Geologic Factors Affecting Seismic Monitoring in China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crop Systems on a County-Scale
Supporting information Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration Bing Gaoa,b, c, Tao Huangc,d, Xiaotang Juc*, Baojing Gue,f, Wei Huanga,b, Lilai Xua,b, Robert M. Reesg, David S. Powlsonh, Pete Smithi, Shenghui Cuia,b* a Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China b Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China c College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China d College of Geography Science, Nanjing Normal University, Nanjing 210046, China e Department of Land Management, Zhejiang University, Hangzhou, 310058, PR China f School of Agriculture and Food, The University of Melbourne, Victoria, 3010 Australia g SRUC, West Mains Rd. Edinburgh, EH9 3JG, Scotland, UK h Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, AL5 2JQ. UK i Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK Bing Gao & Tao Huang contributed equally to this work. Corresponding author: Xiaotang Ju and Shenghui Cui College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China. Phone: +86-10-62732006; Fax: +86-10-62731016. E-mail: [email protected] Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. Phone: +86-592-6190777; Fax: +86-592-6190977. E-mail: [email protected] S1. The proportions of the different cropping systems to national crop yields and sowing area Maize was mainly distributed in the “Corn Belt” from Northeastern to Southwestern China (Liu et al., 2016a). -
Review Statement of World Biosphere Reserve [ July 2013 ]
Review Statement of World Biosphere Reserve [ July 2013 ] Prefeace According to the Resolution 28 C/2.4 on Statutory Framework of MAB (Man and Biosphere) Program passed on the 28th session of the UNESCO General Conference, Article 4 has been clearly identified as the criteria which shall be followed by biosphere reserves. In addition, it is stipulated in Article 9 that a Decennium Review shall be conducted on the world biosphere reserve every a decade, this Review shall be based on the report prepared by the relevant authority; the Review result shall be submitted to the relevant national secretariat. The related text of Statutory Framework is attached in Annex 3. This Review Statement will be helpful for each country preparing national reports and update data as stipulated in Article 9, and the secretariat timely accessing to data associated with the biosphere reserve. This Statement shall contribute to the inspection of MAB ICC on the biosphere reserve, and judge whether it can meet all criteria mentioned in Article 9 of the Legal Framework, especially three major functions. It shall be noted that is required to specify how the biosphere reserve achieves the various criteria in the last part of the Statement (Criteria and Progress). The information from Decennium Review will be used by UNESCO for the following purposes: (a) Inspection of the relevant autorities of International Advisory Committee and MAB ICC on the biosphere reserve; and (b) the world's information system, especially the UNESCO's MAB network and publications, so as to promote communication among people concerned the world biosphere reserve and influence each other. -
Ecosystem Services Changes Between 2000 and 2015 in the Loess Plateau, China: a Response to Ecological Restoration
