Shrimp Culture Impact on the Surface and Ground Water of Bangladesh

Total Page:16

File Type:pdf, Size:1020Kb

Shrimp Culture Impact on the Surface and Ground Water of Bangladesh The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University - Mashad Branch, Iran, 26-28 April 2010 Shrimp Culture Impact on the Surface and Ground Water of Bangladesh A.K.M. Munirul Haque1, M. Sarwar Jahan2 and Md. Abul Kalam Azad2* 1Local and Revenue Audit Directorate, Audit Complex, Segun Bagicha, Dhaka – 1000, Bangladesh . 2*Institute of Environmental Science, University of Rajshahi , Rajshahi – 6205, Bangladesh . Tel. 88-01746-141541 (cell phone) and 88-0721-750930 (office) Fax. 88-0721-750064, E-mail. [email protected] Abstract A case study was carried out to see the impacts of shrimp culture on the surface (pond) and ground water (tube-well) quality in three coastal sub-districts of Bagherhat Sadar, Rampal and Morrelganj of Bangladesh. The people of Rampal (100%), Morrelgonj (87.5%) and Bagherhat (75.5%) expressed that salinity of both surface and ground water increased for shrimp culture, and water becomes more turbid, odorous and less tasty compare to pre-shrimp culture scenario. The ground water pH was found to little acidic (6.07– 6.71) but the surface water was mild alkaline in nature (7.00–7.46). Ground water was more saline (1893.12–2673.33 ppm) than surface water (513.31-2253.33 ppm). Potassium level of surface water was very high (97.75-242.42 ppm) compare to ground water (11.73- 27.37 ppm), which exceeds the WHO Guideline Value (10 ppm) and Bangladesh Standard for Drinking Water (12.0 ppm). The pollution level of phosphorous and iron was found to little higher but other pollutants like nitrate, boron and zinc was found to very low in surface and ground water in the shrimp culture area of Bangladesh. 1.0 Introduction In Bangladesh Shrimps are mainly cultivated in two coastal regions – South-west coastal region comprising the districts of Khulna, Bagerhat, Sathkhira and South-east costal region includes Chittagong ang Cox’s Bazar. It is estimated that 250,000 ha of land have a good potential for coastal aquaculture (Ahmed, 1995). In 1983-84, the total shrimp area in Bangladesh was 51,812 ha and it rose to 217,877 ha in 2005-06 indicating a 420.51% increase sharply in last 22 years. In 2005-06, south-west region produced 78.9% of the Bangladesh’s total shrimp production (DoF, 2006). Shrimp, the white gold bar of Bangladesh is the second highest foreign exchange earner accounts for 5.2% of the total export following the ready made garments (RMG) sector. At present Bangladesh is the 8th largest shrimp producer of the world and produces 2.5% of the global shrimp output (DoF, 2006 and BCAS, 2001). Mainly bagda (Paeneus monodon) is cultivated nearby the coast where water salinity is very high and golda (Macrobrachium rosenbergi) cultivated in the interior low saline water areas. The shrimp culture of Bangladesh has both beneficial and detrimental effects. Shrimp culture caused increasing salinity, destruction of mangrove resources and other vegetation, biodiversity reduction, declining land productivity and reduction of forest area in the south- western coastal region of Bangladesh (Alauddin and Hamid, 1998). Considering these environmental effects, a study on surface and ground water quality was carried out in shrimp cultivation areas under the coastal sub-districts of Bagherhat Sadar, Rampal and Morrelganj of Bangladesh. Therefore, this study was done considering the following objectives, 589 The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University - Mashad Branch, Iran, 26-28 April 2010 i) To analyze the water quality of the surface (pond) and groundwater (tube-well) of the shrimp culture area, and ii) To assess the impact of shrimp culture on the water quality 2.0 Methodology 2.1 Water Sample Collection For assessment of water quality, 33 surface (pond) and 33 ground (tube-well) water samples were collected from 18 villages under the coastal sub-districts of Bagherhat Sadar, Rampal and Morrelganj of Bangladesh for summer and rainy seasons during the period of 2003-2004. Each tube-well was pumped 30 minutes prior to water sample collection in plastic bottle. The surface water was collected from 10-cm below the surface level of water. 2.2 Water Analysis The pH was measured by HACH pH meter. Electrical conductivity was measured by using Metrohm EC Meter at 25 oC. Potassium, calcium, iron and zinc of water samples were measured by Atomic Absorption Spectrophotometer (AAS). The concentration of phosphorous, sulphur, boron and nitrate in water was measured by spectrophotometric method (Trivedy & Goel, 1986). 