
    [Show full text]
  • The H3.3 Chaperone Hira Complex Orchestrates Oocyte Developmental Competence
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114124; this version posted May 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The H3.3 chaperone Hira complex orchestrates oocyte developmental competence Rowena Smith1, *, Zongliang Jiang2, *, Andrej Susor3, Hao Ming2, Janet Tait1, Marco Conti4, and Chih-Jen Lin1,5 1MRC Centre For Reproductive Health, University oF Edinburgh Queen’s Medical Research Institute 47 Little France Crescent, Edinburgh, United Kingdom, EH16 4TJ 2 School oF Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, 70803, USA 3 Laboratory oF Biochemistry and Molecular Biology oF Germ Cells, Institute oF Animal Physiology and Genetics, CAS, Rumburska 89, 277 21 Libechov, Czech Republic 4Center For Reproductive Sciences, University oF CaliFornia, San Francisco, CA 94143, USA 5To whom correspondence should be addressed. Tel: +44 131 242 6237; Email: [email protected] *equal contribution bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114124; this version posted May 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Reproductive success relies on a healthy oocyte competent For Fertilisation and capable of sustaining early embryo development. By the end oF oogenesis, the oocyte is characterised by a transcriptionally silenced state, but the signiFicance oF this state and how it is achieved remains poorly understood.
    [Show full text]
  • SUMF1 Enhances Sulfatase Activities in Vivo in Five Sulfatase Deficiencies
    SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies Alessandro Fraldi, Alessandra Biffi, Alessia Lombardi, Ilaria Visigalli, Stefano Pepe, Carmine Settembre, Edoardo Nusco, Alberto Auricchio, Luigi Naldini, Andrea Ballabio, et al. To cite this version: Alessandro Fraldi, Alessandra Biffi, Alessia Lombardi, Ilaria Visigalli, Stefano Pepe, et al.. SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies. Biochemical Journal, Portland Press, 2007, 403 (2), pp.305-312. 10.1042/BJ20061783. hal-00478708 HAL Id: hal-00478708 https://hal.archives-ouvertes.fr/hal-00478708 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biochemical Journal Immediate Publication. Published on 8 Jan 2007 as manuscript BJ20061783 SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies Alessandro Fraldi*1, Alessandra Biffi*2,3¥, Alessia Lombardi1, Ilaria Visigalli2, Stefano Pepe1, Carmine Settembre1, Edoardo Nusco1, Alberto Auricchio1, Luigi Naldini2,3, Andrea Ballabio1,4 and Maria Pia Cosma1¥ * These authors contribute equally to this work 1TIGEM, via P Castellino, 111, 80131 Naples, Italy 2San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), H. San Raffaele Scientific Institute, Milan 20132, Italy 3Vita Salute San Raffaele University Medical School, H.
    [Show full text]
  • Bioinformatics Classification of Mutations in Patients with Mucopolysaccharidosis IIIA
    Metabolic Brain Disease (2019) 34:1577–1594 https://doi.org/10.1007/s11011-019-00465-6 ORIGINAL ARTICLE Bioinformatics classification of mutations in patients with Mucopolysaccharidosis IIIA Himani Tanwar1 & D. Thirumal Kumar1 & C. George Priya Doss1 & Hatem Zayed2 Received: 30 April 2019 /Accepted: 8 July 2019 /Published online: 5 August 2019 # The Author(s) 2019 Abstract Mucopolysaccharidosis (MPS) IIIA, also known as Sanfilippo syndrome type A, is a severe, progressive disease that affects the central nervous system (CNS). MPS IIIA is inherited in an autosomal recessive manner and is caused by a deficiency in the lysosomal enzyme sulfamidase, which is required for the degradation of heparan sulfate. The sulfamidase is produced by the N- sulphoglucosamine sulphohydrolase (SGSH) gene. In MPS IIIA patients, the excess of lysosomal storage of heparan sulfate often leads to mental retardation, hyperactive behavior, and connective tissue impairments, which occur due to various known missense mutations in the SGSH, leading to protein dysfunction. In this study, we focused on three mutations (R74C, S66W, and R245H) based on in silico pathogenic, conservation, and stability prediction tool studies. The three mutations were further subjected to molecular dynamic simulation (MDS) analysis using GROMACS simulation software to observe the structural changes they induced, and all the mutants exhibited maximum deviation patterns compared with the native protein. Conformational changes were observed in the mutants based on various geometrical parameters, such as conformational stability, fluctuation, and compactness, followed by hydrogen bonding, physicochemical properties, principal component analysis (PCA), and salt bridge analyses, which further validated the underlying cause of the protein instability. Additionally, secondary structure and surrounding amino acid analyses further confirmed the above results indicating the loss of protein function in the mutants compared with the native protein.