RESEARCH ARTICLE Ecosystem services changes between 2000 and 2015 in the Loess Plateau, China: A response to ecological restoration Dan Wu1, Changxin Zou1, Wei Cao2*, Tong Xiao3, Guoli Gong4 1 Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China, 2 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China, 3 Satellite Environment Center, Ministry of Environmental Protection, Beijing, China, 4 Shanxi Academy of Environmental Planning, Taiyuan, China a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The Loess Plateau of China is one of the most severe soil and water loss areas in the world. Since 1999, the Grain to Green Program (GTGP) has been implemented in the region. This OPEN ACCESS study aimed to analyze spatial and temporal variations of ecosystem services from 2000 to Citation: Wu D, Zou C, Cao W, Xiao T, Gong G 2015 to assess the effects of the GTGP, including carbon sequestration, water regulation, (2019) Ecosystem services changes between 2000 soil conservation and sand fixation. During the study period, the area of forest land and and 2015 in the Loess Plateau, China: A response grassland significantly expanded, while the area of farmland decreased sharply. Ecosystem to ecological restoration. PLoS ONE 14(1): services showed an overall improvement with localized deterioration. Carbon sequestration, e0209483. https://doi.org/10.1371/journal. pone.0209483 water regulation and soil conservation increased substantially. Sand fixation showed a decreasing trend mainly because of decreased wind speeds. There were synergies Editor: Debjani Sihi, Oak Ridge National Laboratory, UNITED STATES between carbon sequestration and water regulation, and tradeoffs between soil conserva- tion and sand fixation. -
USGS Open-File Report 2010-1099
25th Himalaya-Karakoram-Tibet Workshop San Francisco – June 2010 A Model for the Tectonic Evolution of the Tethys-Tibetan Plateau System and Implications for Continental Tectonics in China R.Z. Qiu1, S. Zhou2, Y.J. Tan1, G.S. Yan3, X.F. Chen1, Q.H. Xiao4, L.L. Wang1,2, Y.L. Lu1, Z. Chen1, C.H. Yuan1,2, J.X. Han1, Y.M. Chen1, L. Qiu2, K. Sun2 1 Development and Research Center, China Geological Survey, Beijing 100037, China 2 China University of Geosciences, Beijing 100083, China, [email protected] 3 China Geological Survey, Beijing 100037, China 4 Information Center of Ministry of Land and Resources, Beijing 100812, China An integrated petrologic, geochemical and geochronological study of magmatic-tectonic-assemblages (volcanic and plutonic rocks and ophiolite suites) from the Greater Tibetan Plateau has led to a new model for the tectonic evolution of the Tethys-Tibetan Plateau system: opening of the Tethyan oceans followed by initial subduction, subduction/collision, post-collision and uplifting. The evidence for this comprehensive model comes from (1) Sm-Nd and 40Ar-39Ar ages of gabbros in ophiolite suites (180– 204 Ma) from both Yarlung Zangpo and Bangong-Nujiang sutures reflecting the timing of the opening of the two ocean basins at J1, probably under the influence of a super-plume. (2) Ages of subduction-related lavas: ~140–170Ma in the Bangong-Nujiang suture and ~ 65–170Ma in the Yarlung Zangpo suture. Among these lavas, boninite and boninite series, which are generally regarded as the indicating an early state of subduction initiation, have been recognized at both the northern and southern edges of the Gangdese block (Zhang, 1985; Qiu, 2004, 2007). -
Optical and Physical Characteristics of the Lowest Aerosol Layers Over the Yellow River Basin
atmosphere Article Optical and Physical Characteristics of the Lowest Aerosol Layers over the Yellow River Basin Miao Zhang 1,*, Jing Liu 2, Muhammad Bilal 3,* , Chun Zhang 1, Feifei Zhao 1, Xiaoyan Xie 4,5 and Khaled Mohamed Khedher 6,7 1 School of Environmental Science and Tourism, Nanyang Normal University, Wolong Road No.1638, Nan Yang 473061, China; [email protected] (C.Z.); zff@nynu.edu.cn (F.Z.) 2 Lingnan College, Sun Yat-sen University, Guangzhou 510275, China; [email protected] 3 School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 2100444, China 4 South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; [email protected] 5 College of Marine Science, Shanghai Ocean University, Shanghai 201306, China 6 Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; [email protected] 7 Department of Civil Engineering, Institut Superieur des Etudes Technologiques, Campus Universitaire Mrezgua, Nabeul 8000, Tunisia * Correspondence: [email protected] (M.Z.); [email protected] (M.B.) Received: 17 September 2019; Accepted: 19 October 2019; Published: 22 October 2019 Abstract: Studying the presence of aerosols in different atmospheric layers helps researchers understand their impacts on climate change, air quality, and human health. Therefore, in the present study, the optical and physical properties of aerosol layers over the Yellow River Basin (YERB) were investigated using the CALIPSO Level 2 aerosol layer products from January 2007 to December 2014. The Yellow River Basin was divided into three sub-regions i.e., YERB1 (the plain region downstream of the YERB), YERB2 (the Loess Plateau region in the middle reaches of the YERB), and YERB3 (the mountainous terrain in the upper reaches of the YERB). -
Petrography and Geochemistry of the Upper Triassic Sandstones from the Western Ordos Basin, NW China: Provenance and Tectonic Implications
Running title: Petrography and Geochemistry of the Upper Triassic Sandstones Petrography and Geochemistry of the Upper Triassic Sandstones from the Western Ordos Basin, NW China: Provenance and Tectonic Implications ZHAO Xiaochen1, LIU Chiyang2*, XIAO Bo3, ZHAO Yan4 and CHEN Yingtao1 1 College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China 2 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, Shaanxi, China 3 Fifth Oil Production Plant of Changqing Oilfield, Xi’an 710200, Shaanxi, China 4 Chang’an University, Xi’an 710064, Shaanxi, China Abstract: Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics, provenance and tectonic implications. Petrographic features show that the sandstones are characterized by low-medium compositional maturity and textural maturity. The CIA and CIW values reveal weak and moderate weathering history in the source area. The geochemical characteristics together with palaeocurrent data show that the northwestern sediments were mainly derived from the Alxa Block with a typical recycled nature, while the provenance of the western and southwestern sediments were mainly from the Qinling-Qilian Orogenic Belt. The tectonic setting discrimination diagrams signify that the parent rocks of sandstones in western and southwestern Ordos Basin were mainly developed from continental island arc, which is closely -
Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China
minerals Article Lithium Enrichment in the No. 21 Coal of the Hebi No. 6 Mine, Anhe Coalfield, Henan Province, China Yingchun Wei 1,* , Wenbo He 1, Guohong Qin 2, Maohong Fan 3,4 and Daiyong Cao 1 1 State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; [email protected] (W.H.); [email protected] (D.C.) 2 College of Resources and Environmental Science, Hebei Normal University, Shijiazhuang 050024, China; [email protected] 3 Departments of Chemical and Petroleum Engineering, and School of Energy Resources, University of Wyoming, Laramie, WY 82071, USA; [email protected] 4 School of Civil and Environmental Engineering, Georgia Institute of Technology, Mason Building, 790 Atlantic Drive, Atlanta, GA 30332, USA * Correspondence: [email protected] Received: 18 May 2020; Accepted: 3 June 2020; Published: 5 June 2020 Abstract: Lithium (Li) is an important strategic resource, and with the increasing demand for Li, there are some limitations in the exploitation and utilization of conventional deposits such as the pegmatite-type and brine-type Li deposits. Therefore, it has become imperative to search for Li from other sources. Li in coal is thought to be one of the candidates. In this study, the petrology, mineralogy, and geochemistry of No. 21 coal from the Hebi No. 6 mine, Anhe Coalfield, China, was reported, with an emphasis on the distribution, modes of occurrence, and origin of Li. The results show that Li is enriched in the No. 21 coal, and its concentration coefficient (CC) value is 6.6 on average in comparison with common world coals. -