3.0 Results and Discussions 3.1 Analytical Results of Surface and Ground Water The water quality data of surface (pond) and ground water (tube-well) of the shrimp culture areas of three sub-districts (Rampal, Morrelgonj and Bagherhat) of Bangladesh is presented season wise in Tables 1 & 2. The pH of surface water varies from 7.29-7.46 in summer season (Table 1), which is higher than the ground water pH (6.46-6.71). However, pH of both surface and ground water was found little low during rainy season (Table 2). Surface water pH in summer and rainy seasons and the ground water pH in summer season are found within the WHO Guideline (6.5-8.5) and Bangladesh Standard for Drinking Water Quality (6.5-8.5).The causes of low pH (6.07) in ground water of Morrelgonj and Bagerhat areas during rainy season may be for the higher organic mater content of under ground soils. The salinity in the ground water was higher than surface water both summer and rainy seasons (Tables 1 & 2). The salinity in the ground water was higher in summer (2053.20-2673.33 ppm) than rainy season (1893.12-2573.29 ppm). Similarly, the salinity of surface water was higher in summer (1286.66-2253.33 ppm) than rainy season (513.31-993.30 ppm). During rainy season, rain water diluted the salt and therefore, a low salinity was observed in that period. The nitrate content of surface water in summer season varies from 0.43-0.61 ppm, which is higher than the rainy season (0.15-0.19 ppm). However, the nitrate content of groundwater in summer and rainy seasons was higher than the rainy season value of surface water (Tables 1 & 2). The nitrate level of surface and ground water not exceeded the Bangladesh Standard for Drinking Water, 10 ppm (ECR, 1997). Potassium content of surface water was found to very high compare to ground water. The potassium content of surface water was 140.7-242.4 ppm in summer and 97.7 ppm-125.12 ppm in rainy season. The potassium content of ground water ranges from 11.73 to 27.37 ppm in rainy season and 11.73-23.37 ppm in summer season. Both surface water and ground water 590 The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University - Mashad Branch, Iran, 26-28 April 2010 potassium content exceeded the WHO Guideline Value (10.0 ppm) and Bangladesh Standard for Drinking Water, 12.00 ppm (ECR, 1997). Calcium content in surface and ground water is nearly same during summer season (Table 1). In that season, the calcium content of surface and ground water ranges from 82.10 – 118.20 ppm and 46.05 to 122.15 ppm, respectively. The main source of calcium is the result of weathering (Hossain et al., 1991). The high concentration of calcium in the studied area is mainly responsible for the hardness of water. Phosphorous content in ground water was found to higher than the surface water both summer and rainy seasons. It is because of the weathering of the phosphate rocks and decomposition of organic substances in the soil (Arms, 1989). The ground water phosphorous level is nearly same in two seasons and varies from 0.13 to 1.70 ppm. However, the phosphorous content of surface water in summer season ranges from 0.26 to 0.35 ppm and in rainy season it varies from 0.17 to 0.42 ppm. In the study area, phosphorous content of surface and ground water exceeded the Bangladesh Standard for Drinking Water (0 ppm). Sulphur content in the surface water is much higher than the ground water. The sulphur level in surface water in summer season lies between 10.19 to 22.98 ppm, which is higher than the rainy season (10.57-13.78 ppm). However, the sulphur level in ground water is 2.22 -5.71 ppm in summer season and 0.76-5.78 ppm in rainy season. The ground water of the study area contained a high level of boron than surface water and it varies from 0.35 to 0.55 ppm in summer and 0.31 to 0.49 ppm in rainy seasons. The boron content in the surface water is nearly same for both summer (0.15-0.20 ppm) and rainy (0.18- 0.21 ppm) seasons. Boron level in surface and ground water is found within the range of WHO guideline values (0.5 ppm) and Bangladesh Standard for Drinking Water, 1 ppm (ECR, 1997). Iron content in the ground water varies from 2.07 to 2.36 ppm. The sediment of Bangladesh is rich in iron and therefore, a high level of iron was found in ground water (Khanam et al., 2000). Iron level in surface water ranges from 1.51 to1.61 ppm in summer and 1.21 to 1.42 ppm in rainy seasons. Both surface and ground water iron level exceeded the WHO guideline value (0.3 ppm) and Bangladesh Standard for Drinking Water (0.3-1.0 ppm).