    [Show full text]
  • EGL Test Description
    2460 Mountain Industrial Boulevard | Tucker, Georgia 30084 Phone: 470-378-2200 or 855-831-7447 | Fax: 470-378-2250 eglgenetics.com Mucopolysaccharidosis Type III: SGSH, GNS, HGSNAT, and NAGLU Gene Deletion/Duplication Panel Test Code: HV Turnaround time: 2 weeks CPT Codes: 81228 x1 Condition Description Mucopolysaccharidosis type III (MPS III, Sanfilippo syndrome), is a member of a group of inherited metabolic disorders collectively termed mucopolysaccharidoses (MPS's). The MPS's are caused by a deficiency of lysosomal enzymes required for the degradation of mucopolysaccharides or glycosaminoglycans (GAGs) within the lysosome [1]. When functioning normally, the lysosomal enzymes break down these GAGs, however when the enzyme is deficient, the GAGs build up in the lysosomes causing damage to the body's tissues. The MPS's share a chronic progressive course with multisystem involvement and characteristic physical features such as coarse facies, hypertelorism, and coarse hair. The MPS patients are also characterized by developmental regression, hepatosplenomegaly and characteristic laboratory and radiographic abnormalities. Clinical features of MPS III are similar to other MPS's and include hyperactivity, aggressiveness, and developmental delays in childhood. Mental abilities decline as the disease progresses. Involvement of other organ systems tends to be mild and dysmorphic features are more subtle than those observed in other type of mucopolysaccharidosis [1]. MPS III is caused by a deficiency of any of four lysosomal membrane enzymes, which leads to impaired degradation of heparan sulfate. The forms of MPS III are clinically indistinguishable each other and are caused by mutations in distinct genes. All four forms of MPS III result in buildup of the same GAG, heparin sulfate.
    [Show full text]
  • Control Association Analysis of CABIN1 with Schizophrenia in a Japanese Population
    Journal of Human Genetics (2010) 55, 179–181 & 2010 The Japan Society of Human Genetics All rights reserved 1434-5161/10 $32.00 www.nature.com/jhg SHORT COMMUNICATION A case–control association analysis of CABIN1 with schizophrenia in a Japanese population Yuichiro Watanabe1,2, Ayako Nunokawa1, Naoshi Kaneko1 and Toshiyuki Someya1 Calcineurin (CN) is a calcium/calmodulin-dependent serine/threonine protein phosphatase and regulates neuronal structure, neurotransmission and activity-dependent gene expression. Several studies have indicated that CN signaling is likely to be involved in the pathogenesis of schizophrenia. The gene encoding CN-binding protein 1 (CABIN1) is located on 22q11.23, one of the common susceptibility loci for schizophrenia. Therefore, CABIN1 is a promising functional and positional candidate gene for schizophrenia. To assess whether CABIN1 is implicated in vulnerability to schizophrenia, we conducted a case–control association study between CABIN1 and schizophrenia. The results showed no evidence of an association between CABIN1 and schizophrenia using 11 tagging single nucleotide polymorphisms in 1193 Japanese subjects. Our results suggest that CABIN1 may not confer increased susceptibility for schizophrenia in the Japanese population. Journal of Human Genetics (2010) 55, 179–181; doi:10.1038/jhg.2009.136; published online 15 January 2010 Keywords: CABIN1; case–control study; schizophrenia; tagging SNP Schizophrenia is a complex genetic disorder that affects approximately one study. Fallin et al.10 examined seven polymorphisms in CABIN1 1% of the global population. The pathogenesis of schizophrenia is with an average density of one marker per 20.9 kb and failed to find currently unclear, but there is cumulative evidence that calcineurin any association with schizophrenia.
