7 Solvable Lie Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nilpotent Lie Groups and Hyperbolic Automorphisms ”
Nilpotent Lie groups and hyperbolic automorphisms Manoj Choudhuri and C. R. E. Raja Abstract A connected Lie group admitting an expansive automorphism is known to be nilotent, but all nilpotent Lie groups do not admit expansive au- tomorphism. In this article, we find sufficient conditions for a class of nilpotent Lie groups to admit expansive automorphism. Let G be a locally compact (second countable) group and Aut(G) be the group of (continuous) automorphisms of G. We consider automorphisms α of G that have a specific property that there is a neighborhood U of identity such that n ∩n∈Zα (U) = {e} - such automorphisms are known as expansive. The struc- ture of compact connected groups admitting expansive automorphism has been studied in [6], [7], [17], [10] and it was shown in [10] that a compact connected group admitting an expansive automorphism is abelian. The same problen has been studied for totally disconnected groups as well, see [9] and [16] for com- pact totally disconnected groups and a recent paper of Helge Glockner and the second named author ([8]) for locally compact totally disconnected groups. In [14], Riddhi Shah has shown that a connected locally compact group admitting expansive automorphism is nilpotent. The result was known previously for Lie groups (see Proposition 7.1 of [8] or Proposition 2.2 of [14] for a proof of this fact and further references). But all nilpotent Lie groups do not admit expansive automorphism which can be seen easily by considering the circle group. In this article, we try to classify a class of nilpotent Lie groups which admit expansive automorphism. -
LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0. -
Representation Theory
M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23. -
The Fourier Transform for Nilpotent Locally Compact Groups. I
Pacific Journal of Mathematics THE FOURIER TRANSFORM FOR NILPOTENT LOCALLY COMPACT GROUPS. I ROGER EVANS HOWE Vol. 73, No. 2 April 1977 PACIFIC JOURNAL OF MATHEMATICS Vol. 73, No. 2, 1977 THE FOURIER TRANSFORM FOR NILPOTENT LOCALLY COMPACT GROUPS: I ROGER E. HOWE In his work on nilpotent lie groups, A. A. Kirillov intro- duced the idea of classifying the representations of such groups by matching them with orbits in the dual of the lie algebra under the coadjoint action. His methods have proved extremely fruitful, and subsequent authors have refined and extended them to the point where they provide highly satisfac- tory explanations of many aspects of the harmonic analysis of various lie groups. Meanwhile, it appears that nonlie groups are also amenable to such an approach. In this paper, we seek to indicate that, indeed, a very large class of separable, locally compact, nilpotent groups have a Kirillov- type theory. On the other hand, elementary examples show that not all such groups can have a perfect Kirillov theory. The precise boundary between good and bad groups is not well defined, and varies with the amount of technical complication you can tolerate. At this stage, the delineation of the boundary is the less rewarding part of the theory, and will be deferred to a future publication. In the present paper, we lay some groundwork, and then discuss a particularly nice special case, which also has significance in the general picture. Since Kirillov's approach hinges on the use of the lie algebra and its dual, the first concern in imitating his theory is to find a lie algebra. -
Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2018 Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula Nicholas Graner Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Mathematics Commons Recommended Citation Graner, Nicholas, "Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula" (2018). All Graduate Theses and Dissertations. 7232. https://digitalcommons.usu.edu/etd/7232 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. CANONICAL COORDINATES ON LIE GROUPS AND THE BAKER CAMPBELL HAUSDORFF FORMULA by Nicholas Graner A thesis submitted in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE in Mathematics Approved: Mark Fels, Ph.D. Charles Torre, Ph.D. Major Professor Committee Member Ian Anderson, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School for Graduate Studies UTAH STATE UNIVERSITY Logan,Utah 2018 ii Copyright © Nicholas Graner 2018 All Rights Reserved iii ABSTRACT Canonical Coordinates on Lie Groups and the Baker Campbell Hausdorff Formula by Nicholas Graner, Master of Science Utah State University, 2018 Major Professor: Mark Fels Department: Mathematics and Statistics Lie's third theorem states that for any finite dimensional Lie algebra g over the real numbers, there is a simply connected Lie group G which has g as its Lie algebra. -
An Introduction to Lie Algebras and the Theorem of Ado
An introduction to Lie algebras and the theorem of Ado Hofer Joachim 28.01.2012 An introduction to Lie algebras and the theorem of Ado Contents Introduction 2 1 Lie algebras 3 1.1 Subalgebras, ideals, quotients . 4 1.2 Nilpotent, solvable, simple and semisimple Lie algebras . 5 2 The representation theory of Lie algebras 7 2.1 Examples . 7 2.2 Modules, submodules, quotient modules . 7 2.3 Structure theorems: Lie and Engel . 8 3 The theorem of Ado for nilpotent Lie algebras. How can a faithful representation be constructed? 11 3.1 Ad hoc examples . 11 3.2 The universal enveloping algebra . 11 3.2.1 Tensor products and the tensor algebra . 11 3.2.2 The universal enveloping algebra of a Lie algebra . 12 3.2.3 The Poincare-Birkhoff-Witt theorem . 12 3.3 Constructing a faithful representation of h1 ............................... 12 3.4 Ado’s theorem for nilpotent Lie algebras . 13 3.5 Constructing a faithful representation for the standard filiform Lie algebra of dimension 4 . 14 3.6 Constructing a faithful representation for an abelian Lie algebra . 15 4 The theorem of Ado 16 4.1 Derivations . 16 4.2 Direct and semidirect sums of Lie algebras . 16 4.3 Proof of Ado’s theorem . 17 4.4 Proof of Neretin’s lemma . 18 4.5 Constructing a faithful representation of the 2-dimensional upper triangular matrices . 19 4.6 Constructing a faithful representation of an abstract Lie algebra . 19 1 Hofer Joachim An introduction to Lie algebras and the theorem of Ado Introduction Lie groups and Lie algebras are of great importance in modern physics, particularly in the context of (continu- ous) symmetry transformations. -
Lie Algebras by Shlomo Sternberg
Lie algebras Shlomo Sternberg April 23, 2004 2 Contents 1 The Campbell Baker Hausdorff Formula 7 1.1 The problem. 7 1.2 The geometric version of the CBH formula. 8 1.3 The Maurer-Cartan equations. 11 1.4 Proof of CBH from Maurer-Cartan. 14 1.5 The differential of the exponential and its inverse. 15 1.6 The averaging method. 16 1.7 The Euler MacLaurin Formula. 18 1.8 The universal enveloping algebra. 19 1.8.1 Tensor product of vector spaces. 20 1.8.2 The tensor product of two algebras. 21 1.8.3 The tensor algebra of a vector space. 21 1.8.4 Construction of the universal enveloping algebra. 22 1.8.5 Extension of a Lie algebra homomorphism to its universal enveloping algebra. 22 1.8.6 Universal enveloping algebra of a direct sum. 22 1.8.7 Bialgebra structure. 23 1.9 The Poincar´e-Birkhoff-Witt Theorem. 24 1.10 Primitives. 28 1.11 Free Lie algebras . 29 1.11.1 Magmas and free magmas on a set . 29 1.11.2 The Free Lie Algebra LX ................... 30 1.11.3 The free associative algebra Ass(X). 31 1.12 Algebraic proof of CBH and explicit formulas. 32 1.12.1 Abstract version of CBH and its algebraic proof. 32 1.12.2 Explicit formula for CBH. 32 2 sl(2) and its Representations. 35 2.1 Low dimensional Lie algebras. 35 2.2 sl(2) and its irreducible representations. 36 2.3 The Casimir element. 39 2.4 sl(2) is simple. -
Linear Groups, Nilpotent Lie Algebras, and Identities