Recommended publications
  • Sand Dune Systems in Iran - Distribution and Activity
    Sand Dune Systems in Iran - Distribution and Activity. Wind Regimes, Spatial and Temporal Variations of the Aeolian Sediment Transport in Sistan Plain (East Iran) Dissertation Thesis Submitted for obtaining the degree of Doctor of Natural Science (Dr. rer. nat.) i to the Fachbereich Geographie Philipps-Universität Marburg by M.Sc. Hamidreza Abbasi Marburg, December 2019 Supervisor: Prof. Dr. Christian Opp Physical Geography Faculty of Geography Phillipps-Universität Marburg ii To my wife and my son (Hamoun) iii A picture of the rock painting in the Golpayegan Mountains, my city in Isfahan province of Iran, it is written in the Sassanid Pahlavi line about 2000 years ago: “Preserve three things; water, fire, and soil” Translated by: Prof. Dr. Rasoul Bashash, Photo: Mohammad Naserifard, winter 2004. Declaration by the Author I declared that this thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. Hamidreza Abbasi iv List of Contents Abstract ................................................................................................................................................. 1 1. General Introduction ........................................................................................................................ 7 1.1 Introduction and justification ........................................................................................................
    [Show full text]
  • A Framework for Empirical Assessment of Agricultural Sustainability: the Case of Iran
    sustainability Article A Framework for Empirical Assessment of Agricultural Sustainability: The Case of Iran Siavash Fallah-Alipour 1, Hossein Mehrabi Boshrabadi 1,*, Mohammad Reza Zare Mehrjerdi 1 and Dariush Hayati 2 1 Department of Agricultural Economics, College of Agriculture, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran; [email protected] (S.F.-A.); [email protected] (M.R.Z.M.) 2 Department of Agricultural Extension & Education, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; [email protected] * Correspondence: [email protected]; Tel.: +98-34-3132-2606 Received: 22 September 2018; Accepted: 27 November 2018; Published: 17 December 2018 Abstract: In developing countries, agricultural development is still a fundamental