    [Show full text]
  • Mucopolysaccharidosis Type IIIA, and a Child with One SGSH Mutation and One GNS Mutation Is a Carrier
    Mucopolysaccharidosis type III What is mucopolysaccharidosis type III? Mucopolysaccharidosis type III is an inherited metabolic disease that affects the central nervous system. Individuals with mucopolysaccharidosis type III have defects in one of four different enzymes required for the breakdown of large sugars known as glycosaminoglycans or mucopolysaccharides.1 The four enzymes, sulfamidase, alpha-N- acetylglucosaminidase, N-acetyltransferase, and N-acetylglucosamine-6-sulfatase, are associated with mucopolysaccharidosis types IIIA, IIIB, IIIC, and IIID, respectively.2-5 The signs and symptoms of all subtypes of mucopolysaccharidosis type III are similar and due to the build-up of the large sugar molecular heparan sulfate within lysosomes in cells. Mucopolysaccharidosis type III belongs to a group of diseases called lysosomal storage disorders and is also known as Sanfilippo syndrome.6 What are the symptoms of mucopolysaccharidosis type III and what treatment is available? Symptoms of mucopolysaccharidosis type III vary in severity and age at onset and are progressive. Affected individuals typically show no symptoms at birth.6 Signs and symptoms are typically seen in early childhood and may include:7 • Developmental and speech delays • Progressive cognitive deterioration and behavioral problems • Sleep disturbances • Frequent infections • Cardiac valve disease • Umbilical or groin hernias • Mild hepatomegaly (enlarged liver) • Decline in motor skills • Hearing loss and vision problems • Skeletal problems, including hip dysplasia and
    [Show full text]
  • FSHD Region Gene 1 (FRG1) Is Crucial for Angiogenesis Linking FRG1 to Facioscapulohumeral Muscular Dystrophy-Associated Vasculopathy
    University of Massachusetts Medical School eScholarship@UMMS Peter Jones Lab Publications Cell and Developmental Biology Laboratories 2009-05-01 FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy Ryan Wuebbles University of Illinois at Urbana-Champaign Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/peterjones Part of the Cell Biology Commons, Developmental Biology Commons, Molecular Biology Commons, Molecular Genetics Commons, Musculoskeletal Diseases Commons, and the Nervous System Diseases Commons Repository Citation Wuebbles R, Hanel ML, Jones PL. (2009). FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy. Peter Jones Lab Publications. https://doi.org/10.1242/dmm.002261. Retrieved from https://escholarship.umassmed.edu/ peterjones/11 Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Peter Jones Lab Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Disease Models & Mechanisms 2, 267-274 (2009) doi:10.1242/dmm.002261 RESEARCH ARTICLE FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy Ryan D. Wuebbles1,*, Meredith L. Hanel1,* and Peter L. Jones1,‡ SUMMARY The genetic lesion that is diagnostic for facioscapulohumeral muscular dystrophy (FSHD) results in an epigenetic misregulation of gene expression, which ultimately leads to the disease pathology. FRG1 (FSHD region gene 1) is a leading candidate for a gene whose misexpression might lead to FSHD.
    [Show full text]
  • Gene Expression During Normal and FSHD Myogenesis Tsumagari Et Al
    Gene expression during normal and FSHD myogenesis Tsumagari et al. Tsumagari et al. BMC Medical Genomics 2011, 4:67 http://www.biomedcentral.com/1755-8794/4/67 (27 September 2011) Tsumagari et al. BMC Medical Genomics 2011, 4:67 http://www.biomedcentral.com/1755-8794/4/67 RESEARCHARTICLE Open Access Gene expression during normal and FSHD myogenesis Koji Tsumagari1, Shao-Chi Chang1, Michelle Lacey2,3, Carl Baribault2,3, Sridar V Chittur4, Janet Sowden5, Rabi Tawil5, Gregory E Crawford6 and Melanie Ehrlich1,3* Abstract Background: Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods: Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results: Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis- specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction.
    [Show full text]