Tectonostratigraphic Evolution of the North China Craton and the Qilian
RESEARCH ARTICLE Punctuated Orogeny During the Assembly of Asia: 10.1029/2020TC006503 Tectonostratigraphic Evolution of the North China Key Points: Craton and the Qilian Shan From the Paleoproterozoic to • The western North China craton records at least three orogenies from Early Paleozoic the Paleoproterozoic to the early Paleozoic Chen Wu1 , Andrew V. Zuza2 , An Yin3 , Xuanhua Chen4, Peter J. Haproff5 , Jie Li6, • Mesoproterozoic strata in North Bing Li2,4 , and Lin Ding1,7 China, Tarim, and the Qilian Shan are similar, suggesting continuity 1Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, and Center for among these continents 2 • Gondwana was not affixed to the Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China, Nevada Bureau of Mines 3 western margin of North China in and Geology, University of Nevada, Reno, NV, USA, Department of Earth, Planetary and Space Sciences, University of the Neoproterozoic-early Paleozoic California, Los Angeles, CA, USA, 4Chinese Academy of Geological Sciences, Beijing, China, 5Department of Earth and Ocean Sciences, University of North Carolina, Wilmington, NC, USA, 6School of Earth Sciences and Resources, China 7 Supporting Information: University of Geosciences (Beijing), Beijing, China, University of Chinese Academy of Sciences, Beijing, China • Supporting Information S1 Abstract The Proterozoic-Phanerozoic evolution of the Tarim and North China cratons is integral to Correspondence to: the construction of the Eurasian continent. Throughout the Paleozoic, these continents were bound by C. Wu and A. V. Zuza, the Paleo-Asian and Tethyan Oceans to the north and south, respectively, and, thus, their paleogeography [email protected]; [email protected]; is critical to reconstructions of the oceanic domains. -
Marine Protected Areas Through Networking and Implementation of “Ecological Red-Line”
Enhancing effectiveness of Marine Protected Areas through networking and implementation of “Ecological Red-line” Linlin Zhao the First Institute of Oceanography, SOA 18/11/2015 DADANG, VIETNAM Content Current situation of China’s Marine 1 Protected Area 3 The case of Dongying City enhancing 2 effectiveness of Marine Protected Areas 5 Outline Current situation of China’s Marine 1 Protected Area 3 The case of Dongying City enhancing 2 effectiveness of Marine Protected Areas 5 Marine ecosystems Mangrove Seagrass bed Coral reef 5 Island Coastal wetland Estuary coastal wetlands Shuang Taizi River Yalu River Yellow River Subei Shoal Patch 5 Yangtze River Estuary coastal wetlands 黄河口 Yalu River Shuang Taizi River Yellow River 5 Yangtze River Subei Shoal Patch Environmental destruction 5 China MPAs Marine nature reserve MNR To protect and keep natural TypicalTypical ImportantImportant andand NaturalNatural relicsrelics ecosystemecosystem endangeredendangered andand otherother speciesspecies resourcesresources Marine special To keep services MSPA protected area and sustainable use SpecialSpecial MarineMarine geographicalgeographical OceanOcean parkpark MarineMarine resourceresource ecosystemecosystem locationslocations Marine protected areas Number of marine protected areas: 260 National marine protected areas: 93 Marine nature reserve: 34 Marine special protected: 69 Total area: more than 100, 000 km2 Ecosystem: mangrove, coral reef, salt marsh, estuary, bay, island, lagoon et al Endangered species: amphioxus, spotted seals, dolphins, sea turtles and other rare and endangered marine species National marine protected areas Outline Current situation of China’s Marine 1 Protected Area 3 The case of Dongying City enhancing 2 effectiveness of Marine Protected Areas 5 Location of Dongying City a. North of Shandong Province, in the center of Yellow River Delta; b. -
Religion in China BKGA 85 Religion Inchina and Bernhard Scheid Edited by Max Deeg Major Concepts and Minority Positions MAX DEEG, BERNHARD SCHEID (EDS.)