means of poverty alleviation, economic development and, in general, sustainable development. Despite the great emphasis on sustainable agricultural development, it seems that there are many practical difficulties towards empirical assessment of agricultural sustainability. In this regard, the present study aims to propose a comprehensive framework for the assessment of agricultural sustainability and present an empirical application of the proposed framework in south-east Iran (Kerman province). The framework is based on a stepwise procedure, involving: (1) The calculation of economic, social, environmental, political, institutional and demographic indicators, covering the actual and potential aspects of unsustainability; (2) the application of Fuzzy Pairwise Comparisons
    [Show full text]
  • Spatial Epidemiology of Rabies in Iran
    Aus dem Friedrich-Loeffler-Institut eingereicht über den Fachbereich Veterinärmedizin der Freien Universität Berlin Spatial Epidemiology of Rabies in Iran Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Rouzbeh Bashar Tierarzt aus Teheran, Iran Berlin 2019 Journal-Nr.: 4015 'ĞĚƌƵĐŬƚŵŝƚ'ĞŶĞŚŵŝŐƵŶŐĚĞƐ&ĂĐŚďĞƌĞŝĐŚƐsĞƚĞƌŝŶćƌŵĞĚŝnjŝŶ ĚĞƌ&ƌĞŝĞŶhŶŝǀĞƌƐŝƚćƚĞƌůŝŶ ĞŬĂŶ͗ hŶŝǀ͘ͲWƌŽĨ͘ƌ͘:ƺƌŐĞŶĞŶƚĞŬ ƌƐƚĞƌ'ƵƚĂĐŚƚĞƌ͗ WƌŽĨ͘ƌ͘&ƌĂŶnj:͘ŽŶƌĂƚŚƐ ǁĞŝƚĞƌ'ƵƚĂĐŚƚĞƌ͗ hŶŝǀ͘ͲWƌŽĨ͘ƌ͘DĂƌĐƵƐŽŚĞƌƌ ƌŝƚƚĞƌ'ƵƚĂĐŚƚĞƌ͗ Wƌ͘<ĞƌƐƚŝŶŽƌĐŚĞƌƐ ĞƐŬƌŝƉƚŽƌĞŶ;ŶĂĐŚͲdŚĞƐĂƵƌƵƐͿ͗ ZĂďŝĞƐ͕DĂŶ͕ŶŝŵĂůƐ͕ŽŐƐ͕ƉŝĚĞŵŝŽůŽŐLJ͕ƌĂŝŶ͕/ŵŵƵŶŽĨůƵŽƌĞƐĐĞŶĐĞ͕/ƌĂŶ dĂŐĚĞƌWƌŽŵŽƚŝŽŶ͗Ϯϴ͘Ϭϯ͘ϮϬϭϵ ŝďůŝŽŐƌĂĨŝƐĐŚĞ/ŶĨŽƌŵĂƚŝŽŶĚĞƌĞƵƚƐĐŚĞŶEĂƚŝŽŶĂůďŝďůŝŽƚŚĞŬ ŝĞĞƵƚƐĐŚĞEĂƚŝŽŶĂůďŝďůŝŽƚŚĞŬǀĞƌnjĞŝĐŚŶĞƚĚŝĞƐĞWƵďůŝŬĂƚŝŽŶŝŶĚĞƌĞƵƚƐĐŚĞŶEĂƚŝŽŶĂůďŝͲ ďůŝŽŐƌĂĨŝĞ͖ ĚĞƚĂŝůůŝĞƌƚĞ ďŝďůŝŽŐƌĂĨŝƐĐŚĞ ĂƚĞŶ ƐŝŶĚ ŝŵ /ŶƚĞƌŶĞƚ ƺďĞƌ фŚƚƚƉƐ͗ͬͬĚŶď͘ĚĞх ĂďƌƵĨďĂƌ͘ /^E͗ϵϳϴͲϯͲϴϲϯϴϳͲϵϳϮͲϯ ƵŐů͗͘ĞƌůŝŶ͕&ƌĞŝĞhŶŝǀ͕͘ŝƐƐ͕͘ϮϬϭϵ ŝƐƐĞƌƚĂƚŝŽŶ͕&ƌĞŝĞhŶŝǀĞƌƐŝƚćƚĞƌůŝŶ ϭϴϴ ŝĞƐĞƐtĞƌŬŝƐƚƵƌŚĞďĞƌƌĞĐŚƚůŝĐŚŐĞƐĐŚƺƚnjƚ͘ ůůĞ ZĞĐŚƚĞ͕ ĂƵĐŚ ĚŝĞ ĚĞƌ mďĞƌƐĞƚnjƵŶŐ͕ ĚĞƐ EĂĐŚĚƌƵĐŬĞƐ ƵŶĚ ĚĞƌ sĞƌǀŝĞůĨćůƚŝŐƵŶŐ ĚĞƐ ƵĐŚĞƐ͕ ŽĚĞƌ dĞŝůĞŶ ĚĂƌĂƵƐ͕ǀŽƌďĞŚĂůƚĞŶ͘<ĞŝŶdĞŝůĚĞƐtĞƌŬĞƐĚĂƌĨŽŚŶĞƐĐŚƌŝĨƚůŝĐŚĞ'ĞŶĞŚŵŝŐƵŶŐĚĞƐsĞƌůĂŐĞƐŝŶŝƌŐĞŶĚĞŝŶĞƌ&Žƌŵ ƌĞƉƌŽĚƵnjŝĞƌƚŽĚĞƌƵŶƚĞƌsĞƌǁĞŶĚƵŶŐĞůĞŬƚƌŽŶŝƐĐŚĞƌ^LJƐƚĞŵĞǀĞƌĂƌďĞŝƚĞƚ͕ǀĞƌǀŝĞůĨćůƚŝŐƚŽĚĞƌǀĞƌďƌĞŝƚĞƚǁĞƌĚĞŶ͘ ŝĞ tŝĞĚĞƌŐĂďĞ ǀŽŶ 'ĞďƌĂƵĐŚƐŶĂŵĞŶ͕ tĂƌĞŶďĞnjĞŝĐŚŶƵŶŐĞŶ͕ ƵƐǁ͘ ŝŶ ĚŝĞƐĞŵ tĞƌŬ ďĞƌĞĐŚƚŝŐƚ ĂƵĐŚ ŽŚŶĞ ďĞƐŽŶĚĞƌĞ <ĞŶŶnjĞŝĐŚŶƵŶŐ ŶŝĐŚƚ njƵ ĚĞƌ ŶŶĂŚŵĞ͕ ĚĂƐƐ ƐŽůĐŚĞ EĂŵĞŶ ŝŵ ^ŝŶŶĞ ĚĞƌ tĂƌĞŶnjĞŝĐŚĞŶͲ
    [Show full text]
