The Status of Pollutants in the Three Gorges Reservoir Area, China and Its Ecological Health Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Protected Areas Through Networking and Implementation of “Ecological Red-Line”
Enhancing effectiveness of Marine Protected Areas through networking and implementation of “Ecological Red-line” Linlin Zhao the First Institute of Oceanography, SOA 18/11/2015 DADANG, VIETNAM Content Current situation of China’s Marine 1 Protected Area 3 The case of Dongying City enhancing 2 effectiveness of Marine Protected Areas 5 Outline Current situation of China’s Marine 1 Protected Area 3 The case of Dongying City enhancing 2 effectiveness of Marine Protected Areas 5 Marine ecosystems Mangrove Seagrass bed Coral reef 5 Island Coastal wetland Estuary coastal wetlands Shuang Taizi River Yalu River Yellow River Subei Shoal Patch 5 Yangtze River Estuary coastal wetlands 黄河口 Yalu River Shuang Taizi River Yellow River 5 Yangtze River Subei Shoal Patch Environmental destruction 5 China MPAs Marine nature reserve MNR To protect and keep natural TypicalTypical ImportantImportant andand NaturalNatural relicsrelics ecosystemecosystem endangeredendangered andand otherother speciesspecies resourcesresources Marine special To keep services MSPA protected area and sustainable use SpecialSpecial MarineMarine geographicalgeographical OceanOcean parkpark MarineMarine resourceresource ecosystemecosystem locationslocations Marine protected areas Number of marine protected areas: 260 National marine protected areas: 93 Marine nature reserve: 34 Marine special protected: 69 Total area: more than 100, 000 km2 Ecosystem: mangrove, coral reef, salt marsh, estuary, bay, island, lagoon et al Endangered species: amphioxus, spotted seals, dolphins, sea turtles and other rare and endangered marine species National marine protected areas Outline Current situation of China’s Marine 1 Protected Area 3 The case of Dongying City enhancing 2 effectiveness of Marine Protected Areas 5 Location of Dongying City a. North of Shandong Province, in the center of Yellow River Delta; b. -
Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan
International Journal of Environmental Research and Public Health Article Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan Tatiana Chizhova 1,*, Yuliya Koudryashova 1, Natalia Prokuda 2, Pavel Tishchenko 1 and Kazuichi Hayakawa 3 1 V.I.Il’ichev Pacific Oceanological Institute FEB RAS, 43 Baltiyskaya Str., Vladivostok 690041, Russia; [email protected] (Y.K.); [email protected] (P.T.) 2 Institute of Chemistry FEB RAS, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia; [email protected] 3 Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; [email protected] * Correspondence: [email protected]; Tel.: +7-914-332-40-50 Received: 11 June 2020; Accepted: 16 August 2020; Published: 19 August 2020 Abstract: The seasonal polycyclic aromatic hydrocarbon (PAH) variability was studied in the estuaries of the Partizanskaya River and the Tumen River, the largest transboundary river of the Sea of Japan. The PAH levels were generally low over the year; however, the PAH concentrations increased according to one of two seasonal trends, which were either an increase in PAHs during the cold period, influenced by heating, or a PAH enrichment during the wet period due to higher run-off inputs. The major PAH source was the combustion of fossil fuels and biomass, but a minor input of petrogenic PAHs in some seasons was observed. Higher PAH concentrations were observed in fresh and brackish water compared to the saline waters in the Tumen River estuary, while the PAH concentrations in both types of water were similar in the Partizanskaya River estuary, suggesting different pathways of PAH input into the estuaries. -
Soil Heavy Metal Contamination Assessment in the Hun-Taizi River Watershed, China Wei Zhang1, Miao Liu2 ✉ & Chunlin Li2
www.nature.com/scientificreports OPEN Soil heavy metal contamination assessment in the Hun-Taizi River watershed, China Wei Zhang1, Miao Liu2 ✉ & Chunlin Li2 The Hun-Taizi River watershed includes the main part of the Liaoning central urban agglomeration, which contains six cities with an 80-year industrial history. A total of 272 samples were collected from diferent land use areas within the study area to estimate the concentration levels, spatial distributions and potential sources of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) with a geographic information system (GIS), principal component analysis (PCA) and canonical correspondence analysis (CCA). Only the concentration of Cd was over the national standard value (GB 15618–2018). However, the heavy metal concentrations at 24.54%, 71.43%, 63.37%, 85.71, 70.33%, 53.11%, and 72.16% of the sampling points were higher than the local soil background values for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, respectively, which were used as standard values in this study. The maximal values of Cd (16.61 times higher than the background value) and Hg (12.18 times higher than the background value) had high concentrations, while Cd was present in the study area at higher values than in some other basins in China. Cd was the primary pollutant in the study area due to its concentration and potential ecological risk contribution. The results of the potential ecological risk index (RI) calculation showed that the overall heavy metal pollution level of the soil was considerably high. -
Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China
International Journal of Environmental Research and Public Health Article Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China Jiabo Chen 1,2,*, Fayun Li 1,2,*, Zhiping Fan 1,2 and Yanjie Wang 1,2 1 National & Local United Engineering Laboratory of Petroleum Chemical Process Operation, Optimization and Energy Conservation Technology, Liaoning Shihua University, Fushun 113001, China; [email protected] (Z.F.); [email protected] (Y.W.) 2 Institute of Eco-Environmental Sciences, Liaoning Shihua University, Fushun 113001, China * Correspondence: [email protected] or [email protected] (J.C.); [email protected] (F.L.); Tel.: +86-24-5686-3019 (J.C. & F.L.); Fax: +86-24-5686-3960 (J.C. & F.L.) Academic Editor: Jamal Jokar Arsanjani Received: 10 July 2016; Accepted: 17 October 2016; Published: 21 October 2016 Abstract: Source apportionment of river water pollution is critical in water resource management and aquatic conservation. Comprehensive application of various GIS-based multivariate statistical methods was performed to analyze datasets (2009–2011) on water quality in the Liao River system (China). Cluster analysis (CA) classified the 12 months of the year into three groups (May–October, February–April and November–January) and the 66 sampling sites into three groups (groups A, B and C) based on similarities in water quality characteristics. Discriminant analysis (DA) determined that temperature, dissolved oxygen (DO), pH, chemical oxygen demand (CODMn), 5-day biochemical + oxygen demand (BOD5), NH4 –N, total phosphorus (TP) and volatile phenols were significant variables affecting temporal variations, with 81.2% correct assignments. Principal component analysis (PCA) and positive matrix factorization (PMF) identified eight potential pollution factors for each part of the data structure, explaining more than 61% of the total variance. -
Native Place, City, and Nation: Regional Networks and Identities in Shanghai, 1853-1937
Preferred Citation: Goodman, Bryna. Native Place, City, and Nation: Regional Networks and Identities in Shanghai, 1853-1937. Berkeley: University of California Press, c1995 1995. http://ark.cdlib.org/ark:/13030/ft0m3nb066/ Native Place, City, and Nation Regional Networks and Identities in Shanghai, 1853-1937 Bryna Goodman UNIVERSITY OF CALIFORNIA PRESS Berkeley · Los Angeles · Oxford © 1995 The Regents of the University of California for my parents Preferred Citation: Goodman, Bryna. Native Place, City, and Nation: Regional Networks and Identities in Shanghai, 1853-1937. Berkeley: University of California Press, c1995 1995. http://ark.cdlib.org/ark:/13030/ft0m3nb066/ for my parents Acknowledgments My greatest intellectual debt is to my advisors at Stanford University, Harold Kahn and Lyman Van Slyke, who guided me through a dissertation on this topic and whose careful readings and insightful criticisms challenged and inspired me over the course of many revisions. They created a rare atmosphere of intellectual collaboration at Stanford and set high standards for teaching, scholarship and integrity. I would also like to thank Carol Benedict, Prasenjit Duara, Joseph Esherick, Christian Henriot, Wendy Larson and two anonymous readers for the press, each of whom provided detailed, thoughtful and provocative readings of my full manuscript, substantially enriching its quality. Susan Mann helped guide my initial formulation of my topic and provided insightful suggestions at various points along the way. During a postdoctoral year at the University of California at Berkeley I benefited from the presence of Frederic Wakeman and Yeh Wen-hsin, who took time to read and comment on my work and who challenged me with the breadth of their own work on Shanghai and related topics. -
International Aid and China's Environment
International Aid and China’s Environment Rapid economic growth in the world’s most populous nation is leading to widespread soil erosion, desertification, deforestation and the depletion of vital natural resources. The scale and severity of environmental problems in China now threaten the economic and social foundations of its modernization. International Aid and China’s Environment analyses the relationship between international and local responses to environmental pollution problems in China. The book challenges the prevailing wisdom that weak compliance is the only constraint upon effective environmental management in China. It makes two contributions. First, it constructs a conceptual framework for understanding the key dimensions of environmental capacity. This is broadly defined to encompass the financial, institutional, technological and social aspects of environmental management. Second, the book details the implementation of donor-funded environmental projects in both China’s poorer and relatively developed regions. Drawing upon extensive fieldwork, it seeks to explain how, and under what conditions, international donors can strengthen China’s environmental capacity, especially at the local level. It will be of interest to those studying Chinese politics, environmental studies and international relations. Katherine Morton is a Fellow in the Department of International Relations, Research School of Pacific and Asian Studies at the ANU in Australia. Routledge Studies on China in Transition Series Editor: David S. G. Goodman 1 The -