Religions of foreign origin have shaped Chinese cultural history much stronger than generally assumed and continue to have impact on Chinese society in varying regional degrees. The essays collected in the present volume put a special emphasis on these “foreign” and less familiar aspects of Chinese religion. Apart from an introductory article on Daoism (the BKGA 85 BKGA Religion in China prototypical autochthonous religion of China), the volume reflects China’s encounter with religions of the so-called Western Regions, starting from the adoption of Indian Buddhism to early settlements of religious minorities from the Near East (Islam, Christianity, and Judaism) and the early modern debates between Confucians and Christian missionaries. Contemporary Major Concepts and religious minorities, their specific social problems, and their regional diversities are discussed in the cases of Abrahamitic traditions in China. The volume therefore contributes to our understanding of most recent and Minority Positions potentially violent religio-political phenomena such as, for instance, Islamist movements in the People’s Republic of China. Religion in China Religion ∙ Max DEEG is Professor of Buddhist Studies at the University of Cardiff. His research interests include in particular Buddhist narratives and their roles for the construction of identity in premodern Buddhist communities. Bernhard SCHEID is a senior research fellow at the Austrian Academy of Sciences. His research focuses on the history of Japanese religions and the interaction of Buddhism with local religions, in particular with Japanese Shintō. Max Deeg, Bernhard Scheid (eds.) Deeg, Max Bernhard ISBN 978-3-7001-7759-3 Edited by Max Deeg and Bernhard Scheid Printed and bound in the EU SBph 862 MAX DEEG, BERNHARD SCHEID (EDS.) RELIGION IN CHINA: MAJOR CONCEPTS AND MINORITY POSITIONS ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN PHILOSOPHISCH-HISTORISCHE KLASSE SITZUNGSBERICHTE, 862. -
Winter Wheat Yield Potentials and Yield Gaps in the North China Plain
Field Crops Research 143 (2013) 98–105 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Contents lists available at SciVerse ScienceDirect provided by Elsevier - Publisher Connector Field Crops Research jou rnal homepage: www.elsevier.com/locate/fcr Winter wheat yield potentials and yield gaps in the North China Plain a,∗ a,b Changhe Lu , Lan Fan a Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China b University of Chinese Academy of Sciences, Beijing 100049, PR China a r t i c l e i n f o a b s t r a c t Article history: The North China Plain (NCP) is the most important wheat production area in China, producing about two- Received 27 February 2012 thirds of China’s total wheat output. To meet the associated increase in China’s food demand with the Received in revised form expected growth in its already large population of 1.3 billion and diet changes, wheat production in the 18 September 2012 NCP needs to increase. Because of the farmland reduction due to urbanization, strategies for increasing Accepted 19 September 2012 wheat production in the NCP should be targeted at increasing current yields. To identify options for increasing wheat yields, we analyzed the yield potentials and yield gaps using the EPIC (Environment Keywords: Policy Integrated Climate) model, Kriging interpolation techniques, GIS and average farm yields at county North China Plain, Winter wheat level. As most (ca. 82%) of the winter wheat in the NCP is irrigated, it is justified to use potential yield as the Potential yield, Actual yield, Yield gap benchmark of the yield gap assessment. -
Estimating Frost During Growing Season and Its Impact on the Velocity of Vegetation Greenup and Withering in Northeast China
remote sensing Article Estimating Frost during Growing Season and Its Impact on the Velocity of Vegetation Greenup and Withering in Northeast China Guorong Deng 1,2 , Hongyan Zhang 1,2,*, Lingbin Yang 1,2, Jianjun Zhao 1,2 , Xiaoyi Guo 1,2 , Hong Ying 1,2, Wu Rihan 1,2 and Dan Guo 3 1 Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; [email protected] (G.D.); [email protected] (L.Y.); [email protected] (J.Z.); [email protected] (X.G.); [email protected] (H.Y.); [email protected] (W.R.) 2 Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China 3 College of Resources and Environment, Jilin Agricultural University, Changchun 130024, China; [email protected] * Correspondence: [email protected]; Tel.: +86-431-8509-9550 Received: 31 March 2020; Accepted: 23 April 2020; Published: 25 April 2020 Abstract: Vegetationphenology and photosynthetic primary production have changed simultaneously over the past three decades, thus impacting the velocity of vegetation greenup (Vgreenup) and withering (Vwithering). Although climate warming reduces the frequency of frost events, vegetation is exposed more frequently to frost due to the extension of the growing season. Currently, little is known about the effect of frost during the growing season on Vgreenup and Vwithering. This study analyzed spatiotemporal variations in Vgreenup and Vwithering in Northeast China between 1982 to 2015 using Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS 3g NDVI) data.