  • Photovoltaic System Iran Pre-Feasibility Study
    OCCASION This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation. DISCLAIMER This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. FAIR USE POLICY Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO. CONTACT Please contact [email protected] for further information concerning UNIDO publications. For more information about UNIDO, please visit us at www.unido.org UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Tel: (+43-1) 26026-0 · www.unido.org · [email protected] UNIDO Photovoltaic System Iran Pre-Feasibility Study Tehran, Iran 8/1/2014 Table of Contents 1.
    [Show full text]
  • And “Climate”. Qarah Dagh in Khorasan Ostan on the East of Iran 1
    IRAN STATISTICAL YEARBOOK 1397 1. LAND AND CLIMATE Introduction T he statistical information that appeared in this of Tehran and south of Mazandaran and Gilan chapter includes “geographical characteristics and Ostans, Ala Dagh, Binalud, Hezar Masjed and administrative divisions” ,and “climate”. Qarah Dagh in Khorasan Ostan on the east of Iran 1. Geographical characteristics and aministrative and joins Hindu Kush mountains in Afghanistan. divisions The mountain ranges in the west, which have Iran comprises a land area of over 1.6 million extended from Ararat mountain to the north west square kilometers. It lies down on the southern half and the south east of the country, cover Sari Dash, of the northern temperate zone, between latitudes Chehel Cheshmeh, Panjeh Ali, Alvand, Bakhtiyari 25º 04' and 39º 46' north, and longitudes 44º 02' and mountains, Pish Kuh, Posht Kuh, Oshtoran Kuh and 63º 19' east. The land’s average height is over 1200 Zard Kuh which totally form Zagros ranges. The meters above seas level. The lowest place, located highest peak of this range is “Dena” with a 4409 m in Chaleh-ye-Loot, is only 56 meters high, while the height. highest point, Damavand peak in Alborz The southern mountain range stretches from Mountains, rises as high as 5610 meters. The land Khouzestan Ostan to Sistan & Baluchestan Ostan height at the southern coastal strip of the Caspian and joins Soleyman Mountains in Pakistan. The Sea is 28 meters lower than the open seas. mountain range includes Sepidar, Meymand, Iran is bounded by Turkmenistan, the Caspian Sea, Bashagard and Bam Posht Mountains.