Representing Lie algebras using approximations with nilpotent ideals Wolfgang Alexander Moens∗ 2015 Abstract We prove a refinement of Ado’s theorem for Lie algebras over an algebraically-closed field of characteristic zero. We first define what it means for a Lie algebra g to be approximated with a nilpotent ideal, and we then use such an approximation to construct a faithful repre- sentation of g. The better the approximation, the smaller the degree of the representation will be. We obtain, in particular, explicit and combinatorial upper bounds for the minimal degree of a faithful g-representation. The proofs use the universal enveloping algebra of Poincar´e-Birkhoff-Witt and the almost-algebraic hulls of Auslander and Brezin. Contents 1 Introduction 1 2 Preliminaries 3 2.1 The nil-defect of a Lie algebra . 3 2.2 Almost-algebraic Lie algebras . 4 3 Quotientsoftheuniversalenvelopingalgebra 4 3.1 Filtrations...................................... 5 3.2 Notation....................................... 5 3.3 From filtrations to weights and submodules . .. 5 arXiv:1703.00338v1 [math.RA] 1 Mar 2017 3.4 Propertiesofthequotientmodule. .. 7 4 Proof of the main results 8 5 Application: representations of graded Lie algebras 8 1 Introduction The classical theorem of Ado and Iwasawa states that every finite-dimensional Lie algebra g over a field F admits a finite-dimensional, faithful representation. That is: there exists a natural number n and a homomorphism ϕ : g gln(F) of Lie algebras with ker(ϕ)= 0 . −→ { } ∗ This research was supported by the Austrian Science Foundation FWF (Grant J3371-N25). 1 But it is in general quite difficult to determine whether a given Lie algebra g admits a faith- ful representation of a given degree n. -
Solvable Lie A-Algebras David A. Towers
SOLVABLE LIE A-ALGEBRAS DAVID A. TOWERS Department of Mathematics, Lancaster University Lancaster LA1 4YF, England Email: [email protected] Abstract A finite-dimensional Lie algebra L over a field F is called an A- algebra if all of its nilpotent subalgebras are abelian. This is analogous to the concept of an A-group: a finite group with the property that all of its Sylow subgroups are abelian. These groups were first studied in the 1940s by Philip Hall, and are still studied today. Rather less is known about A-algebras, though they have been studied and used by a number of authors. The purpose of this paper is to obtain more detailed results on the structure of solvable Lie A-algebras. It is shown that they split over each term in their derived series. This leads to a decomposition of L as L = An+˙ An−1+˙ ... +˙ A0 where (i) Ai is an abelian subalgebra of L and L = An+˙ An−1+˙ ... +˙ Ai for each 0 ≤ i ≤ n. It is shown that the ideals of L relate nicely to this decomposition: if K is an ideal of L then K = (K ∩ An)+(˙ K ∩ 2 An−1)+˙ ... +(˙ K∩A0). When L is nilpotent we can locate the position of the maximal nilpotent subalgebras: if U is a maximal nilpotent subalgebra of L then U = (U ∩ L2) ⊕ (U ∩ C) where C is a Cartan subalgebra of L. If L has a unique minimal ideal W then N = ZL(W ). If, in addi- tion, L is strongly solvable the maximal nilpotent subalgebras of L are L2 and the Cartan subalgebras of L (that is, the subalgebras that are complementary to L2.) Necessary and sufficient conditions are given for such an algebra to be an A-algebra. -
Solvable Lie Algebras in Type IIA, Type IIB and M Theories∗
CERN-TH/96-365 hep-th/9612202 December, 1996 Solvable Lie Algebras in Type IIA, Type IIB and M Theories∗ Laura Andrianopoli1, Riccardo D’Auria 2, Sergio Ferrara2, Pietro Fr´e3, Ruben Minasian2 and Mario Trigiante4 1 Dipartimento di Fisica Universit´a di Genova, via Dodecaneso 33, I-16146 Genova and Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Genova, Italy 2 CERN, Theoretical Division, CH 1211 Geneva, Switzerland, 3 Dipartimento di Fisica Teorica, Universit´a di Torino, via P. Giuria 1, I-10125 Torino, Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Torino, Italy 4 International School for Advanced Studies (ISAS), via Beirut 2-4, I-34100 Trieste and Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Trieste, Italy Abstract We study some applications of solvable Lie algebras in type IIA,typeIIB and M theories. RR and NS generators find a natural geometric interpretation in this framework. Special emphasis is given to the counting of the abelian nilpotent ideals (translational symmetries of the scalar manifolds) in arbitrary D dimensions. These are seen to be related, using Dynkin diagram techniques, to one-form counting in D + 1 dimensions. A recipe for gauging isometries in this framework is also presented. In particular, we list the gauge groups both for compact and translational isometries. The former agree with some results already existing in gauged supergravity. The latter should be possibly related to the study of partial supersymmetry breaking, as suggested by a similar role played by solvable Lie algebras in N = 2 gauged supergravity. ∗ Supported in part by EEC under TMR contract ERBFMRX-CT96-0045, in which L. -
Representation of Lie Algebras) Lecture Notes Massachusetts Institute of Technology
18.757 (Representation of Lie Algebras) Lecture Notes Massachusetts Institute of Technology Evan Chen Spring 2016 This is MIT's graduate course 18.757, instructed by Laura Rider. The formal name for this class is \Representations of Lie Algebras". The permanent URL for this document is http://web.evanchen.cc/ coursework.html, along with all my other course notes. Contents 1 February 2, 2016 4 §1.1 Representations of groups . 4 §1.2 Digression . 4 §1.3 More on representations . 5 §1.4 Recovering G ................................. 5 §1.5 Schur lemma . 5 §1.6 Lie groups . 6 2 February 4, 2016 7 §2.1 Representations for Lie groups . 7 §2.2 Measure theory . 8 3 February 9, 2016 10 §3.1 Matrix coefficients . 10 §3.2 Bimodule . 11 §3.3 Characters . 12 4 February 11, 2016 14 §4.1 Left/right action . 14 §4.2 Lie algebras . 14 §4.3 Complexification . 14 §4.4 Representations of sl2 C ........................... 15 5 February 18, 2016 17 §5.1 An algebraic lemma . 17 §5.2 Universal enveloping algebra . 18 §5.3 Examples . 18 6 February 23, 2016 20 §6.1 Hopf algebras . 20 §6.2 Monoidal functors . 21 1 Evan Chen (Spring 2016) Contents §6.3 Application to k[G].............................. 22 §6.4 Centers . 23 7 February 25, 2016 25 §7.1 Brief remark on monoidal categories . 25 §7.2 Ideals . 25 §7.3 Solvable and nilpotent algebras . 25 §7.4 Representation theory of solvable Lie algebras . 28 8 March 1, 2016 29 §8.1 Lie's theorem and Engel's theorem . 29 §8.2 Jordan decomposition . -
CONCERNING CARTAN's CRITERION Such That T(Rxry)
CONCERNING CARTAN'S CRITERION H. E. CAMPBELL 1. Introduction. Let S be a Lie algebra over a field % and let 8(0), 8', 8", • • • be the derived sequence of 8 where 8(0)=8 and 8(i+1) ■ g(Og(0. Let ¿(7?*) denote the trace of a right multiplication Rx of an element x of 8. Without further mention we shall assume that the base fields of all Lie and associative algebras considered have characteristic zero. Cartan's criterion for solvability states that if t(R\)=Q for all x of 8(i) for some i = 0, then 8 is solvable. On the other hand if 8 is solvable then t(R\) =0 for all x of 8(i) for t'= 1, but it is not true in general for i = 0. However we shall show that if 8 is solvable it can be imbedded in a solvable Lie algebra 21 over an algebraic extension $ of r5 such that 21 has this property. But we shall prove a much more general result, namely Theorem 1. Let 8 = <2+$ft be the Levi-Whitehead decomposition of a Lie algebra 8 over afield %, where 9Î is the radical and © is either zero or semi-simple. Then there is a Lie algebra 2l = @£+9î over an algebraic extension $ of $ whose radical 9Î contains 9Î and is the set of all x of 21 such that t(RxRy)=Q for all y of 21 The radical of a Lie algebra 8 is [2, p. 14] the set of all x of 8 such that t(RxRv) =0 for all y of 8' but the radical is not always the set of all x of 8 such that t(RxRy) =0 for every y of 8 as is the case for an associative algebra.