Assessment of the Degree of Hydrological Indicators Alteration Under Climate Change
Advances in Engineering Research (AER), volume 143 6th International Conference on Energy and Environmental Protection (ICEEP 2017) Assessment of the degree of hydrological indicators alteration under climate change Chunxue Yu1,2, a, Xin’an Yin3,b, Zhifeng Yang 2,3,c and Zhi Dang1,d 1 School of Environmental Science and Engineering, South China University of Technology, University Town, Guangzhou, China 2 Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, China 3 State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing, China [email protected], [email protected], [email protected], [email protected] Keywords: Reservoir storage; Ecological requirement; Optimization model; Climate change. Abstract. The native biodiversity and integrity of riverine ecosystems are dependent on the natural flow regime. Maintaining the natural variability of flow in regulated river is the most important principle for the operation and management of environmental flow (e-flow). However, climate change has altered the natural flow regime of rivers. Flow regime alteration is regarded as one major cause leading to the degradation of riverine ecosystems. It is necessary to incorporate the impacts of climate changes into e-flow management. To provide scientific target for e-flow management, the assessment method for flow regime alteration is developed. We analyze the alteration of hydrological indicator under climate change. This study has selected the commonly used Indicators of Hydrologic Alteration (IHAs) to describe the various aspects of flow regimes. To assess the alteration degree of each IHA in regulated river under climate change, GCM is used to generate feasible future climate conditions and hydrological model is used generate flow of river from those future weather conditions. -
Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: a Case Study of the Dongjiang River Basin, Southeastern China
Water 2015, 7, 4427-4445; doi:10.3390/w7084427 OPEN ACCESS water ISSN 2073-4441 www.mdpi.com/journal/water Article Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China Jiao Ding 1,2, Yuan Jiang 1,2,*, Lan Fu 3, Qi Liu 1,2, Qiuzhi Peng 4 and Muyi Kang 1,2 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, No.19 Xinjiekouwai Street, Haidian District, Beijing 100875, China; E-Mails: [email protected] (J.D.); [email protected] (Q.L.); [email protected] (M.K.) 2 College of Resources Science and Technology, Beijing Normal University, No.19 Xinjiekouwai Street, Haidian District, Beijing 100875, China 3 Shenzhen Academy of Environmental Sciences, No.50, 1st Honggui Street, Honggui Road, Shenzhen 518001, China; E-Mail: [email protected] 4 Faculty of Land Resource Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-10-5880-6093; Fax: +86-10-5880-9274. Academic Editor: Richard Skeffington Received: 10 June 2015 / Accepted: 4 August 2015 / Published: 12 August 2015 Abstract: Understanding the relationship between land use and surface water quality is necessary for effective water management. We estimated the impacts of catchment-wide land use on water quality during the dry and rainy seasons in the Dongjiang River basin, using remote sensing, geographic information systems and multivariate statistical techniques. -
Based on the Study of Optimal Pollutant Control in Yingkou Section of Daliaohe River
E3S Web of Conferences 228, 02015 (2021) https://doi.org/10.1051/e3sconf/202122802015 CCGEES 2020 Based on the study of optimal pollutant control in yingkou section of daliaohe river Qiucen Guo1, Hui Yang1*, Huan He1 1 School of municipal and environmental engineering, Shenyang Jianzhu University, Shenyang, Liaoning, 110168, China Abstract. In view of the complexity of the river flowing into yingkou section of daliaohe river, an optimal pollutant control screening method combining the migration and degradation of toxic and harmful pollutants was proposed to improve the comprehensive scoring method. The weight factors of 10 synthetic scoring methods were proposed, and different weights were assigned to the weight factors, focusing more on the migration and degradation of pollutants. The improved comprehensive score method was used to screen 39 pollutants in the list of potential pollutants. Twelve kinds. 1 Introduction 2 Screening of optimal control pollutants in yingkou section of The tributaries of the liao river, hun river and taizi river, join together and enter the sea separately in yingkou city, daliaohe river and the river after the confluence is called daliao river [1- 2]. As the main water source of yingkou city, the water 2.1 Overview of pollution sources in yingkou quality of daliaohe river is seriously affected by the section of daliaohe river upstream huntai river system and the city's direct drainage enterprises. Compared with other rivers, the monitoring of Yingkou section of daliaohe mainly involves chemical water quality -