    [Show full text]
  • Interseismic Slip-Rate of the Kuhbanan-Lakar Kuh Faults System: Using Insar Technique
    EH-09260582 INTERSEISMIC SLIP-RATE OF THE KUHBANAN-LAKAR KUH FAULTS SYSTEM: USING INSAR TECHNIQUE Sajjad MOLAVI VARDANJANI M.Sc. Student, Graduate University of Advanced Technology, Kerman, Iran [email protected] Majid SHAHPASANDZADEH Associate Professor, Graduate University of Advanced Technology, Kerman, Iran [email protected] Ali ESMAEILY Assistant Professor, Dept. of Surveying Eng., Graduate University of Advanced Technology, Kerman, Iran [email protected] Mohammad Reza SEPAHVAND Assistant Professor, Graduate University of Advanced Technology, Kerman, Iran [email protected] Saeede KESHAVARZ Assistant Professor, Graduate University of Advanced Technology, Kerman, Iran [email protected] Keywords: Interseismic deformation, Geodetic fault slip-rate, InSAR, Kerman, Kuhbanan-Lakar Kuh fault system The Kuhbanan fault with ~ 300 km length, one of the largest seismogenic faults in the southeast of Iran, has caused st st several catastrophic earthquakes with Ms 5-6.2 in 20 -21 centuries (Table 1). Moreover, the corresponding cross-thrusts were also associated with at least five clusters of medium-magnitude earthquakes. The Lakar Kuh fault with ~160 km length run parallel to the Nayband fault (Figure 1). The slip-rate of faults and also the spatio-temporal distribution of large-magnitude shallow-depth earthquakes on the Kuhbanan-Lakar Kuh fault system, attain broad concern for seismic hazard assessment (Figure 1). The horizontal slip-rate of the Kuhbanan fault is estimated ~1–2 mm/yr (Walker et al., 2012). Furthermore, the total horizontal displacement of the fault is reported ~5–7 km, as determined by the offset geological markers (Table 2). Table 1.
    [Show full text]
  • CHAPTER 3 HYDROLOGICAL MODELING 3.1 Introduction 3.2
    The Study on Flood and Debris Flow Supporting Report I (Master Plan) Paper IV in the Caspian Coastal Area Meteo-Hydrology focusing on the Flood-hit Region in Golestan Province CHAPTER 3 HYDROLOGICAL MODELING 3.1 Introduction An integrated and distributed MIKE SHE hydrological model is used to evaluate rainfall-runoff process in the Madarsoo River basin. The model is able to analyze impacts of watershed management practices, land use, soil types, topographic features, flow regulation structures, etc. over the basin on river flows. For this, MIKE SHE model was coupled with MIKE 11 river modeling system to simulate flows in the river system. Inflows and hydrodynamic processes in rivers are taken into consideration for model development. The model computes river flows taking account of overland flow, interflow and base-flow. An integrated and distributed hydrological model MIKE SHE was set up for the Madarsoo River basin for the following reasons: (1) To generate probable or design discharges precisely in the river system to assist on flood control master plan development, (2) To analyze the impacts of watershed management practices and biological measures of flood mitigation by quantifying river flows under these circumstances, and (3) To analyze the impact of incorporation of flood regulation structures like dam in the river system to reduce peak flows. 3.2 MIKE SHE MIKE SHE is an integrated hydrological model because all components of hydrological cycle (precipitation, evapotranspiration, surface flow, infiltration, groundwater flow, etc.) are incorporated into the model. Similarly, and it is also a distributed model because the model can handle spatial and temporal distributions of parameters.
    [Show full text]
  • Pdf 625.71 K
    DESERT Desert Online at http://desert.ut.ac.ir Desert 24-2 (2019) 217-227 Assessing Direction of desertification changes in an Arid Region (A Case study: Semnan County, Iran) S. Bazgeera*, H. Fakhravara, A.R. Darban Astanea, A.A. Shamsipoura a Department of Natural Geography, Faculty of Geography, University of Tehran, Tehran, Iran Received: 19 October 2018; Received in revised form: 10 July 2019; Accepted: 17 July 2019 Abstract Desertification is a serious ecological, environmental, and socio-economic threat to the world, and there is an urgent need to develop rational methods for its evaluation at different spatio-temporal scales. This study aimed to address the main directions of desertification changes in Semnan County, Iran. Monthly precipitation was used to calculate a 12-month SPI (Standardized Precipitation Index) and the normalized difference vegetation index (NDVI) obtained by Landsat Thematic Mapper (TM) sensor of April month were used for the three years, viz., 1987, 1998, and 2011. Five major categories were identified at level-I and they were subdivided into 11 categories including, 1. Residential areas, 2. Vegetation, 3. Bare and rocky areas, 4. Salt lands and 5. Sand areas. The results indicated that the reduction of the NDVI values was consistent with the changes in land use/land cover. This progress was taken place in some areas with the development of bare soil to salt land, and in some areas with the expansion of sand land, particularly from 1987 to 1998. The results indicated that the salt lands increased 348.24 and 721.57 square kilometers from 1987 to 1998 and from 1998 to 2011, respectively.
    [Show full text]
  • See the Document
    IN THE NAME OF GOD IRAN NAMA RAILWAY TOURISM GUIDE OF IRAN List of Content Preamble ....................................................................... 6 History ............................................................................. 7 Tehran Station ................................................................ 8 Tehran - Mashhad Route .............................................. 12 IRAN NRAILWAYAMA TOURISM GUIDE OF IRAN Tehran - Jolfa Route ..................................................... 32 Collection and Edition: Public Relations (RAI) Tourism Content Collection: Abdollah Abbaszadeh Design and Graphics: Reza Hozzar Moghaddam Photos: Siamak Iman Pour, Benyamin Tehran - Bandarabbas Route 48 Khodadadi, Hatef Homaei, Saeed Mahmoodi Aznaveh, javad Najaf ...................................... Alizadeh, Caspian Makak, Ocean Zakarian, Davood Vakilzadeh, Arash Simaei, Abbas Jafari, Mohammadreza Baharnaz, Homayoun Amir yeganeh, Kianush Jafari Producer: Public Relations (RAI) Tehran - Goragn Route 64 Translation: Seyed Ebrahim Fazli Zenooz - ................................................ International Affairs Bureau (RAI) Address: Public Relations, Central Building of Railways, Africa Blvd., Argentina Sq., Tehran- Iran. www.rai.ir Tehran - Shiraz Route................................................... 80 First Edition January 2016 All rights reserved. Tehran - Khorramshahr Route .................................... 96 Tehran - Kerman Route .............................................114 Islamic Republic of Iran The Railways
    [Show full text]
  • Coleoptera: Meloidae) in Kerman Province, Iran
    J Insect Biodivers Syst 07(1): 1–13 ISSN: 2423-8112 JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article https://jibs.modares.ac.ir http://zoobank.org/References/216741FF-63FB-4DF7-85EB-37F33B1182F2 List of species of blister beetles (Coleoptera: Meloidae) in Kerman province, Iran Sara Sadat Nezhad-Ghaderi1 , Jamasb Nozari1* , Arastoo Badoei Dalfard2 & Vahdi Hosseini Naveh1 1 Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. [email protected]; [email protected]; [email protected] 2 Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran. [email protected] ABSTRACT. The family Meloidae Gyllenhaal, 1810 (Coleoptera), commonly known as blister beetles, exist in warm, dry, and vast habitats. This family was studied in Kerman province of Iran during 2018–2019. The specimens were Received: collected using sweeping net and via hand-catch. They were identified by the 23 December, 2019 morphological characters, genitalia, and acceptable identification keys. To improve the knowledge of the Meloidae species of southeastern Iran, faunistic Accepted: 11 September, 2020 investigations on blister beetles of this region were carried out. Totally, 30 species belonging to 10 genera from two subfamilies (Meloinae and Published: Nemognathinae) were identified. Among the identified specimens, 22 species 14 September, 2020 were new for fauna of Kerman province. Subject Editor: Sayeh Serri Key words: Meloidae, Southeastern Iran, Meloinae, Nemognathinae, Fauna Citation: Nezhad-Ghaderi, S.S., Nozari, J., Badoei Dalfard, A. & Hosseini Naveh, V. (2021) List of species of blister beetles (Coleoptera: Meloidae) in Kerman province, Iran. Journal of Insect Biodiversity and Systematics, 7 (1), 1–13.