Impacts of Climate Change and Human Activities on the Surface Runoff in the Wuhua River Basin
sustainability Article Impacts of Climate Change and Human Activities on the Surface Runoff in the Wuhua River Basin Zhengdong Zhang 1,*, Luwen Wan 2 , Caiwen Dong 3, Yichun Xie 4 , Chuanxun Yang 5, Ji Yang 5 and Yong Li 5 1 School of Geography Sciences, South China Normal University, Guangzhou 510631, China 2 Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI 48823, USA; [email protected] 3 The Bureau of Land and Resources Huangshi, Huangshi 435000, China; [email protected] 4 Institute for Geospatial Research and Education, Eastern Michigan University, Ypsilanti, MI 48197, USA; [email protected] 5 Guangzhou Institute of Geography, Guangzhou 510070, China; [email protected] (C.Y.); [email protected] (J.Y.); [email protected] (Y.L.) * Correspondence: [email protected]; Tel.: +86-138-0241-1132 Received: 19 July 2018; Accepted: 18 September 2018; Published: 25 September 2018 Abstract: The impacts of climate change and human activities on the surface runoff in the Wuhua River Basin (hereinafter referred to as the river basin) are explored using the Mann–Kendall trend test, wavelet analysis, and double-mass curve. In this study, all the temperature and precipitation data from two meteorological stations, namely, Wuhua and Longchuan, the measured monthly runoff data in Hezikou Hydrological Station from 1961 to 2013, and the land-cover type data in 1990 and 2013 are used. This study yields valuable results. First, over the past 53 years, the temperature in the river basin rose substantially, without obvious changes in the average annual precipitation. From 1981 to 2013, the annual runoff fluctuated and declined, and this result is essentially in agreement with the time-series characteristics of precipitation. -
E508 Volume 3 Public Disclosure Authorized Public Disclosure Authorized
E508 Volume 3 Public Disclosure Authorized Public Disclosure Authorized Second Liao River Basin Project Public Disclosure Authorized Environmental Assessment EXECUTIVE SUMMARY March 2002 LUCRPO LIAONING URBAN CONSTRUCTION ANDRENEWAL PROJECT OFFICE ~EP Public Disclosure Authorized IMWH MN TGOMERY WA TSON HA RZA Montgomery Watson Harza CATALOGUE CHAPTER PAGE I INTRODUCTION I 2 SURFACE WATER STANDARDS 2 3 EA COVERAGE 3 4 CURRENT SITUATION 3 5 PROJECT DESCRIPTION 3 6 ENVIRONMENTAL BASELINE 4 7 ANALYSIS OF ALTERNATIVES 8 8 ENVIRONMENTAL IMPACTS AND MITIGATION 9 9 ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN 13 10 PUBLIC CONSULTATION 14 11 CONCLUSIONS 16 Russian *t -- , - * _Federation S ~~~~~Japan~ PR CA . _ - . Location of Liaoning Province EA Summary Montgomery Watson Harza Second Liao River Basin Project areas in the province before discharging into the Bohai Environmental Assessment Sea. In 1997, the State Council of the Chinese central SUMMARY REPORT government announced "Decisions On Issues of Environmental Protection", which has since become a primary guide for the country's environmental 1 INTRODUCTION protection and pollution control effort. One of the important initiatives under the State Council's Decisions The Project consists of two wastewater treatment plants, is the "Three Lakes and Three Rivers" pollution control two wastewater re-use plants, urban upgrading, program, referring to the six landmark and most institutional strengthening and several non-physical sensitive water bodies and river basins in China. The components related to environmental management. The Liao is one of the three rivers and the LRBP is thus one wastewater plants are located in Shenyang (the of the highest priority pollution control programs in the provincial capital) and Panjin, and the wastewater re- country. -
Fang2011.Pdf (2.966Mb)
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Risk and Social Construction of Nuclear Power Development in China: Local People’s Participation in Civil Nuclear Issues in China at the start of the 21st Century Xiang Fang PhD in Sociology University of Edinburgh 2010 Declaration I hereby declare that this thesis was composed by the author, the work contained herein is my own except where specific reference is made to other sources, and it has not been submitted for any other degree or professional qualification except as specified. Signed: Date: II Abstract China’s civil nuclear power programme is a sensitive topic which has seldom been researched by social or political scientists inside or outside of China. In the past, public participation activities in relation to nuclear power issues in China were rare.