    [Show full text]
  • Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト
    Mayors for Peace Member Cities 2021/10/01 平和首長会議 加盟都市リスト ● Asia 4 Bangladesh 7 China アジア バングラデシュ 中国 1 Afghanistan 9 Khulna 6 Hangzhou アフガニスタン クルナ 杭州(ハンチォウ) 1 Herat 10 Kotwalipara 7 Wuhan ヘラート コタリパラ 武漢(ウハン) 2 Kabul 11 Meherpur 8 Cyprus カブール メヘルプール キプロス 3 Nili 12 Moulvibazar 1 Aglantzia ニリ モウロビバザール アグランツィア 2 Armenia 13 Narayanganj 2 Ammochostos (Famagusta) アルメニア ナラヤンガンジ アモコストス(ファマグスタ) 1 Yerevan 14 Narsingdi 3 Kyrenia エレバン ナールシンジ キレニア 3 Azerbaijan 15 Noapara 4 Kythrea アゼルバイジャン ノアパラ キシレア 1 Agdam 16 Patuakhali 5 Morphou アグダム(県) パトゥアカリ モルフー 2 Fuzuli 17 Rajshahi 9 Georgia フュズリ(県) ラージシャヒ ジョージア 3 Gubadli 18 Rangpur 1 Kutaisi クバドリ(県) ラングプール クタイシ 4 Jabrail Region 19 Swarupkati 2 Tbilisi ジャブライル(県) サルプカティ トビリシ 5 Kalbajar 20 Sylhet 10 India カルバジャル(県) シルヘット インド 6 Khocali 21 Tangail 1 Ahmedabad ホジャリ(県) タンガイル アーメダバード 7 Khojavend 22 Tongi 2 Bhopal ホジャヴェンド(県) トンギ ボパール 8 Lachin 5 Bhutan 3 Chandernagore ラチン(県) ブータン チャンダルナゴール 9 Shusha Region 1 Thimphu 4 Chandigarh シュシャ(県) ティンプー チャンディーガル 10 Zangilan Region 6 Cambodia 5 Chennai ザンギラン(県) カンボジア チェンナイ 4 Bangladesh 1 Ba Phnom 6 Cochin バングラデシュ バプノム コーチ(コーチン) 1 Bera 2 Phnom Penh 7 Delhi ベラ プノンペン デリー 2 Chapai Nawabganj 3 Siem Reap Province 8 Imphal チャパイ・ナワブガンジ シェムリアップ州 インパール 3 Chittagong 7 China 9 Kolkata チッタゴン 中国 コルカタ 4 Comilla 1 Beijing 10 Lucknow コミラ 北京(ペイチン) ラクノウ 5 Cox's Bazar 2 Chengdu 11 Mallappuzhassery コックスバザール 成都(チォントゥ) マラパザーサリー 6 Dhaka 3 Chongqing 12 Meerut ダッカ 重慶(チョンチン) メーラト 7 Gazipur 4 Dalian 13 Mumbai (Bombay) ガジプール 大連(タァリィェン) ムンバイ(旧ボンベイ) 8 Gopalpur 5 Fuzhou 14 Nagpur ゴパルプール 福州(フゥチォウ) ナーグプル 1/108 Pages
    [Show full text]
  • The Role of Natural Factors in Stability of Rural Settlements (Case Study: Sabzevar County)
    Geography and Environmental Planning, 21th Year, vol. 40, No.4, Winter 2011 Received: 15/4/1388 Accepted: 31/1/1389 PP: 89-104 The role of natural factors in stability of rural settlements (case study: Sabzevar county) A. A. Anabstani Assistant Professor of Geography and Urban Planning, University of Ferdosi Mashhad, Iran, Abstract Development of human settlements, especially rural settlements has been largely dependent on ecological factors like suitable soil and water. Sabzevar region, enjoying all of these facilities, has Langley been a major human population center in eastern Iran. The study results show that, there is a Significant relationship between ecological factors like situation, water and farming lands and population changes as an index of rural population stability in 1966-2006, the Correlation between village Situation and annual growth rate was 0.216. Considering the study results, the following tasks are recommended to sustain the rural residency: efficient utilization of soil and water resources, supporting the rural economy, management of farmlands, deciding the farming patterns, correction of water consumption method. Key words: rural population, situation, slope, altitude, water, farmland Introdacuction largely been restricted to areas which From a long time ago, man has been possess (positive) environmental trying to take up residence in places where prerequisites. Suitable water, Soil, he could make maximum use of natural Vegetation and climate are of ecological environment. Establishment of human factors and security, suitable stand for settlements in river banks, delta beds and defense against invaders, ethnic and etc, along the history verifies this claim. cultural relations, income sources and etc, Man has always been trying to organize are of effective socio-economical factors his environment and make maximum use in development of rural settlements in of the facilities around; nevertheless, spatial territories.
    [Show full text]